Spontaneous vs Explicit Lorentz Violation and Gravity

Size: px
Start display at page:

Download "Spontaneous vs Explicit Lorentz Violation and Gravity"

Transcription

1 Spontnous vs Explicit Lorntz Violtion nd Grvity Robrt Bluhm Colby Collg Third Summr School on th Lorntz- nd CPT-Violting Stndrd-Modl Extnsion, Indin Univrsity, Jun 208

2 Min gol of my tlk... è xmin issus tht ris whn th SME includs grvity.g., QED sctor of SME in Minkowski spctim L SME L 0 b 5 2 H ic D id 5 D SME cofficints ct s fixd bckground filds, b, H, c, d,... In curvd spctim, th SME cofficints brk both diffomorphisms nd locl Lorntz invrinc è symmtry brking cn b spontnous or xplicit Wnt to undrstnd th diffrncs btwn ths two typs of symmtry brking in th prsnc of grvity

3 Outlin I. Diffomorphism & Lorntz symmtry in GR II. Spctim symmtry brking è bckground filds nd grvity è spontnous & xplicit symmtry brking è consistncy issus with xplicit brking III. Excittions tht occur with symmtry brking IV. Exmpls of grvity modls with Lorntz brking è Bumblb modl (spontnous brking) è Mssiv grvity (xplicit brking) V. Conclusions

4 I. Diffomorphism & Lorntz symmtry in GR In GR, Einstin s qs cn b obtind from n ction 2 3 whr th mtric Z is th dynmicl grvittionl fild.g., considr thory with vctor mttr fild S Z d 4 x p p 2 4 g Einstin-Hilbrt trm L 6 G R L M(g,A ) mtric dynmicl vctor fild Vrying with rspct to th mtric fild givs G 8 GT è Einstin qs G R 2 Rg è Einstin tnsor

5 Th nrgy-momntum tnsor is dfind gnriclly s T 2 p g ( p gl M ) It dpnds on th mttr filds, which lso hv qs of motion,.g., vry with rspct to th vctor fild g L M D 0 è Eulr-Lgrng qs for mttr D A A è covrint drivtivs ffin connction

6 In GR, th Einstin qs nd th mttr qs of motion r not ll dynmiclly indpndnt On th on hnd, sinc th Einstin tnsor obys gomtric idntity D G 0 è contrctd Binchi idntity Consistncy with G 8 GT D T 0 rquirs tht è covrint nrgy-mom. consrvtion must hold Howvr, thr r lso idntitis tht dirctly link th Einstin qs nd mttr qutions of motion. è du to locl spctim symmtry in GR Diffomorphism invrinc

7 Diffomorphisms è mp th spctim mnifold to itslf x x è lvs th ction invrint 4 infinitsiml trnsltions Undr diffomorphisms th coordint systm stys fixd but th dynmicl filds trnsform è chngs r givn by Li drivtivs,.g., g g L g L g D D A A L A L A (D )A D A Th ction in GR is invrint undr ths trnsfs ( S) di s 0 è lik gug symmtry

8 Cn driv n idntity from diffomorphism invrinc,.g., for vctor mttr fild ( S) di s Z d 4 x p " g " D ( 8 G G T ) L M D A A With ( S) di s 0 for ll w gt tht D ( 8 G G T ) L M D A A D ( L M A A )0 D ( L # M A ) A è 4 off-shll (Nothr) idntitis showing tht whn L M 0 & using th Binchi idntitis D G 0 A it utomticlly follows tht D T 0

9 This is n importnt rsult sying whn diffomorphism invrinc holds th 4 qutions D T 0 utomticlly hold whn th mttr filds r on shll L M 0 A è th mtric dos not nd to ply rol è it s th mttr filds qs. tht ssur nrgymomntum consrvtion in GR In fct 4 mtric mods cn b gugd wy s rsult of th diffomorphism invrinc

10 Do not confus diffomorphisms with infinitsiml gnrl coordint trnsformtions (GCTs) è though it s sy to do so s w cn s....g., considr chng of coordints x x 0 (x) A 0 (x 0 A (x) è but th vctor stys fixd x 0 x using opposit sign è plug in nd xpnd Mthmticlly find tht th functionl chng of th vctor fild (t sm x) is givn by th Li drivtivs 0A (x) A 0 (x) A (x) L A è th ction dos not chng undr GCTs ( S) GCTs 0

11 Diffomorphisms r prticl (ctiv) trnsformtions whil infinitsiml GCTs r obsrvr (pssiv) trnsfs è It mns somthing to sy diffomorphisms r symmtry in GR ( S) di s 0 è.g., it ruls out hving fixd bckground filds in GR sinc thy xplicitly brk diffomorphisms At th sm tim th ction hs to b invrint undr GCTs to b obsrvr indpndnt (physiclly vibl) ( S) GCTs 0 This is mthmticl sttmnt bout covrinc nd coordint indpndnc tht must lwys hold

12 Intrstingly, cn still driv Nothr idntitis from ( S) GCTs 0 è mthmticlly gt th sm idntitis btwn th mttr qs of motion nd nrgy-mom. consrvtion L M A 0 which must hold du to obsrvr indpndnc D T 0 Oftn viwd s rsult of th fct tht th choic of coordints hs no physicl consquncs In GR, hv both ( S) di s 0 nd ( S) GCTs 0 Gnrl covrinc nd diffomorphism invrinc go hnd in hnd in GR with no incomptibility

13 In contrst, th SME hs fixd bckground filds,.g.,, b, H, c, d,... SME coffs è putting thm dirctly into curvd spctim will brk diffomorphism invrinc ( S) di s 60 è yt w still must hv coordint indpndnc ( S) GCTs 0 Must b crful tking th SME to curvd spctim è diffomorphism brking & gnrl covrinc r potntilly in conflict with ch othr This potntil conflict is somthing Aln worrid bout whn dvloping th grvity sctor of th SME

14 Still hv two mor importnt qustions bout GR è whr is th Lorntz symmtry in GR? è how do w includ frmions in GR? In GR, Lorntz symmtry is locl symmtry tht holds in infinitsiml locl inrtil frms whr g b è locl Lorntz frms Vctors nd tnsors hv bsis sts & componnts with rspct to ithr th spctim or locl Lorntz frms ~ ~ ~. Th filds rlting ths componnts r th virbin virbin.

15 r lso indics virbin risd nd lowrd using(4) gs whil thth L An invrs cn givs,grk whn using risd virbin b introducd. rwrittn g on th virbin b b,it g.th mtric using cn.th nd b indics r lowrd..b virbin nd invrs virb b bb b on th virbin r risd nd lo Grk indics s r risd nd lowrdth using b. Th virbin nd invrs virbin lso o b using risd th th virbin r risd nd lowrd g,, g whil Ltin indics r nd lowrd using Th virb For th mtric g. bgg.. b ntz symmtry using.b b b nd ndics on th th virbin virbin risd,, whil dics on r nd lowrd using whil b lowrd,. lowrd using b. Th virbin nd invrs virbin lso oby, b b, isd nd lowrd. Th virbin nd invrs virbin isd nd lowrd using virbin nd invrs virbin b b rbin cn lso b introducd. It givs th invrs mtric, b whr th invrs virbin obys Th Grk indics on th virbin r risd nd lowrd u mnt, both th di omorphism nd locl Lorntz trnsform,. (5) 3. Locl Lorntz symmtry b b lowrd. th indics rthory. risd nd Th virbin nd i symmtry ymmtris of th Undr di omorphism, virbin using Locl Lorntz b,. 3.. g. b Locl symmtry b b b Lorntz Using vctors, virbin trtmnt, both th di omorphism nd locl Lorntz spctim gntz virbin trtmnt, both th di omorphism nd locl Lorntz trnsfor symmtry,. trtmnt, bundr di omorphis whil th b tions (LLTs) bcom symmtris ofnd th thory. th di omorphism, ndics on th r lowrd using g, Using virbin both componnts (with trnsform Spctim virbin risd Grk indics) (LLTs) symmtris th di omorphism, trnsforms L s stof(@spctim Undr (6) th virb of ) bcom thory.. l Lorntz symmtry mnt, both th nd locl Lorntz tions bcom symmtris of th thory. lso Und isd nd using vctors,. Th virbin ndtrnsforminvrs virbin lforms Lorntz undr diffomorphisms,.g., b(llts) s lowrd st ofdi omorphism spctim Undrs virbin LLT,3. th virbin trnsforms Ls locl Lorntz vctor trnsforms st of spctim vctors, ymmtris of th thory. th Lorntz di omorphism, (@ Locl symmtry. both di omorphism.nd locl Lorntz tr bin trtmnt, th, L (@ bin trtmnt, both th di omorphism nd locl tr b spctim vctors,. Lorntz b b L (@ (x). (7) locl Lorntz v trnsforms di omorphism, Altrntivly, undr LLT, virbin s b th th bcom symmtris of thory. Undr th Using virbin trtmnt, both th di omorphism nd bcom symmtris of th thory. Undr di omorphism, th ntivly, undr LLT, th virbin trnsforms s locl Lorntz vctor L (@ (6) b whil locl Lorntz componnts (with Ltin indics) Altrntivly, undr trms LLT, th virbin trnsform s st of spctim vctors, Lorntz trnsformtion cn b writtn in of six locl (x). tions (LLTs) bcom symmtris of th thory. Undr di Lorntz st of spctim vctors, lllt, symmtry b b In cs,. infinitsiml locl trnsform trnsfs,.g. th trnsforms locl Lorntz vctor slorntz b (x) locl b b (x)trnsforms svirbin b undr. this n (x). of spctim trnsformtion cn in b locl b Lorntz s st vctors, b An infinitsiml b writtn trms L (@ Lorntz (@cn writtn bcoms L th b di omorphism bin trtmnt, both nd locl trnsf nnfinitsiml of cofficints th Lorntz trnsformtion b in trms of six l ) locl (x). (7) (x) (x) s. In this cs, n infini b b b infinitsiml b locl b Lorntz b An infinitsiml trnsformtion cn L (@ ) cints (x) (x) s. In this cs, n infinitsiml bcom symmtris of th thory. Undr di omorphism, th vil b b bth s locl LLTs LLT, th virbin b b b bcoms Lorntz vct y, undr trnsforms Lorntz trnsformtion of virbin (x). (8) cofficints b (x)intrms b (x) locl b bvc. In trnsformtion cn b writtn of s six,s Lorntz undr virbin trnsforms s locl LLT, th b virbin b Lorntz ntz trnsformtion of th bcoms st of spctim vctors, Lorntz infinitsiml th trnsforms b locl bcoms trnsformtion of virbin this bvirbin Altrntivly, LLT, th s lo b (x) s b b undr cs, n (x). b. In b (x). b b b (x) dn out tcn spctim th cofficints b (x) formlism dpnd (x).virbin lso incorport frmions in ch bcoms point,. b of th virbin b L (@ (x). b. b (x) ToSinc mintin covrinc whn drivtivs scond r out point,b th ml loclllts trnsformtion cnr busd, writtn incofficints trms of Lorntz crrid b t ch spctim out t(x) (8) (x) dp LLTs r crrid ch. spctim point, th cofficints

16 m) 0 0 A (x) A 0 (x) Lby A (x)r A In spcil rltivity, frmions dscribd Lgrngin m) 0 Lfrmion (i Dirc q Lfrmion m m m) 0 S( ) m i b 4 b p Undr 4 globl Lorntz trnsformtion B C S dx g R L(g i, f b, D LADL(,k.ABC id, k,..) b b 2 Z [, ] 4 b S( ) p A B 4 S d x g R L(g, f, D D D 2 C k ABC ( 2 b Z S S p b b b 3, C S S 4 A B d x Z S g R @ k ABC p spctim Z go B uscth virbin d4 xto g4 to L(g DGR, D A B k ABC ( )) prcurvd 2, f, D Ain C d x2 g R @ p k ABC ( ) Z S Lfrmion2 (i AD B m C) 4 p ( ))g dx g R L(g, f, D D 3 D k ABC Z 3 2 è Lorntz symmtry bcoms locl symmtry Ap A drivtiv A of covrint with nw typ < (k ) p F g 0 4 A B C dx g R @ k ABC ( )) 2 32

17 Covrint drivtivs now involv spin i 4 b b, b b 24 componnts Acting on th virbin (ssuming mtric thory) givs b b 0 This qution rlts th spin connction to th virbin, its drivtivs, nd th ffin connction Hv two possibilitis (two possibl gomtris) è spin connction is not indpndnt (Rimnn) è spin connction is indpndnt (Rimnn-Crtn)

18 In Rimnn-Crtn gomtry, thr s n dditionl gomtricl quntity clld th torsion T Einstin s GR hs zro torsion (Rimnn spctim) è But whn spin nd frmions r includd in grvity thory it is nturl to hv both curvtur nd torsion è Cn thn hv both propgting mtric xcittions nd propgting spin connction Thoris of grvity in Rimnn-Crtn spctim hv prllls with non-blin gug thoris è virbin & spin connction bcom gug filds ssocitd with diffos nd LLTs

19 T p k 8 G g g k k k formlism... To summriz so fr, GR in virbin S L f Hs 6 0 k totl of 0 symmtris (4 diffos nd 6 LLTs) S S 8 G S 6 0 thr 6 r 0 0 Nothr idntitis nd thrfor 6 0 k k S th mttr filds rk on D G tht 0.g., whn shll gt ( S) 0 k S 0 GCTs S For diffomorphisms 0 0 k k di inv ( S)di s 0 D G 0 S 0 ( k S)GCTs 0 D T 0 4 conditions ( S) 0 ( S) 0 di inv T T di s ( S) 0 di s di s L S)0di slorntz For invrinc 6 0 f (locl D T 0 T T G G ( S)LLTs 0 ( S)LLTs 0 ( S)di s 6 0 L ( S)GCTs 0 6 conditions y x (G T )( b (X ) f b ) [b] x y 2 f ( S) 0 G G GR(isS)lso mthmticlly obsrvr ( 0S)di spssiv 6 0 LLTs invrint LLTs 6 ( S)GCTs undr 0 0 GCTs nd chngs of Lorntz bss pssiv G( S) G LLTs Z L L ( S)pssiv 4 p 0 y x LLTs S) d x g L k 6 0 (T(S) 6 0 (G S )( ) (X ) f 0. ( S) 0 di s di s ( S) 0 b b [b] GCTs LLTs x 0 y k 2 fpssiv Z L 4 p 3 2

20 II. Spctim symmtry brking To dvlop th grvity sctor of th SME, w nd to includ th SME cofficints s bckground filds, b, H, c, d,... è this brks diffomorphisms nd LLI To considr ths in gnrl wy, lt s dnot k è gnric bckground fild è hs fixd spctim dirctions First, must look t how bckground filds trnsform undr prticl & obsrvr trnsformtions

21 Undr prticl diffomorphisms & LLTs: è bckground filds sty fixd k prticl k. è likwis in locl Lorntz frms k bc prticl k bc Must thrfor hv bckground virbins: ē ē prticl ē Th bckground virbins oby: k ē ē b ē c k bc, è whr ll sty fixd undr prticl trnsfs

22 Howvr, undr obsrvr GCTs & pssiv LLTs: è spctim componnts trnsform undr GCTs k obsrvr k L k è locl Lorntz frm coordints trnsform k bc obsrvr k bc p k pbc p b k pc Bckground virbin componnts lso trnsform: ē ē obsrvr ē (D )ē obsrvr ē bē b. (GCTs) (LLTs) Undr ths trnsformtions th ction is unchngd

23 In grvity thoris with fixd bckground filds, it s th prticl symmtris tht r brokn è prticl diffs & LLI r both brokn ( S) di s 60 ( S) LLTs 60 è but obsrvr GCTs nd LLTs rmin mthmticl invrincs of th ction ( S) GCTs 0 ( S) pssiv LLTs 0 è rquirmnt of obsrvr indpndnc mthmticl trnsfs è diffomorphism brking & gnrl coordint invrinc r potntilly in conflict è likwis with brking of prticl LLTs

24 Spontnous vs xplicit brking Th ffcts of bckground filds in grvity dpnd on whthr th symmtry brking is spontnous or xplicit è With xplicit ppl brking th bckground tnsor is nondynmicl nd origints in th Lgrngin k, ē è nondynmicl è No xcittions of th bckground fild L L(, k, ē,...) è No qutions of motion for th bckgrounds L L 6 0 k ē 6 0 GR dos not prmit nondynmicl bckgrounds thy r objcts with prior gomtry

25 è With spontnous brking th bckground tnsor origints s dynmicl vcuum xpcttion vlu k hk i ē h i è Obys vcuum qutions of motion L k ppl vcuum 0. è Excittions bout th vcuum occur k k k è vcuum solutions of dynmicl filds L ē vcuum 0 dynmicl bckground xcittions L L(,k k k )

26 With spontnous symmtry brking must ccount for th xcittions bout th vcuum solutions Th xcittions k occur s è msslss NG mods è mssiv Higgs-lik xcittions Whn th xcittions r includd th ction rmins invrint undr both diffs & LLTs ( S) di s 0 ( S) LLTs 0 è Bcus of this th potntil inconsistncy with th Binchi idntity nd dynmics is vdd D T 0 nd T T occur nturlly s in GR è SSB mintins dsirbl fturs of GR

27 It is for this rson tht th grvity sctor of th SME usully ssums th symmtry brking is spontnous S SME,frmion Z d 4 x 2 i $ D M M m b 5 2 H b b c b b d b 5 b è th SME cofficints r typiclly ssumd to origint s vcuum xpcttion vlus, b, H, c, d,... è vvs Must thn ccount for th NG nd mssiv mods è voids inconsistncy issus with xplicit brking

28 D A A A Z p L 4 p ( S)di s d G x g T L k S dx g R L(g, f, k 2 Howvr, with xplicit 2diffomorphism brking f pf Z Z D f p p ( gl)zl things r diffrnt 7 4 R (S S) d gx g (D T ) L k GCTs x T L(g, f, k ) Gd 4 p T p k 2 gg R L(g g gs d x 8 GT, k Considr n ffctiv Lgrngin with bckground 2 p G T ( gl) Z 2 gx x b for simplicity p T p 4 S d gx g R L(g, k ) 8 G G Z p f 0 L 6 7 L 4 Z ( S)GCTs d x g 4(DT ) p L k 5 f 0 4 gk R L(grquirs, k ). ind. è undr GCTs x Sx d xobsrvr, f D T G 3 L Z p D, 6 L ( S)GCTs d x g (DG LDT L 5 0 k 0 0 f, A (x ) G 0 A f f (G idntity L must vnish nondynmicl Don T0 shll 0 brokn sym L D G 0 f L G G 0 D T L k 6 0 f xg x (x) k 8 GT S0 k hk i. L D T DT 0

29 ppl Howvr, with xplicit diffomorphism brking Z ppl things r diffrnt... Considr n ffctiv Lgrngin with bckground S Z è undr GCTs ( S) GCTs Z d 4 x p g d 4 x p g ppl 2 R L(g, k ) Z x x 2 6 4(D G D T ) ppl for simplicity 8 G f 0 obsrvr ind. rquirs L 7 k 5 0 k L è potntil inconsistncy btwn th Binchi idntity, dynmics, & covrint nrgy-momntum consrvtion 3

30 @ A But thr is loophol tht vds th 0 A è th intgrnd is totl drivtiv (D T ) (L k ) Z L ppl D k This llows th intgrl to vnish ( S) GCTs Z d 4 x p g (D G D T ) L g g A L 7 k 5 0 k L 3 vn with nonvnishing (nondynmicl) vrition nd brokn symmtry L k 6 0. L k 6 0 è s long s th totl drivtiv dos not vnish

31 6 In gnrl, thoris with xplicit diffomorphism brking cn b consistnt or inconsistnt dpnding on how th mtric tnsor coupls to th bckground fild In most css with sufficint intrctions cn hv vn whn ( S) GCTs 0 L 6 0 k nd D T 0 conflict is vdd Why, wht is hppning? g hs 4 xtr dgrs of frdom du to diffomorphism brking Extr mtric mods cn coupl to th bckground fild nd tk vlus tht stisfy th 4 conditions D T 0

32 Simplst xmpl tht is inconsistnt: tim-dpndnt cosmologicl constnt S Z d 4 x p g (x) thory is (x) 6 0 D T 60 è no coupling to mtric componnts But mor gnrlly, whn thr r sufficint couplings btwn th mtric nd th nondynmicl bckground, thn th inconsistncy is vdd. 4 xtr mtric dgrs of frdom (du to loss of diffomorphism brking) cn stisfy D T 0

33 To summriz so fr... W v sn tht potntil inconsistncy cn ris in grvity thoris with fixd bckground filds Dpnds on whthr diffomorphisms nd LLI r brokn spontnously or xplicitly è spontnous brking vds th inconsistncy (thory bhvs similrly to GR) è with xplicit brking thr is loophol tht usully llows th inconsistncy to b vdd Wnt to look t ths typs of brkings mor closly How r thy diffrnt? How r thy similr? è nd to look t th diffrnt typs of xcittions tht occur with spontnous vs xplicit brking

34 III. Excittions tht occur with symmtry brking Considr n ffctiv grvittionl fild thory with bckground fild nd convntionl mttr filds S Z d 4 x p ppl g 2 R L(g,f ppl, k ) Z ppl 8 G Eulr-Lgrng: dynmicl mttr filds L @f è on shll th qs of motion hold L f 0 Wnt to considr possibl xcittions

35 With spontnous symmtry brking... è xcittions r msslss NG nd mssiv Higgs mods è th NG mods ppr s gug xcittions diffomorphism NG mods (up to 4) k k (D ) k (D ) k dynmicl D k ( k ) mssiv è NG xcittions mintin diffomorphism invrinc è with SSB th symmtry is hiddn, but still holds b Lorntz NG mods (up to 6) k bc ' k bc j k jbc j b k jc ( k bc ) mssiv

36 Whil with xplicit symmtry brking... k è nondynmicl, hs no xcittions Sinc diffs & LLI r xplicitly brokn, thr r xtr mtric nd virbin mods comprd to GR (would b gugd wy with unbrokn symmtry) ( S) di s 60 ( S) LLTs 60 è 4 xtr mtric mods è 6 xtr virbin mods Ths xtr mods hv qutions of motion tht cn stisfy th rquirmnts for consistncy D T 0 T T è 4 qutions è 6 qutions k è th nondynmicl bckground dos not hv qs of motion, but th xtr mods do

37 Stucklbrg Filds It is common with xplicit brking to introduc Stucklbrg filds, which rstor th brokn symmtry è givs n ltrntiv wy to s th xcittions To rstor diffomorphism brking, introduc 4 sclrs A è lt thm b dynmicl A 0,, 2, 3 Thy r dfind by substituting into th ction: S Z Z ppl k (x) D A D B D C k ABC ( ) d 4 x p g ppl 2 R L(g,f,D A D B D C k ABC ( )) Z ppl

38 Th Stucklbrg sclrs trnsform undr prticl diffs A A D A è so now thr s diff invrinc ( S) di s 0 Stucklbrg trick dds 4 filds, but rstors 4 locl syms, so th totl numbr of dgrs of frdom is unchngd Cn lwys pick (unitry) gug whr A A x which givs bck th bckground fild D A D B D C k ABC ( ) k (x) so th xplicit-brking thory nd th gug-fixd Stucklbrg thory Z r quivlnt ppl D A A

39 Look t infinitsiml xcittions in th Stucklbrg filds A A (x ) 4 infinitsiml xcittions Ths r NG xcittions bout A A x Substituting this into th Stucklbrg xprssion givs D A D B D C k ABC ( ) ' k (D ) k (D ) k D k Ths xcittions r lso NG mods

40 Compring this to th NG xcittions with SSB... k k (D ) k (D ) k dynmicl D k ( k ) mssiv è w s thy r th sm NG xcittions è but th mssiv xcittions r missing in th Stucklbrg pproch with xplicit brking ( k ) mssiv 0 using Stucklbrg Th Stucklbrg trick puts in th NG mods, which is th minimum ndd to rstor diff brking

41 With spontnous diff brking, th bckground k is th vv of dynmicl tnsor with n rbitrry numbr of componnts è Only if w pplfrz out ll th mssiv mods do w gt thory with only 4 NG mods But vn thn th thoris r diffrnt bcus whil L k vcuum L k with SSB with xplicit brking nd Stucklbrg trick Stucklbrg trick involvs SSB for th sclrs but not for th originl bckground tnsor A k

42 Dos using th Stucklbrg trick gurnt tht th potntil inconsistncis ssocitd with xplicit symmtry brking r vdd? No A 60 must hv xcittions tht giv solutions for D T 0 è Thr is no gurnt tht ths solutions xist Th Stucklbrg pproch is diffrnt from thory with spontnous brking whr th bckground tnsor is vcuum solution. è Still th Stucklbrg nd NG xcittions r th sm è This llows th SME to b pplid with xplicit brking nd grvity (s long s th thory is consistnt)

43 IV. Exmpls of grvity modls with Lorntz brking Will look t two xmpls of grvity thoris with bckground filds tht brk spctim symmtris Bumblb modls (spontnous brking) B hb i b q è dynmicl vctor fild è vcuum vlu Mssiv grvity (xplicit brking) k k q è nondynmicl bckground (g k ) 2 è grviton mss trms g g

44 Exmpl: Bumblb Modls Grvity thoris with vctor fild nd potntil trm tht inducs spontnous Lorntz brking dynmicl vctor fild SSB potntil B V (B B ± b 2 ) vv hb i b ppl Not: BB modls do not hv locl U() gug invrinc (dstroyd by prsnc of th potntil V) Bumblbs: thorticlly cnnot fly (nd yt thy do) hv bn studid in vrious forms L 6 G R L B V (B B ± b 2 ) Z ppl kintic trms potntil

45 Kintic trms nd intrprttions: () vctor-tnsor thoris of grvity Will-Nordvdt kintic trms L B B B R 2 B B R 4 B B 2 2D B D B 2 3D B D B no mttr couplings (grvittionl intrctions only) xpct propgting ghost mods (2) modifid Einstin-Mxwll thoris Kostlcky-Smul (KS) modls L B 4 B B cn includ intrctions with mttr ± ± B D B D B no propgting ghost mods

46 Potntil Trms: Th potntil trm V (B B ± b 2 ) inducs spontnous Lorntz violtion ppl Th minimum with V 0 occurs whn B hb i b vcuum vlu with prfrrd spctim dirctions Mttr intrctions gnrt SME cofficints s vvs B b SME cofficint Z ppl è Illustrts how SME coffs cn ris from SSB Also hv xcittions of th vctor fild bout th vcuum

47 Excittions with V 0 V 0 60 è msslss mods è mssiv mods Exmpls of potntils: () Lgrng-multiplir potntil V (B B ± b 2 ) frzs out mssiv mod λ pprs s n xtr fild ppl (2) Smooth qudrtic potntil V 2 ppl(b B ± b 2 ) 2 llows mssiv (Higgs) fild Both ld ppl to spontnous Lorntz brking

48 In gug thory SSB hs wll known consquncs: () Goldston Thorm: whn globl continuous sym is spontnously brokn msslss Nmbu-Goldston (NG) mods ppr (2) Higgs mchnism: if th symmtry is locl th NG mods cn giv ris to mssiv gug-boson mods..g. W,Z bosons cquir mss (3) Higgs mods: dpnding on th shp of th potntil, dditionl mssiv mods cn ppr s wll.g. Higgs filds Cn ths occur with spontnous Lorntz violtion?

49 NG mods: Appr s virtul xcittions bout th vcuum solution gnrtd by th brokn symmtry trnsformtions msslss xcittions tht sty in th potntil minimum V 0 If NG mods xist, thy might possibly b: known msslss prticls (photons, grvitons) nonintrcting or uxiliry mods gugd into grvittionl sctor (modifid grvity) tn (Higgs mchnism) Dpnding on th choic of potntil nd kintic trms, Bumblb modls cn xhibit ths diffrnt fturs

50 KS Modls in Rimnn spc: (Mxwll kintic trm, no torsion) Ths dscrib modifid Einstin-Mxwll modls NG mods propgt lik msslss photons cn coupl to chrgd mttr filds sttic mssiv mod modifis Nwtonin potntils Einstin-Mxwll solution is lrg-mss limit Einstin-Athr modls: (Will-Nordvdt typ kintic, Lgrng-multiplir potntil) Ths giv modifid grvity thoris NG mods mix in s vctor-tnsor grvittionl filds no couplings to mttr filds modify grvittionl wvs

51 Higgs Mchnism: 2 typs of NG mods (Lorntz & diffs) potntilly 2 typs of Higgs mchnisms diffomorphism mods: cn Higgs mchnism occur for th diffos? dos th mtric (or virbin) cquir mss? (D B ) 2 ( b ) 2 connction dpnds on drivtivs of mtric no mss Z trm pplfor th mtric (or virbin) itslf No convntionl Higgs mchnism for th mtric (no mss trm gnrtd by covrint drivtivs)

52 Lorntz mods: go to locl frm (using virbin) b gug filds of Lorntz symmtry (D B ) 2 ( b b b ) 2 Gt qudrtic mss trms for th spin connction Z ppl suggsts Higgs mchnism is possibl for ω αβ only works with dynmicl torsion llowing propgtion of dynmiclly indpndnt ω αβ Lorntz Higgs mchnism for th spin connction cn occur but only in Rimnn-Crtn gomtris offrs nw possibilitis for modl building but finding vibl modls is chllnging

53 Summrizing, Bumblb modls offr numbr of scnrios dpnding on th typ of modl & th gomtry è KS modls giv Einstin-Mxwll solutions s rsult of SLV (not U() gug symmtry) è no Higgs mchnism for th mtric è cn hv Higgs mchnism in Rimnn-Crtn è mssiv (Higgs) mods cn ppr s wll Mor gnrlly find tht... Bumblb modls giv modifid grvity thoris with ffcts stmming from spontnous Lorntz brking SME couplings mrg nturlly s vv s no problm with consistncy issus

54 Exmpl: Mssiv Grvity Th qustion of whthr thr is consistnt thory of mssiv spin-2 grviton tht hs GR s its msslss limit hs bn round for ovr 75 yrs Firz & Puli find n pproximt (linrizd) thory for mssiv spin-2 prticls Vltmn, Vn Dm, & Zkhrov show tht th m 0 limit of th linr thory dos not gr with GR Vinshtin shows tht th xct nonlinr thory will gr with GR in th m 0 limit Boulwr & Dsr show th nonlinr Firz-Puli modls r unphysicl (contin ghost stts) Not until 200 did d Rhm, Gbdz, & Tolly (drgt) find mssiv grvity thory tht is ghost-fr

55 Cnnot form qudrtic mss trm using just th mtric g g Instd introduc bckground symmtric two-tnsor k k è nondynmicl bckground Cn thn mk mss trms è (g k ) 2 g k g k Mssiv spin-2 grviton hs 5 dgrs of frdom But most mss trms introduc ghost mod è ghost ppr s 6 th mod (Boulwr-Dsr ghost) è drgt found potntil for th mtric nd bckground tht limints th Boulwr-Dsr ghost

56 drgt Mssiv Grvity è Hs both mtric nd virbin formultions In th mtric formultion Th ction is dfind in trms of r squr-root mtrix q L MG 6 G q g k r 4 m2 U( must obyè grviton mss g k ) q A g k It is not obvious tht th squr roots q xist è but sufficint conditions hv bn found

57 Th originl drgt ction usd Minkowski bckground è othr bckgrounds wr shown to b ghost fr too Th bckgrounds xplicitly brk diffomorphisms è thr r thrfor up to four xtr mtric mods, which must stisfy crtin consistncy contrints Th consistncy conditions hv th form (on shll) 2D k L MG k k L MG k D k 0 whr L MG k 60 nondynmicl è It s th xtr mtric mods tht must mk ths hold

58 Usully thr is nough coupling btwn th mtric nd th bckground so tht th 4 conditions cn hold è but thr is on notbl xcption If n nstz is md tht k Minkowski nd th mtric is sptilly flt FRW d 2 dt 2 2 (t) dx 2 dy 2 dz 2 thn th consistncy condition rducs to d (t) 0 dt è No flt FRW solution with Minkowski bckground ppl è no-go rsult But flt FRW solutions hv bn found using othr bckgrounds k 6

59 In th virbin formultion of drgt mssiv grvity è Th mtric hs nturl squr root g b b. è dynmicl virbin ppl Cn lso pick bckground virbin ppl obying k v v b b ppl nd dfin products s v è nondynmicl virbin v Cn writ th ction using -forms nd wdg products: dx v v dx forms

60 4 6 f S d x R dx m m m is thn simply: 44 drgt ction using 4virbins 2 4 dx 44m Z 4 Z S d4 x R m Z22 3 p dx d x g R L S Z p 3 Z p 2 Z 44 3 (2) 2(2) L(g (2) 2 34d S 4 x g R p, 2 S dx g R 24 (2) S2 d x g R (2) Z 3 p R )4 ) L(g m S d x g ) d )2 Lvi-Civit 2 symbol 4 3 Z 4ZZ p ) p p Rcombintions Z 44 4consists AA AA 4xp g g A A) è Th ction of of d L(g, f,, D ghost-fr 2 3S S d x R L(g, f,, D ) 4 S d x g R L(g, f,, D A 2 4 A S d4 x g 2 22R L(g, f,, Ddx ) d 2 3 products 4 th fiv indpndnt3wdg of nd )

61 Mttr intrctions It hs bn shown tht drgt mssiv grvity rmins ghost-fr whn mttr filds coupl to n ffctiv virbin of th form dynmicl virbin q nondynmicl virbin or quivlntly to n ffctiv mtric 6 0 q v g 2 g 2 2 k, constnts è givs Lorntz brking mttr intrctions è would coupl to ll prticl sctors Cn mtch ths couplings to th SME to put bounds on th drgt Lorntz-brking mttr intrctions

62 V. Conclusions è Bckground filds in grvity brk diffs & LLI ithr spontnously or xplicitly è With xplicit brking, bckground is nondynmicl nd dos not stisfy Eulr-Lgrng qs è But with spontnous brking, th bckground is dynmicl nd stisfis Eulr-Lgrng qs Excittions occur with both typs of brking NG & Higgs-lik mods with spontnous brking xtr mtric/virbin mods with xplicit brking Stucklbrg introducs NG mods & diff invrinc Nothr idntitis provid consistncy conditions tht must b obyd whn th symmtry brking is xplicit

63 Mttr couplings in grvity thoris with bckground filds cn b nlyzd using th SME with ithr spontnous or xplicit spctim brking è With spontnous brking, SME cofficints occur vry nturlly s vv s of dynmicl tnsor filds nd inconsistncy issus r vdd è With xplicit brking, th SME cofficints cn b nondynmicl s long s th consistncy conditions hold (or Stucklbrg xcittions ct s NG filds) Furthr dvlopmnt of th grvity sctor of th SME will b prsntd by Q. Bily, M. Mws, J. Tsson, M. Sifrt, nd othrs (including xprimntl tlks).

64 Primry Rfrncs: V. A. Kostlcky nd S. Smul, Grvittionl Phnomnology in Highr-Dimnsionl Thoris nd Strings, Physicl Rviw D40 (988) 886. V. A. Kostlcky, Grvity, Lorntz Violtion, nd th Stndrd Modl, Physicl Rviw D69 (2004) RB nd V. A. Kostlcky, Spontnous Lorntz Violtion, Nmbu-Goldston Mods, nd Grvity, Physicl Rviw D7 (2005) RB, S.-H. Fung, nd V. A. Kostlcky, Spontnous Lorntz nd Diffomorphism Violtion, Mssiv Mods, nd Grvity, Physicl Rviw D77 (2008) RB, Explicit vrsus Spontnous Diffomorphism Brking in Grvity, Physicl Rviw D9 (205) RB, Spctim Symmtry Brking nd Einstin-Mxwll Thory, Physicl Rviw D92 (206) RB nd A. Shic, Nothr Idntitis in Grvity Thoris with Nondynmicl Bckgrounds nd Explicit Spctim Symmtry Brking, Physicl Rviw D94 (206)

Lecture 12 Quantum chromodynamics (QCD) WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 12 Quantum chromodynamics (QCD) WS2010/11: Introduction to Nuclear and Particle Physics Lctur Quntum chromodynmics (QCD) WS/: Introduction to Nuclr nd Prticl Physics QCD Quntum chromodynmics (QCD) is thory of th strong intrction - bsd on color forc, fundmntl forc dscribing th intrctions of

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

THE SPINOR FIELD THEORY OF THE PHOTON

THE SPINOR FIELD THEORY OF THE PHOTON Romnin Rports in Physics, Vol. 66, No., P. 9 5, 4 THE SPINOR FIELD THEORY OF THE PHOTON RUO PENG WANG Pking Univrsity, Physics Dprtmnt, Bijing 87, P.R. Chin E-mil: rpwng@pku.du.cn Rcivd Octobr 8, Abstrct.

More information

I. The Connection between Spectroscopy and Quantum Mechanics

I. The Connection between Spectroscopy and Quantum Mechanics I. Th Connction twn Spctroscopy nd Quntum Mchnics On of th postults of quntum mchnics: Th stt of systm is fully dscrid y its wvfunction, Ψ( r1, r,..., t) whr r 1, r, tc. r th coordints of th constitunt

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton Journl of Modrn hysics, 014, 5, 154-157 ublishd Onlin August 014 in SciRs. htt://www.scir.org/journl/jm htt://dx.doi.org/.436/jm.014.51415 Th Angulr Momnt Diol Momnts nd Gyromgntic Rtios of th Elctron

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example This Wk Computr Grphics Vctors nd Oprtions Vctor Arithmtic Gomtric Concpts Points, Lins nd Plns Eploiting Dot Products CSC 470 Computr Grphics 1 CSC 470 Computr Grphics 2 Introduction Introduction Wh do

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

However, many atoms can combine to form particular molecules, e.g. Chlorine (Cl) and Sodium (Na) atoms form NaCl molecules.

However, many atoms can combine to form particular molecules, e.g. Chlorine (Cl) and Sodium (Na) atoms form NaCl molecules. Lctur 6 Titl: Fundmntls of th Quntum Thory of molcul formtion Pg- In th lst modul, w hv discussd out th tomic structur nd tomic physics to undrstnd th spctrum of toms. Howvr, mny toms cn comin to form

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS VSRT MEMO #05 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 Fbrury 3, 009 Tlphon: 781-981-507 Fx: 781-981-0590 To: VSRT Group From: Aln E.E. Rogrs Subjct: Simplifid

More information

Elliptical motion, gravity, etc

Elliptical motion, gravity, etc FW Physics 130 G:\130 lctur\ch 13 Elliticl motion.docx g 1 of 7 11/3/010; 6:40 PM; Lst rintd 11/3/010 6:40:00 PM Fig. 1 Elliticl motion, grvity, tc minor xis mjor xis F 1 =A F =B C - D, mjor nd minor xs

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Oppgavesett kap. 6 (1 av..)

Oppgavesett kap. 6 (1 av..) Oppgvstt kp. 6 (1 v..) hns.brnn@go.uio.no Problm 1 () Wht is homognous nucltion? Why dos Figur 6.2 in th book show tht w won't gt homognous nucltion in th tmosphr? ˆ Homognous nucltion crts cloud droplts

More information

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations. Dy : Mondy 5 inuts. Ovrviw of th PH47 wsit (syllus, ssignnts tc.). Coupld oscilltions W gin with sss coupld y Hook's Lw springs nd find th possil longitudinl) otion of such syst. W ll xtnd this to finit

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

4 The dynamical FRW universe

4 The dynamical FRW universe 4 The dynmicl FRW universe 4.1 The Einstein equtions Einstein s equtions G µν = T µν (7) relte the expnsion rte (t) to energy distribution in the universe. On the left hnd side is the Einstein tensor which

More information

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware LG 43 Lctur #6 Mrk Mirtnik, Ph.D. Prfssr Th Univrsity f Dlwr mil: mirtni@c.udl.du Wv Prpgtin nd Plritin TM: Trnsvrs lctrmgntic Wvs A md is prticulr fild cnfigurtin. Fr givn lctrmgntic bundry vlu prblm,

More information

SPACETIME METRIC DEFORMATIONS C O S I M O S T O R N A I O L O I N F N - S E Z I O N E D I N A P O L I I T A L Y

SPACETIME METRIC DEFORMATIONS C O S I M O S T O R N A I O L O I N F N - S E Z I O N E D I N A P O L I I T A L Y SPETIME METRI DEFORMTIONS O S I M O S T O R N I O L O I N F N - S E Z I O N E D I N P O L I I T L Y Lvori D. Puglis, Dformzioni i mtrich spziotmporli, tsi i lur qurinnl, rltori S. pozzillo. Storniolo S.

More information

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian Drivation of Elctron-Elctron Intraction Trms in th Multi-Elctron Hamiltonian Erica Smith Octobr 1, 010 1 Introduction Th Hamiltonian for a multi-lctron atom with n lctrons is drivd by Itoh (1965) by accounting

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

Lecture 4. Conic section

Lecture 4. Conic section Lctur 4 Conic sction Conic sctions r locus of points whr distncs from fixd point nd fixd lin r in constnt rtio. Conic sctions in D r curvs which r locus of points whor position vctor r stisfis r r. whr

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

UNIT # 08 (PART - I)

UNIT # 08 (PART - I) . r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

More information

The Relativistic Stern-Gerlach Force C. Tschalär 1. Introduction

The Relativistic Stern-Gerlach Force C. Tschalär 1. Introduction Th Rlativistic Strn-Grlach Forc C. Tschalär. Introduction For ovr a dcad, various formulations of th Strn-Grlach (SG) forc acting on a particl with spin moving at a rlativistic vlocity in an lctromagntic

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):. Division of Mchanics Lund Univrsity MULTIBODY DYNMICS Examination 7033 Nam (writ in block lttrs):. Id.-numbr: Writtn xamination with fiv tasks. Plas chck that all tasks ar includd. clan copy of th solutions

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condnsd Mattr Physics pcific hat M.P. Vaughan Ovrviw Ovrviw of spcific hat Hat capacity Dulong-Ptit Law Einstin modl Dby modl h Hat Capacity Hat capacity h hat capacity of a systm hld at

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

GAUGE THEORY ON A SPACE-TIME WITH TORSION

GAUGE THEORY ON A SPACE-TIME WITH TORSION GAUGE THEORY ON A SPACE-TIME WITH TORSION C. D. OPRISAN, G. ZET Fculty of Physics, Al. I. Cuz University, Isi, Romni Deprtment of Physics, Gh. Aschi Technicl University, Isi 700050, Romni Received September

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS PHYSICS 489/489 LECTURE 7: QUANTUM ELECTRODYNAMICS REMINDER Problm st du today 700 in Box F TODAY: W invstigatd th Dirac quation it dscribs a rlativistic spin /2 particl implis th xistnc of antiparticl

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

MERIDIAN SURFACE OF WEINGARTEN TYPE IN 4-DIMENSIONAL EUCLIDEAN SPACE E 4 arxiv: v1 [math.dg] 14 May 2013

MERIDIAN SURFACE OF WEINGARTEN TYPE IN 4-DIMENSIONAL EUCLIDEAN SPACE E 4 arxiv: v1 [math.dg] 14 May 2013 MERIDIAN SURFACE OF WEINGARTEN TYPE IN 4-DIMENSIONAL EUCLIDEAN SPACE E 4 rxiv:13053155v1 [mthdg] 14 My 2013 Astrct In this ppr, w study mridin surfcs of Wingrtn typ in Euclidn 4-spc E 4 W giv th nccssry

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

Classical Magnetic Dipole

Classical Magnetic Dipole Lctur 18 1 Classical Magntic Dipol In gnral, a particl of mass m and charg q (not ncssarily a point charg), w hav q g L m whr g is calld th gyromagntic ratio, which accounts for th ffcts of non-point charg

More information

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let It is impossibl to dsign an IIR transfr function with an xact linar-phas It is always possibl to dsign an FIR transfr function with an xact linar-phas rspons W now dvlop th forms of th linarphas FIR transfr

More information

Bypassing no-go theorems for consistent interactions in gauge theories

Bypassing no-go theorems for consistent interactions in gauge theories Bypssing no-go theorems for consistent interctions in guge theories Simon Lykhovich Tomsk Stte University Suzdl, 4 June 2014 The tlk is bsed on the rticles D.S. Kprulin, S.L.Lykhovich nd A.A.Shrpov, Consistent

More information

Brief Introduction to Statistical Mechanics

Brief Introduction to Statistical Mechanics Brif Introduction to Statistical Mchanics. Purpos: Ths nots ar intndd to provid a vry quick introduction to Statistical Mchanics. Th fild is of cours far mor vast than could b containd in ths fw pags.

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

Coupled Pendulums. Two normal modes.

Coupled Pendulums. Two normal modes. Tim Dpndnt Two Stat Problm Coupld Pndulums Wak spring Two normal mods. No friction. No air rsistanc. Prfct Spring Start Swinging Som tim latr - swings with full amplitud. stationary M +n L M +m Elctron

More information

Frame-like gauge invariant formulation for mixed symmetry fermionic fields

Frame-like gauge invariant formulation for mixed symmetry fermionic fields Frme-like guge invrint formultion for mixed symmetry fermionic fields rxiv:0904.0549v1 [hep-th] 3 Apr 2009 Yu. M. Zinoviev Institute for High Energy Physics Protvino, Moscow Region, 142280, Russi Abstrct

More information

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well 7 nd ntrntionl Confrnc on Softwr, Multimdi nd Communiction Enginring (SMCE 7) SBN: 978--6595-458-5 Thorticl Study on th Whil Drilling Elctromgntic Signl Trnsmission of Horizontl Wll Y-huo FAN,,*, Zi-ping

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

temperature T speed v time t density ρ scalars may be constant or may be variable yes distributive a(b+c) = ab+ac

temperature T speed v time t density ρ scalars may be constant or may be variable yes distributive a(b+c) = ab+ac Mthmtics Riw. Sclr mthmticl ntity tht hs mgnitud only.g.: tmprtur T spd tim t dnsity ρ sclrs my constnt or my ril Lws of Algr for Sclrs: ys commutti ys ssociti (c) ()c ys distriuti (c) c Fith A. Morrison,

More information

General Notes About 2007 AP Physics Scoring Guidelines

General Notes About 2007 AP Physics Scoring Guidelines AP PHYSICS C: ELECTRICITY AND MAGNETISM 2007 SCORING GUIDELINES Gnral Nots About 2007 AP Physics Scoring Guidlins 1. Th solutions contain th most common mthod of solving th fr-rspons qustions and th allocation

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 8: Effect of a Vertical Field on Tokamak Equilibrium

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 8: Effect of a Vertical Field on Tokamak Equilibrium .65, MHD Thory of usion Systms Prof. ridrg Lctur 8: Effct of Vrticl ild on Tokmk Equilirium Toroidl orc lnc y Mns of Vrticl ild. Lt us riw why th rticl fild is imortnt. 3. or ry short tims, th cuum chmr

More information

arxiv: v1 [gr-qc] 18 May 2010

arxiv: v1 [gr-qc] 18 May 2010 Gnral rlativistic spinning fluids with a modifid projction tnsor Mortza Mohsni Physics Dpartmnt, Payam Noor Univrsity, 19395-4697 Thran, Iran arxiv:1005.3108v1 [gr-qc] 18 May 2010 Sptmbr 8, 2018 Abstract

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by: Elctromagntic Induction. Lorntz forc on moving charg Point charg moving at vlocity v, F qv B () For a sction of lctric currnt I in a thin wir dl is Idl, th forc is df Idl B () Elctromotiv forc f s any

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Introduction to the quantum theory of matter and Schrödinger s equation

Introduction to the quantum theory of matter and Schrödinger s equation Introduction to th quantum thory of mattr and Schrödingr s quation Th quantum thory of mattr assums that mattr has two naturs: a particl natur and a wa natur. Th particl natur is dscribd by classical physics

More information

Self-interaction mass formula that relates all leptons and quarks to the electron

Self-interaction mass formula that relates all leptons and quarks to the electron Slf-intraction mass formula that rlats all lptons and quarks to th lctron GERALD ROSEN (a) Dpartmnt of Physics, Drxl Univrsity Philadlphia, PA 19104, USA PACS. 12.15. Ff Quark and lpton modls spcific thoris

More information

Limiting value of higher Mahler measure

Limiting value of higher Mahler measure Limiting valu of highr Mahlr masur Arunabha Biswas a, Chris Monico a, a Dpartmnt of Mathmatics & Statistics, Txas Tch Univrsity, Lubbock, TX 7949, USA Abstract W considr th k-highr Mahlr masur m k P )

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Lorentz force rotor formulation.

Lorentz force rotor formulation. Lorntz forc rotor formulation. Ptr Joot ptr.joot@gmail.com March 18, 2009. Last Rvision: Dat : 2009/03/2321 : 19 : 46 Contnts 1 Motivation. 1 2 In trms of GA. 1 2.1 Omga bivctor............................

More information

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory Ch. 4 Molcular Raction Dynamics 1. Collision Thory Lctur 16. Diffusion-Controlld Raction 3. Th Matrial Balanc Equation 4. Transition Stat Thory: Th Eyring Equation 5. Transition Stat Thory: Thrmodynamic

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Why is a E&M nature of light not sufficient to explain experiments?

Why is a E&M nature of light not sufficient to explain experiments? 1 Th wird world of photons Why is a E&M natur of light not sufficint to xplain xprimnts? Do photons xist? Som quantum proprtis of photons 2 Black body radiation Stfan s law: Enrgy/ ara/ tim = Win s displacmnt

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding... Chmical Physics II Mor Stat. Thrmo Kintics Protin Folding... http://www.nmc.ctc.com/imags/projct/proj15thumb.jpg http://nuclarwaponarchiv.org/usa/tsts/ukgrabl2.jpg http://www.photolib.noaa.gov/corps/imags/big/corp1417.jpg

More information

Contemporary, atomic, nuclear, and particle physics

Contemporary, atomic, nuclear, and particle physics Contmporary, atomic, nuclar, and particl physics 1 Blackbody radiation as a thrmal quilibrium condition (in vacuum this is th only hat loss) Exampl-1 black plan surfac at a constant high tmpratur T h is

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases.

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases. Homwork 5 M 373K Solutions Mark Lindbrg and Travis Schdlr 1. Prov that th ring Z/mZ (for m 0) is a fild if and only if m is prim. ( ) Proof by Contrapositiv: Hr, thr ar thr cass for m not prim. m 0: Whn

More information

(Semi)Classical thermionic emission

(Semi)Classical thermionic emission Tunnling - primr Nno oftn pprs in rl tchnology in th form of thin lyrs or brrirs. W r going to look t svrl wys lctrons cn trnsport ovr or through ths brrirs undr vrious conditions. Thrmionic mission clssicl

More information

Forces. Quantum ElectroDynamics. α = = We have now:

Forces. Quantum ElectroDynamics. α = = We have now: W hav now: Forcs Considrd th gnral proprtis of forcs mdiatd by xchang (Yukawa potntial); Examind consrvation laws which ar obyd by (som) forcs. W will nxt look at thr forcs in mor dtail: Elctromagntic

More information

TitleEnergy density concept: A stress te.

TitleEnergy density concept: A stress te. TitlEnrgy dnsity concpt: A strss t Author(s) Tchibn, Akitomo Cittion Journl of Molculr Structur: THE 3): 138-151 Issu Dt 010-03-15 URL http://hdl.hndl.nt/433/14569 RightCopyright 009 Elsvir B.V. Typ Journl

More information

5.4 The Quarter-Wave Transformer

5.4 The Quarter-Wave Transformer 4//9 5_4 Th Qurtr Wv Trnsformr.doc / 5.4 Th Qurtr-Wv Trnsformr Rdg Assignmnt: pp. 73-76, 4-43 By now you v noticd tht qurtr-wv lngth of trnsmission l ( λ 4, β π ) pprs oftn microwv ngrg prolms. Anothr

More information