Last Time. Equilibrium vs. Steady State in a Circuit What is "used up" in a circuit? Kirchhoff's Current Node Law E-field inside a wire

Size: px
Start display at page:

Download "Last Time. Equilibrium vs. Steady State in a Circuit What is "used up" in a circuit? Kirchhoff's Current Node Law E-field inside a wire"

Transcription

1 Last Time Equilibrium vs. Steady State in a Circuit What is "used up" in a circuit? Kirchhoff's Current Node Law E-field inside a wire 1

2 Electric Field Inside the Wire Constant current in the wire Constant E in the wire. I I I Conventional Current I I I I I Drift Velocity controlled by E Mobility (u) set by the material. Constant current requires constant E 2

3 Today Transient response when connecting a circuit How long until steady state is reached? Introduction to Resistors Energy conservation in a circuit Kirchhoff's Voltage Loop Law Batteries 3

4 Direction of Electric Field in a Wire E must be parallel to the wire E is the same along the wire Does current fill the wire? Is E uniform across the wire? DV ABCDA B = -ò E A C D A 1 dl - ò E3 dl - ò E2 dl - ò E3 dl = B C D V AB 0 V CD 0 E 1 = E 2 4 0

5 Electric Field in a Wire E What charges make the electric field in the wires? Bulb filament and wires are metals there cannot be excess charges in the interior Are excess charges on the battery? ASSUME: E due to dipole field of battery. This cannot be the source of the E which drives current. E E 5

6 Field due to the Battery Surface charge arranges itself in such a way as to produce a pattern of electric field that follows the direction of the wire and has such a magnitude that current is the same along the wire. 6

7 Field due to Battery E Smooth transition from + surface charge to to provide constant E. The amount of surface charge is proportional to the voltage. 7

8 Connecting a Circuit What happens just before and just after a circuit is connected? Before the circuit is connected: No current flows System is in equilibrium: How is E = 0 maintained when there are charges here? There must be surface charges on the wire to prevent current from flowing before we connect the circuit. 8

9 Connecting a Circuit What happens just before and just after a circuit is connected? Before the circuit is connected: No current flows System is in equilibrium: Think about the gap... E due only to gap faces 9

10 Connecting a Circuit What happens just before and just after a circuit is connected? Before the circuit is connected: No current flows System is in equilibrium: Think about the gap... E due to everything else cancels E gap 10

11 Connecting a Circuit What happens just before and just after a circuit is connected? Before the circuit is connected: E due to everything else cancels E gap Now close the gap... The gap face charge 0, and so does 11E gap

12 Connecting a Circuit What happens just before and just after a circuit is connected? Just after the circuit is connected: There is a disturbance in the previous (equilibrium) E-field. Now the region next to the disturbance updates its E-field, and the next region... How fast does this disturbance propagate? At the drift speed of the electrons? At the speed of light? 12

13 iclicker Reality Physics! Drift speed of electrons Speed of light Flip Light Switch On. How long until electrons from the switch reach the light bulb? L = 5 m A) About 1 nanosecond B) About 1 microsecond C) About 1 minute D) About 1 day 13

14 iclicker Reality Physics! Drift speed of electrons Speed of light Flip Light Switch On. How long until information about the change in E-field reaches the light bulb? L = 5 m A) About 16 nanoseconds B) About 16 microseconds C) About 16 minutes D) About 16 days 14

15 Reality Physics! Drift speed of electrons Speed of light Flip Light Switch On. How long until information about the change in E-field reaches the light bulb? L = 5 m 1 day for electrons to travel from light switch to bulb. 16 nanoseconds for the change in E-field to travel from light switch to bulb. Because there are sooooo many electrons in the wire, they don't have to move far to create a large current. 15

16 Connecting a Circuit What happens just before and just after a circuit is connected? Just after the circuit is connected: There is a disturbance in the previous (equilibrium) E-field. Now the region next to the disturbance updates its E-field, and the next region... The disturbance travels at the speed of light, and within a few nanoseconds, steady state is established. 16

17 Electric field in Thin and Thick wires After steady state is reached: i = i i thin i thick thin thick = = na na thin thick ue thin ue thick E = thin A A thick thin 17 E thick

18 A Wide Resistor low mobility i = nav = i i thin thick = = nau nau naue thin E thick thin E thick E = thin u u 18 thick thin E thick

19 Energy in a Circuit DV wire = EL DV battery =? Energy conservation (the Kirchhoff loop rule [2 nd law]): DV 1 + DV 2 + DV 3 + = 0 along any closed path in a circuit DV= DU/q energy per unit charge 19

20 General Use of the Loop Rule DV 1 + DV 2 + DV 3 + DV 4 = 0 (V B -V A )+ (V C -V B )+ (V F -V C )+ (V A -V F )=0 20

21 Two Batteries in Series emf - EL = 0 emf E = L i = naue = nau Why light bulb is brighter with two batteries? emf L æ P 1batt = elnau emf è ç L Two batteries in series can drive more current: Potential difference across two batteries in series is 2emf doubles electric field everywhere in the circuit doubles drift speed doubles current. ö ø 2 Work per second: P = (q / T )EL = ieel P = nauele 2 2 emf - EL = 0 E = 2emf L i = nau 2emf L æ P 2batt = elnau 2emf è ç L P21 2batt = 4 P 1batt 2 ö ø

22 Potential Difference Across the Battery F C E C FC s DVbatt = ECs = = e F e NC s Coulomb force on each e non-coulomb force on each e 1. a=f NC /m F 2. F C =ee C E = C e 3. F C =F NC Energy input per unit charge emf electromotive force C The function of a battery is to produce and maintain a charge separation. The emf is measured in Volts, but it is not a potential difference! The emf is the energy input per unit charge. chemical, nuclear, gravitational 22

23 iclicker Questions i = naue Nichrome wire (resistive) When wire length double, the current will be A. Double B. Halved C.unchanged 23

24 Twice the Length Nichrome wire (resistive) Quantitative measurement of current with a compass DV i = naue = nau L Current is halved when increasing the length of the wire by a factor of 2. 24

25 iclicker Question Nichrome wire (resistive) When wire cross sectional area is doubled, the current will be A. Double B. Halved C.unchanged 25

26 Doubling the Cross-Sectional Area Nichrome wire If A doubles, the current doubles. 26

27 iclicker Questions When plug in two batteries instead of one, the current will be A. Double B. Halved C.unchanged 27

28 Two Batteries in Series emf - EL = 0 emf E = L i = naue = nau Why light bulb is brighter with two batteries? emf L æ P 1batt = elnau emf è ç L Two batteries in series can drive more current: Potential difference across two batteries in series is 2emf doubles electric field everywhere in the circuit doubles drift speed doubles current. ö ø 2 Work per second: P = W / T = qel / T = ( q / T ) EL = ieel P = nauele 2 2 emf - EL = 0 E = 2emf L i = nau 2emf L æ P 2batt = elnau 2emf è ç L P28 2batt = 4 P 1batt 2 ö ø

29 How Do the Currents Know How to Divide? 29

30 Let s be Quantitative Capacitors, Resistors and Batteries 30

31 Capacitor: Charging and Discharging Charging Discharging 31

32 Capacitor: Construction and Symbols Similar to a large parallel plate capacitor D s There is no connecting path through a capacitor 32

33 Capacitor: Discharge Electron Current Electric Field 33

34 Capacitor: Charging 34

35 Capacitor: Charging Why does current ultimately stop flowing in the circuit? Ultimately, the fringe field of the capacitor and the field due to charges on the wire are such that E=0 inside the wire. At this point, i=0. 35

36 The Effect of Different Light Bulbs Thin filament Thick filament Which light bulb will glow longer? Why? 1) Round is brighter capacitor gets charged more? 2) Long bulb glows longer capacitor gets charged more? After current stops, Voltage across capacitor = Voltage across battery no matter which bulb is used. Capacitor charged by same amount in both cases. 36

37 Effect of the Capacitor Disk Size Use two different capacitors in the same circuit In the first moment, which capacitor will cause the bulb to produce more light? Which capacitor will make the light bulb glow longer? Fringe field: E 1 Q / A 2 0 s R 37

38 Effect of the Capacitor Disk Separation In the first moment, which capacitor will cause the bulb to produce more light? Which capacitor will make the light bulb glow longer? Fringe field: E 1 Q / A 2 0 s R 38

39 Effect of Insulator in Capacitor Insulator In the first moment, which capacitor will cause the bulb to produce more light? Which capacitor will make the light bulb glow longer? Fringe field: Q / A s E1-2 R 0 Edipoles 39

40 The capacitors shown are initially uncharged. When connected to identical circuits, after 0.01 s of charging: A) The fringe field of each capacitor is the same. B) The fringe field of the smaller capacitor is greater. C) The fringe field of the larger capacitor is greater. R 1 R 2 s E fringe = Q / A ( s s 2 0 R ) 40

41 Parallel Capacitors Initial moment: brighter? Will it glow longer? Fringe field: E 1 Q / A 2 0 s R Capacitors in parallel effectively increase A 41

42 An Isolated Light Bulb Will it glow at all? How do electrons flow through the bulb? 42

43 Capacitor in a Circuit I Charging Bulb Brightness time time Energy conservation Do 19.X.7! E cap time 43

44 The Current Node Rule in a Capacitor Circuit I 1 = I 2 + I 3 Charge conservation: i I i = 0 in steady state I i > 0 for incoming I i < 0 for outgoing Capacitor transients: not a steady state! Cannot use Kirchhoff rule for a part of a capacitor (area 1 or 2) But can use for capacitor as a whole (area 3) 44

45 Capacitance Electric field in a capacitor: E = Q / A 0 -Q +Q DV f = -ò E dl DV = Es i E DV = Q / A 0 s Q A = 0 s DV In general: Q ~ DV Definition of capacitance: Q = C DV Capacitance Capacitance of a parallelplate capacitor: C = 0A 45 s s

46 Exercise A capacitor is formed by two rectangular plates 50 cm by 30 cm, and the gap between the plates is 0.25 mm. What is its capacitance? C = 0A s C = 0A s 0.15 m 2 = C 2 /N m m = F = 5.4 nf 46

47 A Capacitor With an Insulator Between the Plates No insulator: Q / A E = 0 With insulator: Q / A E = K 0 D DV = Es DV Q / A = s A Q = 0 s 0 DV Q DV = Es DV = K A s = 0 Q / A s K 0 DV s C = 0A s A K s 0 C = 47

Last Time. Magnetic Field of a Straight Wire Magnetic Field of a Current Loop Magnetic Dipole Moment Bar Magnet Electron Spin

Last Time. Magnetic Field of a Straight Wire Magnetic Field of a Current Loop Magnetic Dipole Moment Bar Magnet Electron Spin Last Time Magnetic Field of a Straight Wire Magnetic Field of a Current Loop Magnetic Dipole Moment Bar Magnet Electron Spin 1 Today Equilibrium vs. Steady State in a Circuit What is "used up" in a circuit?

More information

Chapter 20. Capacitors, Resistors and Batteries

Chapter 20. Capacitors, Resistors and Batteries Chapter 20 Capacitors, Resistors and Batteries How is Discharging Possible?! E Positive and negative charges are attracted to each other: how can they leave the plates? Fringe field is not zero! Electrons

More information

Matter & Interactions Chapter 18 Solutions

Matter & Interactions Chapter 18 Solutions Q12: To quote from pg. 769 of the textbook, It is important to keep in mind that although the units of emf are volts, the emf is not a potential difference. Potential difference is a path integral of the

More information

Chapter 19. Capacitors, Resistors and Batteries

Chapter 19. Capacitors, Resistors and Batteries Chapter 19 Capacitor, Reitor and Batterie Capacitor: Charging and Dicharging Experiment 1 Experiment 2 Capacitor: Contruction and Symbol The capacitor in your et i imilar to a large two-dik capacitor D

More information

Need to finish these notes off, a candidate came this day, and I didn t actually run class.

Need to finish these notes off, a candidate came this day, and I didn t actually run class. Fri., 2/20 18.8-10 Energy, Applications of the Theory Exp 18,19,22-24 Spring Recess Mon., 3/2 Tues., 3/3 Wed., 3/4 Thurs., 3/5 19.1-5 Capacitor Circuits 19.6-.14 Capacitor & Resistor Circuits Quiz Ch 18,

More information

Clicker Session Currents, DC Circuits

Clicker Session Currents, DC Circuits Clicker Session Currents, DC Circuits Wires A wire of resistance R is stretched uniformly (keeping its volume constant) until it is twice its original length. What happens to the resistance? 1) it decreases

More information

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

More information

Physics Tutorial - Currents and Circuits

Physics Tutorial - Currents and Circuits Question 1: Ion Channels Physics Tutorial - Currents and Circuits The biochemistry that takes place inside cells depends on various elements that are dissolved in water as ions. The ions enter cells through

More information

Physics 2135 Exam 2 March 22, 2016

Physics 2135 Exam 2 March 22, 2016 Exam Total Physics 2135 Exam 2 March 22, 2016 Key Printed Name: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. B 1. An air-filled

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

Phys 0175 Midterm Exam III Solutions Apr 3, 2008

Phys 0175 Midterm Exam III Solutions Apr 3, 2008 Phys 0175 Midterm Exam III Solutions Apr 3, 2008 1. (8 pts) A particular capacitor has a separation between its plates of 0.03 mm. The area of one plate is 16 m 2. The capacitor is initially uncharged.

More information

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. 1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. a. The two bulbs are first connected in parallel to a 120 V source. i. Determine the

More information

Physics 208, Spring 2016 Exam #2

Physics 208, Spring 2016 Exam #2 Physics 208, Spring 2016 Exam #2 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

MasteringPhysics: Assignment Print View. Problem 30.50

MasteringPhysics: Assignment Print View. Problem 30.50 Page 1 of 15 Assignment Display Mode: View Printable Answers phy260s08 homework 13 Due at 11:00pm on Wednesday, May 14, 2008 View Grading Details Problem 3050 Description: A 15-cm-long nichrome wire is

More information

Agenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws

Agenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws Resistance Resistors Series Parallel Ohm s law Electric Circuits Physics 132: Lecture e 17 Elements of Physics II Current Kirchoff s laws Agenda for Today Physics 201: Lecture 1, Pg 1 Clicker Question

More information

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: PHYS 102 Exams Exam 2 PRINT (A) The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: It is connected to a battery with constant emf V.

More information

10/14/2018. Current. Current. QuickCheck 30.3

10/14/2018. Current. Current. QuickCheck 30.3 Current If QCurrent is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow: The SI unit for current is the coulomb per second,

More information

Last time. Ampere's Law Faraday s law

Last time. Ampere's Law Faraday s law Last time Ampere's Law Faraday s law 1 Faraday s Law of Induction (More Quantitative) The magnitude of the induced EMF in conducting loop is equal to the rate at which the magnetic flux through the surface

More information

Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II In today s lecture, we will learn to: Calculate the resistance of a conductor depending on the material and shape Apply

More information

PHYS 272: Electric and Magnetic Interactions Electric Fields and Circuits

PHYS 272: Electric and Magnetic Interactions Electric Fields and Circuits Jonathan Nistor (Purdue University) 7/09/2012 1 / 14 PHYS 272: Electric and Magnetic Interactions Electric Fields and Circuits Jonathan Nistor Monday, July 9 th, 2012 Jonathan Nistor (Purdue University)

More information

1. A1, B3 2. A1, B2 3. A3, B2 4. A2, B2 5. A3, B3 6. A1, B1 7. A2, B1 8. A2, B3 9. A3, B1

1. A1, B3 2. A1, B2 3. A3, B2 4. A2, B2 5. A3, B3 6. A1, B1 7. A2, B1 8. A2, B3 9. A3, B1 peden (jp5559) Time onstants peden (0100) 1 This print-out should have 21 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Test is Thursday!

More information

Lecture 12 Chapter 28 RC Circuits Course website:

Lecture 12 Chapter 28 RC Circuits Course website: Lecture 12 Chapter 28 RC Circuits Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 28: Section 28.9 RC circuits Steady current Time-varying

More information

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1 1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left

More information

CIRCUIT ELEMENT: CAPACITOR

CIRCUIT ELEMENT: CAPACITOR CIRCUIT ELEMENT: CAPACITOR PROF. SIRIPONG POTISUK ELEC 308 Types of Circuit Elements Two broad types of circuit elements Ati Active elements -capable of generating electric energy from nonelectric energy

More information

Physics 212 Midterm 2 Form A

Physics 212 Midterm 2 Form A 1. A wire contains a steady current of 2 A. The charge that passes a cross section in 2 s is: A. 3.2 10-19 C B. 6.4 10-19 C C. 1 C D. 2 C E. 4 C 2. In a Physics 212 lab, Jane measures the current versus

More information

Circuits Practice Websheet 18.1

Circuits Practice Websheet 18.1 Circuits Practice Websheet 18.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How much power is being dissipated by one of the 10-Ω resistors? a. 24

More information

Physics 55 Final Exam Fall 2012 Dr. Alward Page 1

Physics 55 Final Exam Fall 2012 Dr. Alward Page 1 Physics 55 Final Exam Fall 2012 Dr. Alward Page 1 1. The specific heat of lead is 0.030 cal/g C. 300 g of lead shot at 100 C is mixed with 100 g of water at 70 C in an insulated container. The final temperature

More information

PHY102 Electricity Course Summary

PHY102 Electricity Course Summary TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

More information

Chapter 26 & 27. Electric Current and Direct- Current Circuits

Chapter 26 & 27. Electric Current and Direct- Current Circuits Chapter 26 & 27 Electric Current and Direct- Current Circuits Electric Current and Direct- Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination

More information

Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.

Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Experiment 4 RC Circuits 4.1 Objectives Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Graphically determine the time constant τ for the decay. 4.2

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com Electricity May 02 1. The graphs show the variation with potential difference V of the current I for three circuit elements. PhysicsAndMathsTutor.com When the four lamps are connected as shown in diagram

More information

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis Chapter 19 Electric Current, Resistance, and DC Circuit Analysis I = dq/dt Current is charge per time SI Units: Coulombs/Second = Amps Direction of Electron Flow _ + Direction of Conventional Current:

More information

physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION

physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION Chapter 31 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 31 Fundamentals of Circuits Chapter Goal: To understand the fundamental physical principles

More information

Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1

Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1 Physics 212 Lecture 11 ircuits hange in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1 ircuit harging apacitor uncharged, switch is moved to position a Kirchoff

More information

Electric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)

Electric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C) Electric Charge Electric Charge ( q ) unbalanced charges positive and negative charges n Units Coulombs (C) Electric Charge How do objects become charged? Types of materials Conductors materials in which

More information

Physics 2112 Unit 18

Physics 2112 Unit 18 Physics 2112 Unit 18 Today s Concepts: A) Induction B) Circuits Electricity & Magnetism ecture 18, Slide 1 Where we are.. Just finished introducing magnetism Will now apply magnetism to AC circuits Unit

More information

Physics 2220 Fall 2010 George Williams SECOND MIDTERM - REVIEW PROBLEMS

Physics 2220 Fall 2010 George Williams SECOND MIDTERM - REVIEW PROBLEMS Physics 0 Fall 010 George Williams SECOND MIDTERM - REVIEW PROBLEMS The last four problems are from last years second midterm. Solutions are available on the class web site.. There are no solutions for,

More information

Capacitance, Resistance, DC Circuits

Capacitance, Resistance, DC Circuits This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

More information

CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING

CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING PHYSICS A2 UNIT 4 SECTION 3: CAPACITANCE CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING # Question CAPACITORS 1 What is current? Current is the rate of flow of charge in a circuit

More information

Physics 42 Exam 2 PRACTICE Name: Lab

Physics 42 Exam 2 PRACTICE Name: Lab Physics 42 Exam 2 PRACTICE Name: Lab 1 2 3 4 Conceptual Multiple Choice (2 points each) Circle the best answer. 1.Rank in order, from brightest to dimmest, the identical bulbs A to D. A. C = D > B > A

More information

Power lines. Why do birds sitting on a high-voltage power line survive?

Power lines. Why do birds sitting on a high-voltage power line survive? Power lines At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit high V, low I or high I, low V? (a) high V, low I (b) low V, high

More information

Energy Stored in Capacitors

Energy Stored in Capacitors Energy Stored in Capacitors U = 1 2 qv q = CV U = 1 2 CV 2 q 2 or U = 1 2 C 37 Energy Density in Capacitors (1) We define the, u, as the electric potential energy per unit volume Taking the ideal case

More information

EXPERIMENT 5A RC Circuits

EXPERIMENT 5A RC Circuits EXPERIMENT 5A Circuits Objectives 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.

More information

M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29]

M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29] M. C. Escher: Waterfall 18/9/2015 [tsl425 1/29] Direct Current Circuit Consider a wire with resistance R = ρl/a connected to a battery. Resistor rule: In the direction of I across a resistor with resistance

More information

PRACTICE EXAM 1 for Midterm 2

PRACTICE EXAM 1 for Midterm 2 PRACTICE EXAM 1 for Midterm 2 Multiple Choice Questions 1) The figure shows three identical lightbulbs connected to a battery having a constant voltage across its terminals. What happens to the brightness

More information

WELCOME TO PERIOD 14. Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday.

WELCOME TO PERIOD 14. Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday. WELCOME TO PERIOD 14 Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday. PHYSICS 1103 PERIOD 14 What is an electric circuit? How

More information

Direct-Current Circuits. Physics 231 Lecture 6-1

Direct-Current Circuits. Physics 231 Lecture 6-1 Direct-Current Circuits Physics 231 Lecture 6-1 esistors in Series and Parallel As with capacitors, resistors are often in series and parallel configurations in circuits Series Parallel The question then

More information

Physics 202: Lecture 5, Pg 1

Physics 202: Lecture 5, Pg 1 Resistance Resistors Series Parallel Ohm s law Electric Circuits Current Physics 132: Lecture e 15 Elements of Physics II Kirchhoff s laws Agenda for Today Physics 202: Lecture 5, Pg 1 Electric Current

More information

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 21 Physics, 4 th Edition James S. Walker Chapter 21 Electric Current and Direct- Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power

More information

Physics 142 Steady Currents Page 1. Steady Currents

Physics 142 Steady Currents Page 1. Steady Currents Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of

More information

104 Practice Exam 1-2/21/02

104 Practice Exam 1-2/21/02 104 Practice Exam 1-2/21/02 1. One mole of a substance contains 6.02 > 10 23 protons and an equal number of electrons. If the protons could somehow be separated from the electrons and placed in separate

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A jeweler needs to electroplate gold (atomic mass 196.97 u) onto a bracelet. He knows

More information

Electric Currents and Circuits

Electric Currents and Circuits Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 19 Electric Currents and Circuits Marilyn Akins, PhD Broome Community College Electric Circuits The motion of charges leads to the idea of

More information

Gurgaon TOPIC: ELECTROSTATIC Assignment 1 (2018)

Gurgaon TOPIC: ELECTROSTATIC Assignment 1 (2018) LJPS Class XII Gurgaon TOPIC: ELECTROSTATIC Assignment (08). A uniform electric field E exists between two charged plates as shown in figure. What would be the work done in moving a charge q along the

More information

Homework. Reading: Chap. 29, Chap. 31 and Chap. 32. Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29.

Homework. Reading: Chap. 29, Chap. 31 and Chap. 32. Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29. Homework Reading: Chap. 29, Chap. 31 and Chap. 32 Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29.32 Problems: 29.49, 29.51, 29.52, 29.57, 29.58, 29.59, 29.63,

More information

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives LABORATORY 4 ELECTRIC CIRCUITS I Objectives to be able to discuss potential difference and current in a circuit in terms of electric field, work per unit charge and motion of charges to understand that

More information

How many electrons are transferred to the negative plate of the capacitor during this charging process? D (Total 1 mark)

How many electrons are transferred to the negative plate of the capacitor during this charging process? D (Total 1 mark) Q1.n uncharged 4.7 nf capacitor is connected to a 1.5 V supply and becomes fully charged. How many electrons are transferred to the negative plate of the capacitor during this charging process? 2.2 10

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Electromotive Force An electromotive force device, or emf device, is a source of constant potential. The emf describes the work done per unit charge and has units of

More information

Physics 22: Homework 4

Physics 22: Homework 4 Physics 22: Homework 4 The following exercises encompass problems dealing with capacitor circuits, resistance, current, and resistor circuits. 1. As in Figure 1, consider three identical capacitors each

More information

UNIT II CURRENT ELECTRICITY

UNIT II CURRENT ELECTRICITY UNIT II CUENT ELECTICITY Weightage : 07 Marks Electric current; flow of electric charges in a metllic conductor, drift velocity, mobility and their relation with electric current. Ohm s law electrical

More information

RC Circuits. Lecture 13. Chapter 31. Physics II. Course website:

RC Circuits. Lecture 13. Chapter 31. Physics II. Course website: Lecture 13 Chapter 31 Physics II RC Circuits Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html Steady current

More information

Chapter 27. Circuits

Chapter 27. Circuits Chapter 27 Circuits 1 1. Pumping Chagres We need to establish a potential difference between the ends of a device to make charge carriers follow through the device. To generate a steady flow of charges,

More information

Can You Light the Bulb?

Can You Light the Bulb? AP PHYSCS 2 Can You Light the Bulb? UNT 4 DC circuits and RC circuits. CHAPTER 16 DC CRCUTS 1. Draw wires and make the bulb light. 2. Modify your drawing and use ONE wire only! Complete circuits To check

More information

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII PHYSICS ASSIGNMENT ES/CE/MAG Class XII MM : 70 1. What is dielectric strength of a medium? Give its value for vacuum. 1 2. What is the physical importance of the line integral of an electrostatic field?

More information

Physics 102: Lecture 04 Capacitors (& batteries)

Physics 102: Lecture 04 Capacitors (& batteries) Physics 102: Lecture 04 Capacitors (& batteries) Physics 102: Lecture 4, Slide 1 I wish the checkpoints were given to us on material that we learned from the previous lecture, rather than on material from

More information

BROCK UNIVERSITY. Physics 1P22/1P92. Mid-term Test 2: 19 March Solutions

BROCK UNIVERSITY. Physics 1P22/1P92. Mid-term Test 2: 19 March Solutions BROCK UNIVERSITY Physics 1P22/1P92 Mid-term Test 2: 19 March 2010 Solutions 1. [6 marks] (See Page 746, CP # 24, and pages 15 16 of the posted Ch. 22 lecture notes from 4 March.) A 3.0 V potential difference

More information

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.

More information

Lab 3: Electric Field Mapping Lab

Lab 3: Electric Field Mapping Lab Lab 3: Electric Field Mapping Lab Last updated 9/14/06 Lab Type: Cookbook/Quantitative Concepts Electrostatic Fields Equi-potentials Objectives Our goal in this exercise is to map the electrostatic equi-potential

More information

1. How does a light bulb work?

1. How does a light bulb work? AP Physics 1 Lesson 12.a Electric Current and Circuits Outcomes 1. Determine the resistance of a resistor given length, cross-sectional area and length. 2. Relate the movement of charge to differences

More information

Tactics Box 23.1 Using Kirchhoff's Loop Law

Tactics Box 23.1 Using Kirchhoff's Loop Law PH203 Chapter 23 solutions Tactics Box 231 Using Kirchhoff's Loop Law Description: Knight/Jones/Field Tactics Box 231 Using Kirchhoff s loop law is illustrated Learning Goal: To practice Tactics Box 231

More information

Physics 6B Summer 2007 Final

Physics 6B Summer 2007 Final Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 0 Electric Circuits Chevy olt --- Electric vehicle of the future Goals for Chapter 9 To understand the concept of current. To study resistance and Ohm s Law. To observe examples of electromotive

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallel-plate capacitor connected to battery. (b) is a circuit

More information

4 Electric circuits. Serial and parallel resistors V 3 V 2 V Serial connection of resistors:

4 Electric circuits. Serial and parallel resistors V 3 V 2 V Serial connection of resistors: 4 lectric circuits PHY67 Spring 006 Serial and parallel resistors Serial connection of resistors: As the current I through each of serially connected resistors is the same, one can use Ohm s law and write...

More information

Phys102 Second Major-133 Zero Version Coordinator: A.A.Naqvi Tuesday, August 05, 2014 Page: 1

Phys102 Second Major-133 Zero Version Coordinator: A.A.Naqvi Tuesday, August 05, 2014 Page: 1 Coordinator: A.A.Naqvi Tuesday, August 05, 2014 Page: 1 Q1. igure 1 shows four situations in which a central proton (P) is surrounded by protons or electrons fixed in place along a half-circle. The angles

More information

AP Physics C. Electricity - Term 3

AP Physics C. Electricity - Term 3 AP Physics C Electricity - Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the

More information

BROCK UNIVERSITY. Name: Student #: Page 1 of 8

BROCK UNIVERSITY. Name: Student #: Page 1 of 8 Name: Student #: BROCK UNIVERSITY Page 1 of 8 Mid-term Test 2: March 2010 Number of pages: 8 Course: PHYS 1P22/1P92 Number of students: 125 Examination date: 19 March 2010 Number of hours: 2 Time of Examination:

More information

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

More information

Chapter 28 Direct Current Circuits

Chapter 28 Direct Current Circuits Chapter 28 Direct Current Circuits Multiple Choice 1. t what rate is thermal energy being generated in the 2-resistor when = 12 V and = 3.0 Ω? 2 a. 12 W b. 24 W c. 6.0 W d. 3.0 W e. 1.5 W 2. t what rate

More information

Physics 2401 Summer 2, 2008 Exam II

Physics 2401 Summer 2, 2008 Exam II Physics 2401 Summer 2, 2008 Exam II e = 1.60x10-19 C, m(electron) = 9.11x10-31 kg, ε 0 = 8.845x10-12 C 2 /Nm 2, k e = 9.0x10 9 Nm 2 /C 2, m(proton) = 1.67x10-27 kg. n = nano = 10-9, µ = micro = 10-6, m

More information

A free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law,

A free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law, Exercises Question 3.1: The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4Ω, what is the maximum current that can be drawn from the battery? Answer 3.1: Emf

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Class: Date: AP REVIEW 4 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If a positively charged glass rod is used to charge a metal

More information

What does it mean for an object to be charged? What are charges? What is an atom?

What does it mean for an object to be charged? What are charges? What is an atom? What does it mean for an object to be charged? What are charges? What is an atom? What are the components of an atom? Define the following: Electric Conductor Electric Insulator Define the following: Electric

More information

PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017

PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017 PHYS 1441 Section 1 Lecture #3 Monday, Dec. 4, 17 Chapter 3: Inductance Mutual and Self Inductance Energy Stored in Magnetic Field Alternating Current and AC Circuits AC Circuit W/ LRC Chapter 31: Maxwell

More information

Student ID Number. Part I. Lecture Multiple Choice (43 points total)

Student ID Number. Part I. Lecture Multiple Choice (43 points total) Name Student ID Number Part I. Lecture Multiple Choice (43 points total). (5 pts.) The voltage between the cathode and the screen of a television set is 22 kv. If we assume a speed of zero for an electron

More information

PHYS 212 Final Exam (Old Material) Solutions - Practice Test

PHYS 212 Final Exam (Old Material) Solutions - Practice Test PHYS 212 Final Exam (Old Material) Solutions - Practice Test 1E If the ball is attracted to the rod, it must be made of a conductive material, otherwise it would not have been influenced by the nearby

More information

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time?

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time? Chapter 25 Term 083 Q13. Each of the two 25-µF capacitors, as shown in Fig. 3, is initially uncharged. How many Coulombs of charge pass through ammeter A after the switch S is closed for long time? A)

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Class: _ Date: _ w9final Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If C = 36 µf, determine the equivalent capacitance for the

More information

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply Current The current, which is Coulomb s per second, is simply I = ei e = en e Av d e is the charge is the electron! ne is the density of electrons! A is the cross sectional area of the wire! vd is the

More information

iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed?

iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed? 1 iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed? q A: C->2 C0 B: C-> C0 C: C-> C0/2 D: C->- C0 E: C->-2 C0 2 iclicker A metal ball of

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 14 121011 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Steady-State Analysis RC Circuits RL Circuits 3 DC Steady-State

More information

Introduction. Pre-lab questions: Physics 1BL KIRCHOFF S RULES Winter 2010

Introduction. Pre-lab questions: Physics 1BL KIRCHOFF S RULES Winter 2010 Introduction In this lab we will examine more complicated circuits. First, you will derive an expression for equivalent resistance using Kirchhoff s Rules. Then you will discuss the physics underlying

More information

Physics 219 Question 1 January

Physics 219 Question 1 January Lecture 6-16 Physics 219 Question 1 January 30. 2012. A (non-ideal) battery of emf 1.5 V and internal resistance 5 Ω is connected to a light bulb of resistance 50 Ω. How much power is delivered to the

More information

Energy Conservation in Circuits Final Charge on a Capacitor. Recorder Manager Skeptic Energizer

Energy Conservation in Circuits Final Charge on a Capacitor. Recorder Manager Skeptic Energizer Energy Conservation in Circuits Final Charge on a Capacitor Recorder Manager Skeptic Energizer Using an ammeter Set up a digital multimeter to be an ammeter. Since you will be measuring currents larger

More information

Physics 2135 Exam 2 October 20, 2015

Physics 2135 Exam 2 October 20, 2015 Exam Total / 200 Physics 2135 Exam 2 October 20, 2015 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A straight wire segment

More information

Physics 2135 Exam 2 October 18, 2016

Physics 2135 Exam 2 October 18, 2016 Exam Total / 200 Physics 2135 Exam 2 October 18, 2016 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A light bulb having

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information