TitleEnergy density concept: A stress te.

Size: px
Start display at page:

Download "TitleEnergy density concept: A stress te."

Transcription

1 TitlEnrgy dnsity concpt: A strss t Author(s) Tchibn, Akitomo Cittion Journl of Molculr Structur: THE 3): Issu Dt URL RightCopyright 009 Elsvir B.V. Typ Journl Articl Txtvrsion uthor Kyoto Univrsity

2 Enrgy dnsity concpt: strss tnsor pproch Akitomo Tchibn Dprtmnt of Micro Enginring, Kyoto Univrsity, Kyoto , JAPAN E-mil : kitomo@scl.kyoto-u.c.jp (rcivd: 1 August 009) Abstrct Concptul insights from th dnsity functionl thory hv bn normously powrful in th filds of physics, chmistry nd biology. A nturl outcom is th concpt of nrgy dnsity s hs bn dvlopd rcntly: drop rgion, spindl structur, intrction nrgy dnsity. Undr xtrnl sourc of lctromgntic filds, chrgd prticls cn b cclrtd by Lorntz forc. Dissiptiv forc cn mk th stt of th chrgd prticls sttionry. In quntum mchnics, th nrgy ignstt is nothr rul of th sttionry stt. Tnsion dnsity of quntum fild thory hs bn formultd in such wy tht it cn compnst th Lorntz forc dnsity t ny point of spc-tim. This formultion cn giv mchnicl dscription of locl quilibrium lding to th quntum mchnicl sttionry stt. Th tnsion dnsity is givn by th divrgnc of strss tnsor dnsity. Elctronic spin cn b cclrtd by torqu dnsity drivd from th strss tnsor dnsity. Th spin torqu dnsity cn b compnstd by forc dnsity, clld zt forc dnsity, which is th intrinsic mchnism dscribing th sttionry stt of th spinning motion of lctron. Ky Words nrgy dnsity; strss tnsor; spin torqu 1

3 1. Introduction Th id of th dnsity functionl thory (DFT) by Hohnbrg-Kohn [1] is tht with th xtrnl potntil vr givn, th lctronic ground stt nrgy is uniqu functionl of th lctron numbr dnsity n r : 3 E nr Fnr d rv r n r, (1.1) whr 3 drnr F nr N, (1.) is th univrsl functionl of nr intgrtd to giv th totl lctron numbr N. Th xtrnl potntil vr is th clmpd-nucli on-lctron lctrosttic potntil. Th id ws xtndd to grnd cnonicl nsmbl by Mrmin []. Concptul insights from th DFT hv bn normously powrful in th filds of physics, chmistry, nd biology [3]. A nturl outcom is th rliztion of nr nd nr, which mns tht th wv function nd th dnsity mtrix r givn s th functionls of nr. Bsd on this rliztion, th concpt of "nrgy dnsity" hs bn dvlopd rcntly using "strss tnsor" mchinris [4-1]. Th nrgy dnsity concpt hs bn ssntil in th fild thory with th Hmiltonin dnsity oprtor s shown in Fig. 1 nd th strss tnsors r usd ubiquitously for dscription of intrnl forcs of mttr. Thy hv bn originlly formultd by Puli [13] in quntum mchnicl contxt with th diffrntil forc lw showing tht it cn b drivd from th divrgnc rltions pplid to th nrgy-momntum tnsor undr gnrl situtions in th prsnc of lctromgntic filds, whil th bsic id dts bck to Schrödingr [14], nd rcntly dvlopd by Bdr [15] in his Atoms-in-Molculs (AIM) thory nd Epstin [16] in his hyprviril thory.

4 Fild thory of nrgy dnsity concpt Hmiltonin dnsity Hmiltonin oprtor H ( r oprtor ) 3 H d rh ( r ) xpcttion vlu < > intgrl 3 d r xpcttion vlu < > Enrgy dnsity Enrgy n ( ) ( ) H r H r 3 ( E drn ) H r H Fig. 1. Enrgy dnsity concpt in th fild thory. According to th Hohnbrg-Kohn thorm [1], th nonrltivistic ground stt wv function is uniqu functionl of th lctron dnsity, so is th "strss tnsor" in th fild thory, nd morovr, th nrgy dnsity, Lorntz forc dnsity, spin torqu dnsity, nd so on. Spcificlly for th rgumnttion of th rgionl chrg trnsfr procsss of chmicl rction coordints, nothr bsic strtgy is th us of "Apprtus" oprtors [17]; thn, with invoking th Mrmin ntropy principl for th Onsgr locl quilibrium hypothsis, th rgionl dnsity functionl thory hs bn dvlopd [18] nd succssfully pplid to th lctron flow of chmicl rctions [19,10-1]. Thus, w hv dvlopd th nrgy dnsity concpt usful in chmicl pplictions of th DFT. Th prformnc of th strss tnsor hs bn provd powrful thrin. Th bsic r of th fild thory is dp in bsic scinc vn though rgrttbly th univrsl functionl is not known yt. So tht our pproch is forml. Howvr, sinc th concpt is pprntly nturl nd xtrmly ppring, our pproch should nhnc our motivtion to sk for th novl brkthrough in th DFT. Th logic of th fild thory is fundmntl, nd is brifly rviwd hr s follows. Throughout in this ppr, w us th Gussin systm of units. Th spc-tim coordints r dnotd s x x x x x x x x ct x y z ct r, (1.3) 0 k 0 1 3,,,,,,,, whr c dnots th spd of light nd th Grk lttr runs fron 0 to 3 nd th Ltin from 1 to 3. 3

5 Th contrvrint vctor is trnsformd to th covrint vctor through g, (1.4) whr th Einstin summtion convntion for duplict indics is usd with th mtric tnsor g g. (1.5) k Th divrgnc of tnsor dnsity T is dfind in this ppr by th rul k k div T T. (1. 6) Th Lgrngin dnsity oprtor is composd of th fild oprtors of gug potntils nd mttr prticls crrying chrgs nd spins. Not only th lctronic spin but lso th nuclr spin r dscribd by stndrd modl of lmntry prticls. Th nuclr spin is intrcting with lctron s dmonstrtd by NMR chmicl shift or th Knight shift [0]. Positron mission tomogrphy hs bn widly known in chmistry community nd similr pplictions of positron-lctron nnihiltion in smiconductor industris [1]. Th mttr prticls r spin 1/ chirl Frmions in th stndrd modl []. Th mttr prticls r bound by gug bosons obying gug principl. Using th stndrd modl, th gug filds of QCD (quntum chromodynmics) is rducd from grnd unifid thory(gut)s SU (3) SU () U (1) SU (3) U (1), whr th Higgs fild brks th c w y c QED Winbrg-Slm lctrowk gug group SU () w U (1) y down to U (1) QED, but th color nd chrg symmtris rmin intct. Qurks r bound by gluons G whil lctron cquirs its chrg nd mss through th Higgs mchnism with th Yukw coupling, whn msslss photon A s wll s th mssiv bosons 0 Z nd W r mrging using th Glshow-Winbrg-Slm thory of spontnously brokn gug symmtry s shown in Appndix A. For lctrons, th ction through mdium hs bn formultd in QED (quntum lctrodynmics) using th gug-invrint Lgrngin dnsity oprtor L ( x ), 4

6 1 L F ( ) ( ) (, x F x L D ; x), (1.7) 16 whr F is th photon fild dnsity oprtor using Ablin trnsvrsl Coulomb gug potntils A, F A A v v v 0 E ( ) ( ) x x Ey x Ez E ( ) 0 ( ) x x Bz x By, k k ( ) 0 ( ) ( ) 0 A x, (1.8) Ey x Bz x Bx E ( ) ( ) z x By x Bx 0 nd whr L (, D ; x) is th Lgrngin dnsity oprtor of lctron, L (, D ; x) c i D m c. (1.9) with 0 bing th Dirc conjugt to. Th dnots th Dirc mtrics ,, (1.10) in th chirl rprsnttion with th Puli spin mtrics i 1 0,, x 1 0 y i 0 z 0 1, (1.11) nd D is th covrint drivtiv for lctron, Z D ( ) x i A, Z 1 c, (1.1) with m nd Z bing th mss nd chrg numbr of lctron, rspctivly. QED hs th Poincr nd gug symmtris. Th gug symmtry of th fild thory is rlizd by th Bcci-Rout-Stor-Tyutin (BRST) symmtry of th Lgrngin: 4 1 d x L 0, (1.13) c whr dnots th BRST oprtor. It follows tht th physicl contnt of th gug thory is consistnt with th cohomology of th BRST oprtor. 5

7 QED llows th clmpd-nucli Hmiltonin, whr th tomic nucli r clmpd in spc nd r trtd s xtrnl sttic sourc of forc for lctrons. But in chmicl rction systms, th rrrngmnt of tomic configurtion is of primry intrst, nd hnc th dynmicl trtmnts of tomic nucli hv bn formultd by th Riggd QED thory [4], which is n Ablin gug thory, using th gug-invrint Lgrngin dnsity oprtor: 1 ( ) ( ) Lx F xf 16. (1.14) L (, D ; x) L (, D, D ; x) 0 k 0 k L (, D, D ; x) is th Lgrngin dnsity oprtor of th tomic nuclus: L (, D0, D ; x) i cd0 D, (1.15) m whr D is th covrint drivtiv of th tomic nuclus, Z D ( ) x i A, (1.16) c with m nd Z bing th mss nd chrg numbr of th th tomic nuclus, rspctivly. Th cnonicl quntiztion rul of th Schrödingr fild is nticommuttion rltionship for Frmions nd commuttion rltionship for Bosons. Th Riggd QED thory is gug invrint nd prsrvs trnsltionl nd rottionl symmtry but violts th Poincr symmtry. This is bcus th prsnc of th Schrödingr filds violts Lorntz invrinc of th Lgrngin dnsity. If w nglct th Schrödingr filds, thn w rcovr th convntionl QED with th Poincr symmtry s wll s th gug symmtry. In th prsnt ppr, w dmonstrt th nrgy dnsity, forc dnsity, nd spin torqu dnsity concpts in Ablin nd non-ablin gug thoris (s Appndix A). In clssicl mchnics, th Lorntz forc is th drivtiv of th kintic momntum with rspct to tim. In th quntum fild thoris, th drivtiv of th kintic momntum dnsity oprtor with rspct to tim givs th Lorntz forc dnsity oprtor plus th tnsion dnsity oprtor: s Eqs. (.3) nd (.38) in th Ablin gug fild thory nd Eq. (A.3) in th non-ablin gug fild thory. Th tnsion dnsity oprtor is givn by th divrgnc of th strss tnsor dnsity oprtor: s Eqs. (.34) nd (.39) in th Ablin gug fild thory nd Eq. (A.5) in th non-ablin gug fild thory. Th drivtiv of th Frmion spin ngulr momntum dnsity oprtor with rspct to tim givs th spin torqu dnsity oprtor nd forc dnsity oprtor, clld th zt forc dnsity oprtor: s Eq. (4.4) in th Ablin gug fild thory nd Eq. (A.31) in th non-ablin gug fild thory. Th torqu 6

8 dnsity oprtor is origintd from th strss tnsor dnsity oprtor: s Eq. (4.5) in th Ablin gug fild thory nd Eq. (A.3) in th non-ablin gug fild thory. Th zt forc dnsity oprtor is origintd from th grdint of th zroth componnt of th chirl currnt dnsity oprtor: s Eq. (4.7) in th Ablin gug fild thory nd Eq. (A.34) in th non-ablin gug fild thory. Phnomnologicl mdium ffcts r trtd in Sction 5.. Lorntz forc dnsity.1. Gnrl sttings In th Riggd QED thory, th chrg dnsity consrvtion lws r th continuity qution ( ) div ( ) 0 t x j x (.1) for lctron, nd ( ) div x j 0 t (.) for th tomic nuclus. As whol, div j 0 t, (.3) Whr stnds for lctron nd stnds for th tomic nuclus; ( x) is th chrg dnsity oprtor nd ( j x) is th chrg currnt dnsity oprtor. Th ( x) is dcomposd into, (.4) ZN, (.5) whr is th lctronic chrg dnsity oprtor nd ( x ) is th chrg dnsity oprtor of th tomic nuclus, nd whr N ( x ) nd N ( x ) is th position probbility dnsity oprtor of lctron nd th tomic nuclus, rspctivly: 0 N ( ) ( ) ( ) x x x, (.6) N. (.7) 7

9 Th ( j x) is dcomposd into j j j j, (.8) j Z v, (.9) whr j ( x ) is th lctronic chrg currnt dnsity oprtor nd j is th chrg currnt dnsity oprtor of th tomic nuclus, nd v dnots th vlocity dnsity oprtor: ( ) ( ) v ( ) x c x x, (.10) 1 m v i D i D. (.11) By Gordon dcomposition, w hv 1 0 v ( ) ( ) ( ) ( ) ( ) ( ) x i x D x x i D x x m. (.1) 0 rot i m m t Th v ( r ) my lso b writtn s th flux dnsity oprtor S ( r ) s follows: v ( r ) S ( r ). (.13).. Equtions of motion of filds Th qutions of motion of filds is obtind using stndrd vritionl principl. First, th Mxwll qutions of motion r found for th lctromgntic filds: 1 Ax ( ) Ex ( ) grd A0, div Ax ( ) 0, (.14) c t nd ( B x ) rot A ( x ) 1 Bx ( ) rot Ex ( ) 0 c t (.15), (.16) 8

10 div Bx ( ) 0, (.17) div E 4, (.18) 1 Ex ( ) 4 rot B j. (.19) c t c Scond, th Dirc spinor fild stisfis i D mc, (.0) 0 i D mc. (.1) Third, th Schrödingr fild stisfis i D Z A, (.) t 0 m 0 i x D x x Z A x x. (.3) t ( ) ( ) ( ) ( ) ( ) m.3. Equtions of motion of momntums Th momntum of th lctromgntic fild is th Poynting vctor dnsity oprtor Gx ( ) dfind s 1 Gx ( ) Ex ( ) Bx ( ) 4 c stisfis th qution of motion 1 1 Gx ( ) G Lx ( ) L div t (.4). (.5) In this xprssion, ( x) is th Mxwll strss tnsor dnsity oprtor nd Lx ( ) forc dnsity oprtor s follows: is th Lorntz 9

11 nd whr 1 ij i j j ( ) ( ) ( ) ( ) ( ) i x E x ij E x E x E x E 8 1 ( ) i ( ) j ( ) j ( ) i B x ij B x B x B x B 8 (.6) L L L, (.7) 1 L E j B, c (.8) 1 L E j B, c (.9) L ( x ) is th lctronic Lorntz forc dnsity oprtor nd L is th Lorntz forc dnsity oprtor of th tomic nuclus. It should b notd tht ( x) is symmtric: ij ji. (.30) Nxt, th lctronic kintic momntum dnsity oprtor ( r ) 1 ( ) ( ) ( ) ( ) ( ) ( ) x i x D x x i D x x, (.31) stisfis th qution of motion ( ) ( ) x L x. t (.3) Asid from th lctronic Lorntz forc dnsity oprtor L, th dnots th lctronic tnsion dnsity oprtor givn s th divrgnc of th lctronic strss tnsor dnsity oprtor s follows: whr ( ) div x, (.33) 10

12 nd k ic 0 ( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) x Dl x x Dk x x x Dk x Dl x 0 0 k l k l D D D D ] 1 ( j B) c k 0 kl ic ( ) [ ( ) ( ) ( ) ( ) ( ) x x Dk x x Dk x x ]. It should b notd tht is Hrmitn: (.34) (.35) ( ) x. (.36) Lstly, th kintic momntum dnsity oprtor mv ( x ) of tomic nuclus stisfis th qution of motion ( ) ( ) S mv x Lx. (.37) t Asid from th Lorntz forc dnsity oprtor L, th S dnots th tnsion dnsity oprtor givn s th divrgnc of th strss tnsor dnsity oprtor S ( x ) s follows: S ( ) div S x, (.38) whr Sk 4m [ ( xd ) ( xd ) D ( xd ) k k D D D D k k 1 ( j B) c k, (.39) [ ( xd ) ( xd ) D ( xd ) Skl k l k l 4m D D D D ] k l l k. (.40) 11

13 It should b notd tht th strss tnsor dnsity oprtor S ( x ) is Hrmitn nd symmtric: whr S ( ) S x, (.41) Skl Slk ( ) x. (.4) As whol, w obtin Lx ( ) t, (.43) Lx ( ) div ( ) x m v, (.44) ( ) ( ) S x x, (.45) ( ) ( ) S x x. (.46) Likwis, w obtin 1 ( ) ( ) ( ) div ( ) ( ) Gx G t x x x x, (.47) which is th momntum consrvtion lw of th Riggd QED systm. 3. Enrgy dnsity Th QED Hmiltonin dnsity oprtor H ( x ) is composd of th Hmiltonin dnsity QED oprtor of th lctromgntic fild H ( x ) nd th Dirc lctronic Hmiltonin dnsity EM oprtor H Dirc( x ) intrcting with th lctromgntic fild s follows []: H H H, (3. 1) QED EM Dirc H H A, (3. ) EM 0 H M A, (3. 3) Dirc 0 1

14 whr H is th lctromgntic fild nrgy dnsity oprtor nd M ( x ) is th lctronic mss dnsity oprtor: 1 H x 8 E x B x ( ) ( ) ( ), (3. 4) k M c i D m c, (3. 5) k Th lctronic mss dnsity oprtor M ( x ) my b writtn s th nrgy dnsity oprtor of lctron H ( x ) s follows: M H. (3. 6) Thus, th H ( x ) rducs from Eq. (3.1) to QED H H H. (3. 7) QED Th Riggd QED Hmiltonin dnsity oprtor dnotd s H ( x ) is drivd s Riggd QED follows: H H H, (3. 8) Riggd QED QED tom whr th nrgy dnsity oprtor H tom of tomic nucli intrcting through th lctromgntic fild nd th lctron fild is ddd to H QED( x ). Th H tom ( x ) is purly th kintic nrgy dnsity oprtor of tomic nucli: H T, (3. 9) tom 1 T ( ) ( ) ( ) ( ) ( ) ( ) x x D x x D x x m. (3.10) Th nrgy flow is found s follows: 1 1 H ( x ) c div G ( x ) G ( x ) E ( x ) j ( x ) j ( x ) E ( x ) t, (3.11) 13

15 1 ( ) H x c div ( x ) E ( x ) j ( x ) j ( x ) E ( x ) t, (3.1) 1 Htom div s E j j E t, (3.13) with lding to D k D 1 ( ) ( ) ( ) k D x x Dk x s, (3.14) i m D ( ) ( ) ( ) k x x D x ( ) ( ) ( ) xdk xd x 1 H x c G x G x c x s x t Riggd QED( ) div ( ) ( ) ( ) ( ), which is th nrgy consrvtion lw of th Riggd QED systm. Th viril thorm hs bn found to b [7]: 3 ERiggd QED d r Hriggd QED x dr mc x x T x 3 which in th nonrltivistic limit bcoms (3.15), (3.16) 3 Enon-rltivistic Riggd QED d r T x. (3.17) It should b notd tht th strss tnsor dnsity hs th dimnsion of th nrgy dnsity, nmly nrgy pr volum, sinc it hs dimnsion of forc pr r. Indd, th trc of th strss tnsor dnsity bcoms k k 1 c k 0 k [ i D ( ) ( ) ( ) ( ) k x x i Dk x x ], (3.18) M M m c 14

16 ( ) ( ) ( ) ( ) ( ) ( ) S k x D x x D x x x k. (3.19) 4m D ( ) ( ) ( ) x x D x This is quivlnt to two tims th kintic nrgy dnsity; in th nonrltivistic limit, th intgrl of th trc of th strss tnsor dnsity givs two tims tht of th kintic nrgy dnsity s follows: ( ) ( ) 3 k S k dr k x k x dr dr T x nonrltivistic limit 3 S k 3 k. (3.0) Hnc, th strss tnsor dnsity givs locl pictur of two tims th kintic nrgy dnsity. Th ignvlu is th principl strss nd th ignvctor is th principl xis s summrizd s follows: S11 S1 S13 S ( ) S1 ( ) S ( ) S3 x x x ( x ) S31 S3 S S11 dig S 0 0 S (3.1). (3.) S11 S S33 W shll nlyz th nrgy dnsity of chmicl bonds in th lctronic sttionry stt. Undr xtrnl lctromgntic filds, chrgd prticls cn b cclrtd by Lorntz forc. Dissiptiv forc cn bring bout th sttionry stt of th chrgd prticls. In quntum mchnics, nrgy ignstt is nothr rul lding to th sttionry stt. As hs bn shown in this ppr, tnsion of th quntum fild thory cn compnst th Lorntz forc, which is th bsic mchnism lding to th quntum mchnicl sttionry stt: s qutions (.3), nd (.37). Th ignvlu of th strss tnsor dnsity givs msur of th kintic nrgy dnsity nd th ignvctor, th principl xis, msur of th dirction of th bond. If th locl principl strss is positiv, it is clld th tnsil strss, whil if it is ngtiv, comprssiv. Sinc th mtric tnsor ij g hs ngtiv ignvlus, (-1, -1, -1), w should not tht th comprssiv strss givs positiv contribution to th kintic nrgy dnsity, whil th tnsil strss ngtiv. This indicts th nw pictur of th locl chmicl intrction nrgy dnsity. Th tomic lctron dnsity xhibits positiv kintic nrgy dnsity nd forms th lctronic drop rgion R D sprtd from th lctronic 15

17 tmosphr rgion R A by th intrfc S, lding to th comprssiv strss. This tndncy should of cours b intct in btwn ionic spcis intrctions. Th sitution should chng drmticlly for covlnt bond formtion, whr pir of lctrons should b bound tightly, thrby crts tnsil strss. Mny systms xhibit such gnric ftur, which is clld th spindl structur [5]. If in th lctronic drop rgion R D in btwn pir of toms thr crosss th Lgrng surfc of th lctronic tnsion, thn th distribution of th lctronic strsss nd th principl xis is of grt intrst to study th chrctr of th chmicl bond. Th locl gomtry is schmticlly shown in Figs. nd 3. For ppliction to chmicl rction coordints, w hv lso dvlopd concpt of th intrction nrgy dnsity [10-1]. Locl quilibrium in th sttionry stt Rpulsiv lctronic tnsion drivs th quntum mchnicl lctronic diffusion Lgrng surfc Rpulsiv lctronic tnsion compnsts th ttrctiv lctric fild of tomic nuclus S A B R D R A Fig.. Lgrng surfc of th lctronic tnsion in btwn pir of toms A nd B. Also shown r th lctronic drop rgion R D whr th lctronic kintic nrgy dnsity is positiv, th lctronic tmosphr rgion R A whr th lctronic kintic nrgy dnsity is ngtiv, nd th intrfc S which sprts thm. 16

18 Spindl structur of th covlnt bond Elctronic tnsil strss binds pir of th lctronic drop rgions R D s whr th comprssiv strss is prdominnt: covlnt bond visuliztion! Comprssiv strss Tnsil strss Comprssiv strss Fig. 3. Spindl structur schm for covlnt bond visuliztion in hydrogn molcul modl. Elctronic tnsil strss binds pir of th lctronic drop rgions R D s whr th comprssiv strss is prdominnt. 4. Torqu of spin ngulr momntum Th ngulr momntum dnsity oprtor ux ( ) of th lctromgntic fild dfind s ( ux ) rgx ( ), (4.1) stisfis th qution of motion 1 1 ( ) ( ) uxu x r Lx ( ) L +div t, (4.) 1 r L L div r whr w hv usd th symmtric chrctr of ( x). Th lctronic spin ngulr momntum dnsity oprtor 1 ( x ) with 17

19 ( ) ( ) x x (4.3) stisfis th qution of motion 1 ( x ) t ( x ) ( x ), (4.4) t whr t dnots th spin-torqu dnsity oprtor dfind s [10] k n t ( ) x nk. (4.5) Th ( x ) dnots th zt forc dnsity oprtor dfind s k k 1 k ( ) ( ) x ck x ; no sum ovr k. (4.6) Th ltrntiv form is obtind s follows: k, (4.7) Z k 5 j, (4.8) whr j ( x ) dnots th zroth componnt of th chirl currnt dnsity oprtor 0 5 j cz, (4.9) i. (4.10) Th lctronic orbitl ngulr momntum dnsity oprtor dfind s r, (4.11) stisfis th qution of motion ( ) x rl div t. (4.1) r L div r t Sum of qutions (4.4) nd (4.1) lds to 18

20 1 r L div t t. (4.13) rl div r Th th nuclr orbitl ngulr momntum dnsity oprtor ( x ) dfind s rm v (4.14) stisfis th qution of motion: ( ) ( ) div S x rl x r, (4.15) t whr w hv usd th symmtric chrctr of S ( x ). For th ngulr momntum s whol, w hv 1 r L r div ( r) t t, (4.16) rl div r nd if th ux ( ) is furthr ddd to, w finlly obtin 1 1 ( ) ( ) ( ) ux u x x t rdiv t, (4.17) div r which is th ngulr momntum consrvtion lw of th Riggd QED systm. Elctronic spin cn thrfor b cclrtd by th torqu drivd by th strss tnsor, which is lso compnstd by th zt forc, which is nothr bsic mchnism lding to th sttionry stt of lctronic spin. It should b notd tht Puli Hmiltonin givs qution of motion of lctronic spin: s,.g., qution (11.155) of Jckson s txtbook on clssicl lctrodynmics [3]. Th BMT (Brgmnn-Michl-Tlgdi) qution nd Thoms prcssion r lso th txtbook mttrs. Our prsnt rsult incorports ll of thm in closd form plus th fild thorticl compnstion mchnism lding to th sttionry stt of lctronic spin. 19

21 5. Effctiv chrg dnsity of lctromigrtion 5.1. Elctromgntic nrgy dnsity in mgntodilctric mdi In th Riggd QED thory, th phnomnologicl intrction of systm A nd its nvironmnt bckground mdium M is trctbl using rgionl chrg nd currnt dnsitis. It is sily gnrlizd for systm A mbddd in th surrounding mdium M. For phnomnologicl forc concpts in mgntodilctric mdium such s chmicl rction systms in condnsd phs, w my usully rly on clssicl nlogy of prlll-plt cpcitor filld with dilctric s shown in Fig. 4. D( r), B( r) M P( r), M( r) E( r), H( r) A Fig. 4. Prlll-plt cpcitor filld with dilctric: phnomnologicl modl of chmicl rction systm A mbddd in n nvironmntl bckground mdium M. Th corrsponding gug potntils r th rgionl intgrls of th chrg nd trnsvrsl currnt dnsitis, dfind s follows [7]: 3 ( ct, s) A0 ( ct, r) d s A, (5.1) r s A 3 ( ct, s) A0 ( ct, r) d s M, (5.) r s nd M 0

22 1 3 jt ( cu, s ) AA ( ct, r ) d s c, (5.3) r s A 1 3 jt ( cu, s ) AM ( ct, r) d s c, (5.4) r s M whr th subscript A or M of th intgrl sign dnots th rgionl intgrls confind to th rgion r s A or M, rspctivly, nd whr u t. c Sinc th rgions A nd M ltogthr spn th whol spc, w hv A A A, (5.5) 0 0A 0M A A A A. (5.6) A M rdition Th lctric fild E is dcomposd into th lctric displcmnt Dx ( ) of th mdium M nd th polriztion Px ( ) of th systm A, dfind rspctivly s 1 Dx ( ) grd A0 A M M, c t (5.7) 1 1 Px ( ) grd A 0 A A A, 4 4 c t (5.8) so tht w hv 1 Ex ( ) grd A0 Ax ( ) c t. (5.9) 1 Dx ( ) 4 Px ( ) Ardition c t It should b notd tht th Px ( ) gnrlizs th usul dipol fild. Likwis, lt th mgntic fild H of th mdium M nd th mgntiztion M of th systm A b dfind rspctivly s H rot A, (5.10) M M 1 M ( x ) rot AA ( x ), (5.11) 4 1

23 thn w hv Bx ( ) rot Ax ( ) H 4 M, with. (5.1) H H rot A M rdition Th rgionl chrg dnsitis r thn rprsntd rspctivly s 1 A A0 A, (5.13) 4 1 M A0 M, (5.14) 4 with th Lplcin x y z, (5.15) nd hnc. (5.16) A M Likwis, th rgionl chrg currnt dnsitis r rprsntd s c 1 ja grd A0 A A A 4 c t, Px ( ) crot M t (5.17) c 1 jm grd A0 A M M, 4 c t (5.18) with th D'Almbrcin 1 c t, (5.19) nd hnc j j A jm. (5.0) Px ( ) crot M jm t Th rgionl dcomposition of th longitudinl nd trnsvrsl componnts of th currnt dnsitis r rprsntd s follows: j j j, (5.1) L T with j j j, (5.) L LA LM

24 j j j, (5.3) T TA TM whr c 1 j L grd A A 0, A 4 c t (5.4) c 1 j L grd A M M, 4 c t (5.5) c jt A A A, 4 (5.6) c jt A M M. 4 (5.7) Using Eqs. (5.4)-(5.7), w hv th ltrntiv forms of Eqs. (5.17) nd (5.18) rspctivly s j j j, (5.8) A LA TA j j j. (5.9) M LM TM Th linr rspons proprtis of th systm A undr th intrction with th nvironmnt mdium M my formlly b rprsntd with obvious nottion s follows: 1 Px ( ) Dx ( ) Ardition c t ( xex ) ( ), nd, (5.30) M H m 1 Dx ( ) Ardition 14 Ex ( ) c t 1 Ex ( ) 1 4, (5.31) ( xex ) ( ) B (14 m) H, ( xh ) ( x ) (5.3) nd 3

25 1 j xt D Ardition c t xt E. (5.33) ( xex ) ( ) int 5.. Effctiv chrg numbr of lctromigrtion Elctromigrtion is th phnomn of nuclr currnt inducd by lctric currnt in condnsd phs [4]. Th nucli ccpt diffusiv forc from th surrounding mdium ovr nd bov th Lorntz forc [5]. In our modl, th tnsion is th origin of th mdium ffcts [9]. Th linr rspons of th forc dfins th ffctiv chrg numbr tnsor dnsity oprtor Z * of th chrgd prticl s * 1 1 ( ) ( ) S Z x D x Ardition N j B L. (5.34) c t c Sinc th right hnd sid of this qution is 1 S ( ) ( ) ( ) ( ) ( ) ( ) S L x x E x x j x B x, c (5.35) w thn conclud * 1 ( ) ( ) S Z x D x Ardition N E c t 1 ( ) 4 ( ) S Dx Px Ardition ZN c t. (5.36) 1 ( ) S Dx Ardition ZN 4 PxZN ( ) c t Now w dfin nd w conclud ( ) ( ), (5.37) * Z x Z Z wind x Z Z Z, (5.38) wind sttic wind dynmic wind Z 4 Z, (5.39) sttic wind 1 S Z dynmic wind D Ardition N. (5.40) c t 4

26 dictts th cs of lctronic conduction. In It should b notd tht th formultion for this cs, th usul txtbook pproch dmonstrts th mdium ffct s th dissipsiv forc ginst Lorntz forc: s,.g., Eq. (1.16) of Ashcroft-Mrmin s txtbook on solid stt physics [6]. In our prsnt rsult, th dissiptiv forc mrgs from th tnsion dnsity s th fild thorticl forc dnsity compnsting th Lorntz forc dnsity. 6. Exmpl W shll dmonstrt th nrgy dnsity concpt using hydrogn. W hv lrdy publishd th H tom's R D, R A nd S [4-8] nd th spindl structur for covlnt H bond formtion [5] s schmticlly shown in Figs. nd 3. Th dnsity proprty of spin torqu my hr b ddd to. Sinc th lctric fild of proton is sphriclly symmtric, thr pprs no spin torqu dnsity for th ground nd xcitd stts nor th zt forc dnsity. Th sum of th two dnsitis should thn of cours zro, t ( r) ( r) 0, t ch point in spc s it should b for th sttionry stt, Eq.(4.4). Anothr xmpl with chmicl rction of hydrogn conomy my lso b ddd to. Rcntly, hydrogn-storg crbon mtrils for ful cll pplictions hv rcivd much ttntion nd th bsic rction mchnism hs not bn thoroughly known yt [7-4]. Sinc thr should b crtin nrgy brrir for H tom dsorption on grphn sht [9,30], our id hr is th chrg trnsfr from htro toms such s Al my nhnc th dformtion of grphn which my thn nhnc stbiliztion of H tom on th grphn surfc. W hv prformd b initio molculr-dynmics (MD) simultions using rstrictd Hrtr-Fock (RHF) lctronic wv function xpndd by 6-31+G* bsis st for Al nd Dunning-Huzing full doubl zt typ ons for H nd C for dynmic bhviors of H toms on modl grphn sht with Al tom [43]. W shll prsnt hr som of th prliminry rsults for dmonstrtion of th nrgy dnsity concpt. 5

27 A 1.073A A A 1.405A () H H H C A B (b) Fig. 5. Modl grphn sht () th optimizd structur with Mullikn chrgs, nd (b) th ttcking sits A, B, nd C by H. 6

28 W hv shown in Fig. 5 () th optimizd modl grphn sht with Mullikn chrgs, nd (b) th thr ttcking sits A, B, nd C by H on it. H A A A A Al B.E. = 0.90 V A-sit optimizd structur () A H A A 1.50A Al B.E. = 0.98 V B-sit optimizd structur (b) 7

29 A H A A A Al B.E. =.357 V C-sit optimizd structur (c) Fig. 6. Thr of vrious locl minim corrsponding to () A, (b) B, nd (c) C ttcking sits by H in Fig. 5 with th binding nrgis (B.E.'s). Th Al tom situtd t th bck sid of th grphn sht stbilizs th dducts through chrg trnsfr. In Fig. 6 r shown th thr of vrious locl minim corrsponding to ths sits with th binding nrgis (B.E.'s), whr th Al tom situtd t th opposit sid of th grphn sht stbilizs th dducts through chrg trnsfr. 8

30 Fig. 7. Elctronic nrgy dnsitis on cross sction of snpshot in th MD simultion. () th positiv kintic nrgy dnsity in gry rgion nd th tnsion dnsity in rd rrow, nd (b) th 3 rd ignvlu of th strss tnsor dnsity in rd for positiv "tnsil" strss, whil in blu ngtiv "comprssiv" strss, nd th ignvctor in blck lin. Th xs of ordint nd bsciss r lbld in Bohr. Fig. 7 shows snpshot of lctron nrgy dnsity plots in th MD simultion drwn by Molculr Rgionl DFT progrm pckg dvlopd in our lbortory [44]. In this snpshot th bond lngth btwn th H nd th nrst C tom is 1.03 A. Th kintic nrgy dnsity in Fig. 7 () rprsnts th chrg trnsfr through th mrgd R D btwn H nd Al toms nd th grphn sht. Th tnsion dnsity rprsnts th forc which hlp th sp hybrid orbitl chng to sp 3 stbilizing th floppy surfc of th grphn sht. Th strss tnsor dnsity in Fig. 7 (b) shows th chrctristic chmicl bonding proprtis. Th strss tnsor dnsity btwn th H nd C toms rprsnts positiv "tnsil" strss nd th spindl structur is formd btwn thm. This dictts th covlnt bond formtion nd hnc thy r tightly bound with ch othr. On th othr hnd, th rgion btwn th Al nd C toms rprsnts ngtiv "comprssiv" strss. This corrsponds to th sitution tht th Al tom movs with no tightly covlnt trpping points on th grphn sht. Dtild discussions including th dynmics with th spin torqu for hydrogn storg procsss undr lctric strsss of th xtrnl lctromgntic filds in th surrounding mdium 9

31 should b of considrbl intrst, nd will b publishd lswhr. 7. Conclusion Undr xtrnl sourc of lctromgntic filds, chrgd prticls cn b cclrtd by Lorntz forc. Dissiptiv forc cn mk th stt of th chrgd prticls sttionry. In quntum mchnics, nrgy ignstt is nothr rul of th sttionry stt. In this ppr, tnsion dnsity of quntum fild thory is formultd in such wy tht it cn compnst th Lorntz forc dnsity t ny point of spc-tim. This formultion cn giv mchnicl dscription of locl quilibrium lding to th quntum mchnicl sttionry stt. Th tnsion dnsity is givn by th divrgnc of strss tnsor dnsity. Elctronic spin cn b cclrtd by torqu dnsity drivd from th strss tnsor dnsity. Th torqu dnsity cn b compnstd by forc dnsity, clld th zt forc dnsity, which is nothr bsic mchnism lding to th sttionry stt of th spinning motion of lctron. Th xtrnl ffct for chmicl rction systms is rlizd whr chmicl rction systm A mbddd in th nvironmntl mdium M is modld s prlll-plt cpcitor filld with dilctric. Th vibronic intrction tht gos byond th dibtic pproximtion hs bn incorportd s wll s th lctronic spin-dpndnt intrction. Acknowldgmnts This work hs bn supportd in prt by Gnt-in-Aid from th Ministry of Eduction, Cultur, Scinc nd Tchnology of Jpn, for which w xprss our grtitud. APPENDIX A A.1. Th nrgy dnsity in th non-ablin gug fild thory According to th stndrd modl, th intrction of th mttr prticls is mditd by th gug Bosons. Th known lctrowk, lctromgntic, nd strong intrctions hv ll turnd out to b govrnd by th principls of th gug invrinc undr locl gug trnsformtions. Th quntum fild thoris tht hv bn provd usful in dscribing th rl world r non-ablin gug thoris. Ths r mor gnrl thn th simpl Ablin gug invrinc of th QED. 30

32 In th stndrd modl, th Lgrngin is invrint undr gug trnsformtion of th Frmion fild of th mtril prticl s follows: i t, (A.1) whr is n rbitrry rl function nd whr t is th Hrmitn oprtor which gnrts th unitry trnsformtion. Th t stisfis th Li lgbr: t, t ict, (A.) C ; compltly ntisymmtric, (A.3) whr C dnots th structur constnt of th Li lgbr nd is compltly ntisymmtric. Th djoint rprsnttion A t dfind s t A ic (A.4) stisfis A A A t, t ict. (A.5) Sinc dos not trnsform lik, w must introduc gug potntil A nd us it to construct th covrint drivtiv s follows: D ia t (A.6) with th gug trnsformtion proprty D ( ) ( ) ( ) ( ) x x i x t D x, (A.7) if with A C A A D, (A.8) A ( ) ( ) A D x ia x t. (A.9) 31

33 Th gug potntil A lds to th gug fild dnsity oprtor F s follows: ( ), ( ) D x D x itf, (A.10) F A A C A A, (A.11) with th gug trnsformtion proprty A F i t F. (A.1) Th totlly ntisymmtric C gurnts th following rltionship A ( ), A A ( ) D x D x it F, (A.13) nd th Jcobi idntity A A ( ) ( ) ( ) ( ) A D x F x D x F x D F 0. (A.14) Th lst idntity is n lmnt of th Mxwll qutions. Th gug-invrint Lgrngin dnsity oprtor Lx ( ) with th non-ablin gug filds is gnrlly writtn s 1 L F ( ) ( ) (, x F x LM D ; x), (A.15) 16 whr L (, ; ) M D x is th Lgrngin dnsity oprtor of th mttr prticl. Th qutions of motion of filds is obtind using th vritionl principl. First, th rmining lmnts of th Mxwll qutions of motion r obtind for th non-ablin filds in th gug-invrint form using th Eulr-Lgrng qution s follows: A 4 D F J, (A.16) c whr J is th currnt of th mttr fild: L (, M D ; x) J c it D. (A.17) Th J stisfis th consrvtion lw 3

34 A ( ) D x J 0. (A.18) Scond, lt th mttr spinor fild Lgrngin dnsity oprtor b givn s follows: L (, ; ) ( ) ( ) ( ) M D x c x i D x mc x, (A.19) whr m dnots th mss of th mttr prticl. Th mttr fild stisfis th qution of motion i D mc. (A.0) A.. Th Lorntz forc dnsity nd th spin torqu dnsity in th non-ablin gug fild thory W shll driv th strss tnsor in non-ablin gug fild thory nd dmonstrt its ctiv rol in th qution of motion of th kintic momntum of th mttr prticl. Th kintic momntum dnsity oprtor of th mttr prticl dfind s 1 i ( xdx ) ( ) i Dx ( ), (A.1) 1 k k k i D i D, (A.) stisfis th qution of motion Lx ( ), (A.3) t whr Lx ( ) dnots th mtril Lorntz forc dnsity oprtor nd th dnots th mtril tnsion dnsity oprtor. Th Lx ( ) is givn s follows: k ( ) ( ) L x c F x t. (A.4) k Th is givn s th divrgnc of th mtril strss tnsor dnsity oprtor ( ) div x, (A.5) 33

35 k k l, (A.6) whr 0 k k ic [ D ( ) ( ) ( ) ( ) k x x D x x ] It should b notd tht is Hrmitn:. (A.7) ( ) x. (A.8) Similr rltionship holds in th Ablin gug fild thory: s Eqs. (.37) nd (.43). Th Frmion spin ngulr momntum dnsity oprtor 1 ( x ) with, (A.9) 1 k 1 ij ij 1 i j,, ijk J J 4 i, (A.30) stisfis th qution of motion 1 ( x ) t ( x ) ( x ), (A.31) t whr t dnots th spin-torqu dnsity oprtor dfind s k ij t. (A.3) ijk Th ( x) dnots th zt forc dnsity oprtor dfind s k k 1 k ( ) ( ) x ck x ; no sum ovr k. (A.33) Th ltrntiv form is obtind s follows: k, (A.34) k j5, (A.35) q whr q dnots th chrg q Z of th mttr prticl nd j 0 5 ( x ) dnots th zroth componnt of th chirl currnt dnsity oprtor 34

36 j cq, (A.36) i. (A.37) Similr rltionship holds in Ablin gug fild thory: s Eqs. (4. 3) - (4.10). A.3. Spontnously brokn symmtry Using th stndrd modl, th gug filds of QCD is rducd from th grnd unifid thory SU (3) SU () U (1) SU (3) U (1), whr th Higgs fild brks th (GUT)s c w y c QED Winbrg-Slm lctrowk gug group SU () w U (1) y down to U (1) QED, but th color nd chrg symmtris rmin intct. Th Hmiltonin dnsity oprtor in th fild thory is obtind by cnonicl quntiztion using Lgrngin dnsity oprtor: Lx ( ) L Gug filds LMtril prticl filds. (A.38) L L Higgs fild Yukw coupling Th mttr prticls r spin 1/ chirl Frmions in stndrd modl, ccompnying th thr gug symmtris. First, qurks hs intrnl color symmtry of th SU (3) c gug: f q q q rd blu grn f, (A.39) with th gug trnsformtion proprty c gc xp ( ) f ic x f c, (A.40) nd th covrint drivtiv g c ( ) D x i G ( x ). (A.41) c Flvour f r u, d, c, s, t, b, (A.4) RL, RL, RL, RL, RL, RL, 35

37 whr R, L dnots chirlity ( ), 1 5 ( ) R x x L. (A.43) Scond, SU () w gug of wk isospin doublts (Cbibbo-rottd qurk d cl ): t u ( ) L k g u x L t 1 1 xp i ( ) : t x tk t3, t ( ) ( ) d x c d x cl cl, (A.44) t k g t 1 1 xp i ( ) : t x tk t3, t ( ) c x L L nd singlts ur, dcr, R : t 0. (A.45) Th qurks r mixd through th first nd scond gnrtions by th Cbibbo ngl d cos c c sin c d, (A.46) s sin c c cos c s or mor gnrlly through th first, scond, nd third gnrtions by th Cbibbo-Kobyshi-Mskw mtrix V V V d' ud us ub d s' Vcd Vcs Vcb s b' Vtd Vts V tb b c. (A.47) Third, U(1) y gug of wk hyprchrg: g y y y u R, L 4 1 u xp ( ) ( ) :, RL, iy x u x y RL, u y R ul c 3 3 y g y y d R, L 1 d xp ( ) ( ) :, cr, L iy x d x y cr, L d y cr dcl c 3 3. (A.48) y g y y xp i ( ) ( ) :, 1 y x x y c g y y y R, L xp ( ) ( ) :, 1 RL, iy x x y RL, y R L c for th 1 st gnrtion ud,,, nd similr rltionships for th nd gnrtion cs,,, nd 3 rd gnrtion tb,,,. Th chrg q Z of SU () w U (1) y r found to b 36

38 y Z t3. (A.49) 1 Zu, Z, 0, 1 RL, d Z Z crl, RL, 3 3 for th 1 st gnrtion ud,,, nd similr rltionships for th nd gnrtion cs,,, nd 3 rd gnrtion tb,,,. Th mttr prticls r bound by gug bosons obying gug principl rprsntd by th covrint drivtiv oprtor s gc ( ) ( ) g gt k y y D ( ) x i G x i tkw x i X. (A.50) c c c Qurks r bound by gluons G whil lctron cquirs its chrg nd mss through Higgs mchnism with Yukw coupling, whn msslss photon A s wll s mssiv bosons 0 Z nd W r mrging using Glshow-Winbrg-Slm thory of spontnously brokn gug symmtry s follows: whr g g t k y y ( ) gt i t ( ) sin kw x i X x i WZA c c c gt 1 0 i t3 sin W Z Z c cos, (A.51) W gt 1 ( ) i tw x tw c 3 cosw sinw sin cos A x X x W x Z x X x W x 0 3 W W W x W x iw x g g cos W, sin g g g g t t it t y W t y t y Thn, th chrg of lctron mrgs s. (A.5) g sin ; chrg of lctron ( (-1)). (A.53) t W 37

39 Th Higgs fild H ( x ) itslf is n isospinor sclr fild with wk hyprchrg y=+1/: H, (A.54) H x ( ) 0 ( ) H x spontnously brokn if th potntil V H ( x ) hs th minimum t s with rl 0 H ( x ) v ( x), (A.55) nd ( x ). As rsult, th Yukw coupling Lgrngin dnsity L ( x ) turnd out to b Yukw coupling L G H H c. (A.56) Yukw coupling R L L R G ( ) ( ) v x c x It follows tht th mss of lctron mrgs s m G v; mss of lctron. (A.57) Morovr, th kintic trm of th Higgs fild Lgrngin dnsity L ( x ) with rl Higgs fild nd turnd out to b: LHiggs fild D H D H V H 1 W x W x v x 1 gt ( ) 4 c 0 Z x v x 1 gt 1 4 c cos W ( ) V H( x ). (A.58) This dmonstrts tht th mssiv bosons 0 Z nd W r mrging whil th msslss photon A rmind intct. 38

40 Rfrncs [1] P. Hohnbrg nd W. Kohn, Phys. Rv. 136, B864 (1964). [] N. D. Mrmin, Phys. Rv. A 137, 1441 (1965). [3] R. G. Prr nd W. Yng, Dnsity Functionl Thory of Atoms nd Molculs (Oxford Univ., 1989). [4] A. Tchibn, In Fundmntl Prspctivs in Quntum Chmistry: A Tribut to th Mmory of Pr-Olov Löwdin, Editd by E. Bränds nd E. Krychko (Dordrcht, Kluwr, 003) Volum, pp [5] A.Tchibn, Int. J. Qunt. Chm. 100, 981 (004). [6] A. Tchibn, In Rviws in Modrn Quntum Chmistry: A Clbrtion of th Contributions of Robrt Prr, Editd by K. D. Sn (Singpor, World Scintific, 00), Volum, Chptr 45, pp [7] A. Tchibn, J. Mol. Modl. 11, 301 (005). [8] A. Tchibn, J. Chm. Phys. 115, 3497 (001). [9] A. Tchibn, In Strss Inducd Phnomn in Mtlliztion, Editd by S. P. Bkr (Nw York, Amricn Institut of Physics, 00), pp [10] P. Szrk nd A. Tchibn, J. Mol. Modl. 13, 651 (007). [11] P. Szrk, Y. Sud, nd A. Tchibn, J. Chm. Phys. 19, (008). [1] P. Szrk, K. Urkmi, C. Zhou, H. Chng, nd A. Tchibn, J. Chm. Phys. 130, (009). [13] W. Puli, Hndbuch dr Physik, Bnd XXIV, Til 1 (Springr, Brlin, 1933), pp. 83-7; rprintd In Hndbuch dr Physik (Springr, Brlin, 1958), Vol. 5, Prt1; trnsltd into English In Gnrl Principls of Quntum Mchnics (Brlin, Springr, 1980). [14] E. Schödingr, Ann. Phys. (Lipzig) 8, 65 (197). [15] R. F. W. Bdr, Atoms in Molculs: A Quntum Thory (Oxford, Clrndon, 1990). [16] Sul T. Epstin, J. Chm. Phys. 63, 3573 (1975). [17] A. Tchibn, Int. J. Quntum Chm., 35, 361 (1989). [18] A. Tchibn, Thorticl Chmistry Accounts, 10, 188 (1999). [19] A. Tchibn nd R. G. Prr, Int. J. Qunt. Chm., 41, 57 (199). [0] C. P. Slichtr, Principls of Mgntic Rsonnc (Brlin, Springr-Vrlg, 1990), Chptr 4. [1] R. Krus-Rhbrg nd H. S. Lipnr, Positron Annihiltion in Smiconductors, Solid Stt Scincs, Volum 17 (Brlin, Springr-Vrlg, 1999). [] S. Winbrg, Th Quntum Thory of Filds (Cmbridg, Cmbridg Univ., 1995). [3] J. D. Jckson, Clssicl Elctrodynmics (Nw York, John Wily, 1998), Chptr 11. [4] A. Loddr nd J. P. Dkkr, In Strss Inducd Phnomn in Mtlliztion, Editd by Okbyshi t l. ( Nw York, Amricn Institut of Physics, 1998), pp

41 [5] C. Bosviux nd J. Fridl, J. Phys. Chm. Solids 3, 13 (196). [6] N. W. Ashcroft nd N. D. Mrmin, Solid Stt Physics (Nw York, Thomson Lrning, 1976), Chptr 1. [7] A. C. Dillon, K. M. Jons, T. A. Bkkdhl, C. H. King, D. S. Bthun, nd M. J. Hbn, Ntur 386, 377 (1997). [8] P. Chn, X. Wu, J. Lin, nd K. L. Tn, Scinc 85, 91 (1999). [9] L. Jloci nd V. Sidis, Chm. Phys. Ltt. 300, 157 (1999). [30] V. Sidis, L. Jloic, A. G. Borisov, nd S. A. Dutschr, In Molculr Hydrogn in Spc, Editd by F. Combs nd G. Pinu ds For ê ts (Cmbridg Univrsity, Nw York, 000), pp [31] A. Zuttl, P. Sudn, Ph. Muron, T. Kiyobyshi, Ch. Emmrnggr, nd L. Schlpbch, Int. J. Hydrogn Enrgy 7, 03 (00). [3] F. L. Drkrim, P. Mlbrunot, nd G. P. Trtgli, Int. J. Hydrogn Enrgy 7, 193 (00). [33] G. E. Froudkis, J. Phys.: Cond. Mttr 14, R453 (00). [34] E.-C. L, Y.-S. Kim, Y.-G. Jin, nd K. J. Chng, Phys. Rv. B 66, (00). [35] X. Sh nd B. Jckson, Surf. Sci. 496, 318 (00). [36] Y. Miur, H. Ksi, W. A. Di n o, H. Nknishi, nd T. Sugimoto, Jpn. J. Appl. Phys. 4, 466 (003); ibid., 7, 995 (003); ibid., 93, 3395 (003). [37] H. Chng, A. C. Coopr, nd G. P. Pz, J. Am. Chm. Soc. 13, 5845 (001); L. Chn, A. C. Coopr, G. P. Pz, nd H. Chng, J. Phys. Chm. C, in prss. [38] A. Chmbrs, C. Prk, R. T. K. Bkr, J. Phys. Chm. B 10, 453 (1998); Y. Y t l., Appl. Phys. Ltt. 74, 307 (1999). [39] M. Rutiglino, M. Cccitor, nd G. D. Billing, Chm. Phys. Ltt. 340, 13 (001). [40] R. T. Yng, Crbon 38, 63 (000). [41] F. Pinkrton, B. Wickl, C. Olk, G. Tibbtts, M. S. Myr, nd J. Hrbst, Procdings of th 10th Cndin Hydrogn Enrgy Confrnc, Biging, Chin, Publishd by Intrntionl Hydrogn Assocition, 560 (000). [4] H. Chng, G. Pz, G. Krn, G. Krss, nd J. Hfnr, J. Phys. Chm. B 105, 736 (001). [43] H. Nkno, H. Oht, K. Kwno, K. Doi, nd A. Tchibn, unpublishd. [44] M. Snmi, K. Ichikw, P. Szrk, K. Doi, K. Nkmur, nd A. Tchibn, Molculr Rgionl DFT progrm pckg, vr. 3, Tchibn Lb., Kyoto Univ.,

Lecture 12 Quantum chromodynamics (QCD) WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 12 Quantum chromodynamics (QCD) WS2010/11: Introduction to Nuclear and Particle Physics Lctur Quntum chromodynmics (QCD) WS/: Introduction to Nuclr nd Prticl Physics QCD Quntum chromodynmics (QCD) is thory of th strong intrction - bsd on color forc, fundmntl forc dscribing th intrctions of

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

I. The Connection between Spectroscopy and Quantum Mechanics

I. The Connection between Spectroscopy and Quantum Mechanics I. Th Connction twn Spctroscopy nd Quntum Mchnics On of th postults of quntum mchnics: Th stt of systm is fully dscrid y its wvfunction, Ψ( r1, r,..., t) whr r 1, r, tc. r th coordints of th constitunt

More information

THE SPINOR FIELD THEORY OF THE PHOTON

THE SPINOR FIELD THEORY OF THE PHOTON Romnin Rports in Physics, Vol. 66, No., P. 9 5, 4 THE SPINOR FIELD THEORY OF THE PHOTON RUO PENG WANG Pking Univrsity, Physics Dprtmnt, Bijing 87, P.R. Chin E-mil: rpwng@pku.du.cn Rcivd Octobr 8, Abstrct.

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton Journl of Modrn hysics, 014, 5, 154-157 ublishd Onlin August 014 in SciRs. htt://www.scir.org/journl/jm htt://dx.doi.org/.436/jm.014.51415 Th Angulr Momnt Diol Momnts nd Gyromgntic Rtios of th Elctron

More information

However, many atoms can combine to form particular molecules, e.g. Chlorine (Cl) and Sodium (Na) atoms form NaCl molecules.

However, many atoms can combine to form particular molecules, e.g. Chlorine (Cl) and Sodium (Na) atoms form NaCl molecules. Lctur 6 Titl: Fundmntls of th Quntum Thory of molcul formtion Pg- In th lst modul, w hv discussd out th tomic structur nd tomic physics to undrstnd th spctrum of toms. Howvr, mny toms cn comin to form

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well 7 nd ntrntionl Confrnc on Softwr, Multimdi nd Communiction Enginring (SMCE 7) SBN: 978--6595-458-5 Thorticl Study on th Whil Drilling Elctromgntic Signl Trnsmission of Horizontl Wll Y-huo FAN,,*, Zi-ping

More information

Lecture 4. Conic section

Lecture 4. Conic section Lctur 4 Conic sction Conic sctions r locus of points whr distncs from fixd point nd fixd lin r in constnt rtio. Conic sctions in D r curvs which r locus of points whor position vctor r stisfis r r. whr

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

UNIT # 08 (PART - I)

UNIT # 08 (PART - I) . r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Spontaneous vs Explicit Lorentz Violation and Gravity

Spontaneous vs Explicit Lorentz Violation and Gravity Spontnous vs Explicit Lorntz Violtion nd Grvity Robrt Bluhm Colby Collg Third Summr School on th Lorntz- nd CPT-Violting Stndrd-Modl Extnsion, Indin Univrsity, Jun 208 Min gol of my tlk... è xmin issus

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian Drivation of Elctron-Elctron Intraction Trms in th Multi-Elctron Hamiltonian Erica Smith Octobr 1, 010 1 Introduction Th Hamiltonian for a multi-lctron atom with n lctrons is drivd by Itoh (1965) by accounting

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Miscellaneous open problems in the Regular Boundary Collocation approach

Miscellaneous open problems in the Regular Boundary Collocation approach Miscllnous opn problms in th Rgulr Boundry Colloction pproch A. P. Zilińsi Crcow Univrsity of chnology Institut of Mchin Dsign pz@mch.p.du.pl rfftz / MFS Confrnc ohsiung iwn 5-8 Mrch 0 Bsic formultions

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

Contemporary, atomic, nuclear, and particle physics

Contemporary, atomic, nuclear, and particle physics Contmporary, atomic, nuclar, and particl physics 1 Blackbody radiation as a thrmal quilibrium condition (in vacuum this is th only hat loss) Exampl-1 black plan surfac at a constant high tmpratur T h is

More information

On the Hamiltonian of a Multi-Electron Atom

On the Hamiltonian of a Multi-Electron Atom On th Hamiltonian of a Multi-Elctron Atom Austn Gronr Drxl Univrsity Philadlphia, PA Octobr 29, 2010 1 Introduction In this papr, w will xhibit th procss of achiving th Hamiltonian for an lctron gas. Making

More information

KOHN LUTTINGER SUPERCONDUCTIVITY IN GRAPHENE

KOHN LUTTINGER SUPERCONDUCTIVITY IN GRAPHENE KOHN LUTTINGER SUPERCONDUCTIITY IN GRAPHENE J. Gonzálz Instituto d Estructur d l Mtri, CSIC, Spin Is it possibl to hv suprconducting instbility in grphn (by suitbl doping)? Thr hv bn lrdy svrl proposls

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS VSRT MEMO #05 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 Fbrury 3, 009 Tlphon: 781-981-507 Fx: 781-981-0590 To: VSRT Group From: Aln E.E. Rogrs Subjct: Simplifid

More information

Oppgavesett kap. 6 (1 av..)

Oppgavesett kap. 6 (1 av..) Oppgvstt kp. 6 (1 v..) hns.brnn@go.uio.no Problm 1 () Wht is homognous nucltion? Why dos Figur 6.2 in th book show tht w won't gt homognous nucltion in th tmosphr? ˆ Homognous nucltion crts cloud droplts

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by: Elctromagntic Induction. Lorntz forc on moving charg Point charg moving at vlocity v, F qv B () For a sction of lctric currnt I in a thin wir dl is Idl, th forc is df Idl B () Elctromotiv forc f s any

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory Ch. 4 Molcular Raction Dynamics 1. Collision Thory Lctur 16. Diffusion-Controlld Raction 3. Th Matrial Balanc Equation 4. Transition Stat Thory: Th Eyring Equation 5. Transition Stat Thory: Thrmodynamic

More information

Elliptical motion, gravity, etc

Elliptical motion, gravity, etc FW Physics 130 G:\130 lctur\ch 13 Elliticl motion.docx g 1 of 7 11/3/010; 6:40 PM; Lst rintd 11/3/010 6:40:00 PM Fig. 1 Elliticl motion, grvity, tc minor xis mjor xis F 1 =A F =B C - D, mjor nd minor xs

More information

ELECTRON-MUON SCATTERING

ELECTRON-MUON SCATTERING ELECTRON-MUON SCATTERING ABSTRACT Th lctron charg is considrd to b distributd or xtndd in spac. Th diffrntial of th lctron charg is st qual to a function of lctron charg coordinats multiplid by a four-dimnsional

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

As the matrix of operator B is Hermitian so its eigenvalues must be real. It only remains to diagonalize the minor M 11 of matrix B.

As the matrix of operator B is Hermitian so its eigenvalues must be real. It only remains to diagonalize the minor M 11 of matrix B. 7636S ADVANCED QUANTUM MECHANICS Solutions Spring. Considr a thr dimnsional kt spac. If a crtain st of orthonormal kts, say, and 3 ar usd as th bas kts, thn th oprators A and B ar rprsntd by a b A a and

More information

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations. Dy : Mondy 5 inuts. Ovrviw of th PH47 wsit (syllus, ssignnts tc.). Coupld oscilltions W gin with sss coupld y Hook's Lw springs nd find th possil longitudinl) otion of such syst. W ll xtnd this to finit

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

Introduction to the quantum theory of matter and Schrödinger s equation

Introduction to the quantum theory of matter and Schrödinger s equation Introduction to th quantum thory of mattr and Schrödingr s quation Th quantum thory of mattr assums that mattr has two naturs: a particl natur and a wa natur. Th particl natur is dscribd by classical physics

More information

(Semi)Classical thermionic emission

(Semi)Classical thermionic emission Tunnling - primr Nno oftn pprs in rl tchnology in th form of thin lyrs or brrirs. W r going to look t svrl wys lctrons cn trnsport ovr or through ths brrirs undr vrious conditions. Thrmionic mission clssicl

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Coupled Pendulums. Two normal modes.

Coupled Pendulums. Two normal modes. Tim Dpndnt Two Stat Problm Coupld Pndulums Wak spring Two normal mods. No friction. No air rsistanc. Prfct Spring Start Swinging Som tim latr - swings with full amplitud. stationary M +n L M +m Elctron

More information

The pn junction: 2 Current vs Voltage (IV) characteristics

The pn junction: 2 Current vs Voltage (IV) characteristics Th pn junction: Currnt vs Voltag (V) charactristics Considr a pn junction in quilibrium with no applid xtrnal voltag: o th V E F E F V p-typ Dpltion rgion n-typ Elctron movmnt across th junction: 1. n

More information

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections Conic Sctions 16 MODULE-IV Co-ordint CONIC SECTIONS Whil cutting crrot ou might hv noticd diffrnt shps shown th dgs of th cut. Anlticll ou m cut it in thr diffrnt ws, nml (i) (ii) (iii) Cut is prlll to

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

The Relativistic Stern-Gerlach Force C. Tschalär 1. Introduction

The Relativistic Stern-Gerlach Force C. Tschalär 1. Introduction Th Rlativistic Strn-Grlach Forc C. Tschalär. Introduction For ovr a dcad, various formulations of th Strn-Grlach (SG) forc acting on a particl with spin moving at a rlativistic vlocity in an lctromagntic

More information

Schrodinger Equation in 3-d

Schrodinger Equation in 3-d Schrodingr Equation in 3-d ψ( xyz,, ) ψ( xyz,, ) ψ( xyz,, ) + + + Vxyz (,, ) ψ( xyz,, ) = Eψ( xyz,, ) m x y z p p p x y + + z m m m + V = E p m + V = E E + k V = E Infinit Wll in 3-d V = x > L, y > L,

More information

MERIDIAN SURFACE OF WEINGARTEN TYPE IN 4-DIMENSIONAL EUCLIDEAN SPACE E 4 arxiv: v1 [math.dg] 14 May 2013

MERIDIAN SURFACE OF WEINGARTEN TYPE IN 4-DIMENSIONAL EUCLIDEAN SPACE E 4 arxiv: v1 [math.dg] 14 May 2013 MERIDIAN SURFACE OF WEINGARTEN TYPE IN 4-DIMENSIONAL EUCLIDEAN SPACE E 4 rxiv:13053155v1 [mthdg] 14 My 2013 Astrct In this ppr, w study mridin surfcs of Wingrtn typ in Euclidn 4-spc E 4 W giv th nccssry

More information

Module 8 Non equilibrium Thermodynamics

Module 8 Non equilibrium Thermodynamics Modul 8 Non quilibrium hrmodynamics ctur 8.1 Basic Postulats NON-EQUIIRIBIUM HERMODYNAMICS Stady Stat procsss. (Stationary) Concpt of ocal thrmodynamic qlbm Extnsiv proprty Hat conducting bar dfin proprtis

More information

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):. Division of Mchanics Lund Univrsity MULTIBODY DYNMICS Examination 7033 Nam (writ in block lttrs):. Id.-numbr: Writtn xamination with fiv tasks. Plas chck that all tasks ar includd. clan copy of th solutions

More information

ENTHUSIAST, LEADER & ACHIEVER COURSE TARGET : PRE-MEDICAL 2016 Test Type : MAJOR Test Pattern : AIPMT

ENTHUSIAST, LEADER & ACHIEVER COURSE TARGET : PRE-MEDICAL 2016 Test Type : MAJOR Test Pattern : AIPMT LSSROO ONTT PROGRE (cdmic Sssion : 0-06) ENTHUSIST, LEDER & HIEER OURSE TRGET : PRE-EDIL 06 Tst Typ : JOR Tst Pttrn : IPT. omponnt of x on y xcos x y ( b) ( b) y b b b. J E I. x.0 cos(t + ).0 cost locity

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

de/dx Effectively all charged particles except electrons

de/dx Effectively all charged particles except electrons de/dx Lt s nxt turn our attntion to how chargd particls los nrgy in mattr To start with w ll considr only havy chargd particls lik muons, pions, protons, alphas, havy ions, Effctivly all chargd particls

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

J. F. van Huele Department of Physics, Oakland University, Rochester, Michigan (Received 18 March 1988)

J. F. van Huele Department of Physics, Oakland University, Rochester, Michigan (Received 18 March 1988) PHYSICAL REVIE% A VOLUME 38, NUMBER 9 NOVEMBER, 988 Quntum lctrodynmics bsd on slf-filds, without scond quntiztion: A nonrltivistic clcultion of g 2 A. O. Brut nd Jonthn P. Dowling Dprtmnt ofphysics, Cmpus

More information

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra Lctur 8 Titl: Diatomic Molcul : Vibrational and otational spctra Pag- In this lctur w will undrstand th molcular vibrational and rotational spctra of diatomic molcul W will start with th Hamiltonian for

More information

DIELECTRIC AND MAGNETIC PROPERTIES OF MATERIALS

DIELECTRIC AND MAGNETIC PROPERTIES OF MATERIALS DILCTRIC AD MAGTIC PROPRTIS OF MATRIALS Dilctric Proprtis: Dilctric matrial Dilctric constant Polarization of dilctric matrials, Typs of Polarization (Polarizability). quation of intrnal filds in liquid

More information

4/16/2014. PHY 712 Electrodynamics 10-10:50 AM MWF Olin 107

4/16/2014. PHY 712 Electrodynamics 10-10:50 AM MWF Olin 107 PHY 71 Elctroynmics 1-1:5 AM MWF Olin 17 Pln for ctur 3: Spcil Topics in Elctroynmics: Elctromgntic spcts of suprconuctivity -- continu 4/14/14 PHY 71 Spring 14 -- ctur 3 1 4/14/14 PHY 71 Spring 14 --

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS PHYSICS 489/489 LECTURE 7: QUANTUM ELECTRODYNAMICS REMINDER Problm st du today 700 in Box F TODAY: W invstigatd th Dirac quation it dscribs a rlativistic spin /2 particl implis th xistnc of antiparticl

More information

2. Background Material

2. Background Material S. Blair Sptmbr 3, 003 4. Background Matrial Th rst of this cours dals with th gnration, modulation, propagation, and ction of optical radiation. As such, bic background in lctromagntics and optics nds

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

Pair (and Triplet) Production Effect:

Pair (and Triplet) Production Effect: Pair (and riplt Production Effct: In both Pair and riplt production, a positron (anti-lctron and an lctron (or ngatron ar producd spontanously as a photon intracts with a strong lctric fild from ithr a

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator. Exam N a m : _ S O L U T I O N P U I D : I n s t r u c t i o n s : It is important that you clarly show your work and mark th final answr clarly, closd book, closd nots, no calculator. T i m : h o u r

More information

Week 7: Ch. 11 Semiconductor diodes

Week 7: Ch. 11 Semiconductor diodes Wk 7: Ch. 11 Smiconductor diods Principls o Scintilltion Countrs Smiconductor Diods bsics o smiconductors pur lmnts & dopnts 53 Mtrils ion collction, lkg currnt diod structur, pn, np junctions dpltion

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Why is a E&M nature of light not sufficient to explain experiments?

Why is a E&M nature of light not sufficient to explain experiments? 1 Th wird world of photons Why is a E&M natur of light not sufficint to xplain xprimnts? Do photons xist? Som quantum proprtis of photons 2 Black body radiation Stfan s law: Enrgy/ ara/ tim = Win s displacmnt

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA * 17 nd Intrnational Confrnc on Mchanical Control and Automation (ICMCA 17) ISBN: 978-1-6595-46-8 Dynamic Modlling of Hoisting Stl Wir Rop Da-zhi CAO, Wn-zhng DU, Bao-zhu MA * and Su-bing LIU Xi an High

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condnsd Mattr Physics pcific hat M.P. Vaughan Ovrviw Ovrviw of spcific hat Hat capacity Dulong-Ptit Law Einstin modl Dby modl h Hat Capacity Hat capacity h hat capacity of a systm hld at

More information

About Nature of Nuclear Forces

About Nature of Nuclear Forces Journl of Modrn Physics, 5, 6, 648-659 Publishd Onlin Aril 5 in Scis. htt://www.scir.org/journl/jm htt://dx.doi.org/.436/jm.5.657 About Ntur of Nuclr Forcs Boris V. Vsiliv Pontcorvo strt, 7-48, Dubn, Moscow

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding... Chmical Physics II Mor Stat. Thrmo Kintics Protin Folding... http://www.nmc.ctc.com/imags/projct/proj15thumb.jpg http://nuclarwaponarchiv.org/usa/tsts/ukgrabl2.jpg http://www.photolib.noaa.gov/corps/imags/big/corp1417.jpg

More information

Brief Introduction to Statistical Mechanics

Brief Introduction to Statistical Mechanics Brif Introduction to Statistical Mchanics. Purpos: Ths nots ar intndd to provid a vry quick introduction to Statistical Mchanics. Th fild is of cours far mor vast than could b containd in ths fw pags.

More information

Deepak Rajput

Deepak Rajput Q Prov: (a than an infinit point lattic is only capabl of showing,, 4, or 6-fold typ rotational symmtry; (b th Wiss zon law, i.. if [uvw] is a zon axis and (hkl is a fac in th zon, thn hu + kv + lw ; (c

More information

Title: Vibrational structure of electronic transition

Title: Vibrational structure of electronic transition Titl: Vibrational structur of lctronic transition Pag- Th band spctrum sn in th Ultra-Violt (UV) and visibl (VIS) rgions of th lctromagntic spctrum can not intrprtd as vibrational and rotational spctrum

More information

The quantum thermodynamic functions of plasma in terms of the Green s function

The quantum thermodynamic functions of plasma in terms of the Green s function Vol. No. 7-80 (04) http://dx.doi.org/0.4/ns.04.0 Nturl cinc Th quntum thrmodynmic functions of plsm in trms of th Grn s function Ngt A. Hussin Abdl Nssr A. Osmn Dli A. Eis * Rg A. Abbs Mthmtics Dprtmnt

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

Neutrino Mass and Forbidden Beta Decays

Neutrino Mass and Forbidden Beta Decays NUCLEAR THEORY Vol. 35 016) ds. M. Gaidarov N. Minkov Hron Prss Sofia Nutrino Mass and Forbiddn Bta Dcays R. Dvornický 1 D. Štfánik F. Šimkovic 3 1 Dzhlpov Laboratory of Nuclar Problms JINR 141980 Dubna

More information

temperature T speed v time t density ρ scalars may be constant or may be variable yes distributive a(b+c) = ab+ac

temperature T speed v time t density ρ scalars may be constant or may be variable yes distributive a(b+c) = ab+ac Mthmtics Riw. Sclr mthmticl ntity tht hs mgnitud only.g.: tmprtur T spd tim t dnsity ρ sclrs my constnt or my ril Lws of Algr for Sclrs: ys commutti ys ssociti (c) ()c ys distriuti (c) c Fith A. Morrison,

More information

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics Physicl Chmistry Chmicl Physics www.rsc.org/pccp Volum 2 Numbr 32 28 August 200 Pgs 909 9536 ISSN 463-9076 COVER ARTICLE Pchuki nd Koms Rovibrtionl lvls of HD COMMUNICATION Emsly t l. Ab initio simultion

More information

Self-interaction mass formula that relates all leptons and quarks to the electron

Self-interaction mass formula that relates all leptons and quarks to the electron Slf-intraction mass formula that rlats all lptons and quarks to th lctron GERALD ROSEN (a) Dpartmnt of Physics, Drxl Univrsity Philadlphia, PA 19104, USA PACS. 12.15. Ff Quark and lpton modls spcific thoris

More information

The Test of Entanglement of Polarization States of a Semi-Classical Optical Parametric Oscillator

The Test of Entanglement of Polarization States of a Semi-Classical Optical Parametric Oscillator Amricn Journl of Modrn Physics 07; 6(3: 37- http://www.scincpulishinggroup.com/j/jmp doi: 0.68/j.jmp.070603. ISSN: 36-8867 (Print; ISSN: 36-889 (Onlin Th Tst of Entnglmnt of Polriztion Stts of Smi-Clssicl

More information

Weighted Matching and Linear Programming

Weighted Matching and Linear Programming Wightd Mtching nd Linr Progrmming Jonthn Turnr Mrch 19, 01 W v sn tht mximum siz mtchings cn b found in gnrl grphs using ugmnting pths. In principl, this sm pproch cn b pplid to mximum wight mtchings.

More information

DISTORTION OF PROBABILITY MODELS

DISTORTION OF PROBABILITY MODELS ISTORTION OF PROBABILITY MOELS VÁVRA Frntišk (ČR), NOVÝ Pvl (ČR), MAŠKOVÁ Hn (ČR), NETRVALOVÁ Arnoštk (ČR) Abstrct. Th proposd ppr dls with on o possibl mthods or modlling th rltion o two probbility modls

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information