Lorentz force rotor formulation.

Size: px
Start display at page:

Download "Lorentz force rotor formulation."

Transcription

1 Lorntz forc rotor formulation. Ptr Joot March 18, Last Rvision: Dat : 2009/03/2321 : 19 : 46 Contnts 1 Motivation. 1 2 In trms of GA Omga bivctor Vrify rotation form Th rotation bivctor Omga bivctor for boost Tnsor variation of th Rotor Lorntz forc rsult Tnsor stup Lab fram vlocity of particl in tnsor form Lorntz forc in tnsor form Evolution of Lab fram vctor Gaug transformation for spin. 9 1 Motivation. Both [Baylis t al.(2007)baylis, Cabrra, and Kslica] and [Doran and Lasnby(2003)] covr rotor formulations of th Lorntz forc quation. Work through som of this on my own to bttr undrstand it. 2 In trms of GA. An activ Lorntz transformation can b usd to translat from th rst fram of a particl with worldlin x to an obsrvr fram, as in y = Λx Λ (1) 1

2 Hr Lorntz transformation is usd in th gnral sns, and can includ both spatial rotation and boost ffcts, but satisfis Λ Λ = 1. Taking propr tim drivativs w hav ẏ = Λx Λ + Λx Λ = Λ ( Λ Λ ) x Λ + Λx ( ΛΛ) Λ Sinc ΛΛ = Λ Λ = 1 w also hav Hr s whr a bivctor variabl 0 = Λ Λ + Λ Λ 0 = Λ Λ + ΛΛ Ω/2 = Λ Λ (2) is introducd, from which w hav ΛΛ = Ω/2, and ẏ = 1 2 ( ΛΩx Λ ΛxΩ Λ ) Or ΛẏΛ = 1 (Ωx xω) 2 Th inclusion of th factor of two in th dfinition of Ω was chating, so that w gt th bivctor vctor dot product abov. Prsuming Ω is rally a bivctor (rturn to this in a bit), w thn hav ΛẏΛ = Ω x (3) W can xprss th tim volution of y using this as a stpping ston, sinc w hav ΛyΛ = x 2

3 Using this w hav 0 = ΛẏΛ Ω x 1 = ΛẏΛ Ωx 1 = ΛẏΛ Ω ΛyΛ 1 = ( Λẏ ΛΛΩ Λy ) Λ 1 = Λ ( ẏ ΛΩ Λy ) Λ 1 So w hav th complt tim volution of our obsrvr fram worldlin for th particl, as a sort of an ignvalu quation for th propr tim diffrntial oprator ẏ = ( ΛΩ Λ ) y = ( 2 Λ Λ ) y Now, what Baylis did in his lctur, and what Doran/Lasnby did as wll in th txt (but I didn t undrstand it thn whn I rad it th first tim) was to idntify this tim volution in trms of Lorntz transform chang with th Lorntz forc. Rcall that th Lorntz forc quation is v = mc F v (4) whr F = E + icb, lik Λ Λ is also a bivctor. If w writ th vlocity worldlin of th particl in th lab fram in trms of th rst fram particl worldlin as v = Λctγ 0 Λ Thn for th fild F obsrvd in th lab fram w ar lft with a diffrntial quation 2 Λ Λ = F/mc for th Lorntz transformation that producs th obsrvd motion of th particl givn th fild that acts on it Λ = FΛ (5) 2mc Okay, good. I undrstand now wll nough what thy v don to rproduc th nd rsult (with th xcption of my rsult including a factor of c sinc thy v workd with c = 1). 3

4 2.1 Omga bivctor. It s bn assumd abov that Ω = 2 Λ Λ is a bivctor. On way to confirm this is by xamining th grads of this product. Two bivctors, not nccssarily rlatd can only hav grads 0, 2, and 4. Bcaus Ω = Ω, as sn abov, it can hav no grad 0 or grad 4 parts. Whil this is a powrful way to vrify th bivctor natur of this objct it is fairly abstract. To gt a bttr fl for this, lt s considr this objct in dtail for a purly spatial rotation, such as R θ (x) = Λx Λ Λ = xp( inθ/2) = cos(θ/2) in sin(θ/2) whr n is a spatial unit bivctor, n 2 = 1, in th span of {σ k = γ k γ 0 } Vrify rotation form. To vrify that this has th appropriat action, by linarily two two cass must b considrd. First is th action on n or th componnts of any vctor in this dirction. R θ (n) = Λn Λ = (cos(θ/2) in sin(θ/2)) n Λ = n (cos(θ/2) in sin(θ/2)) Λ = nλ Λ = n Th rotation oprator dos not chang any vctor colinar with th axis of rotation (th normal). For a vctor m that is prpndicular to axis of rotation n (i: 2(m n) = mn + nm = 0), w hav R θ (m) = Λm Λ = (cos(θ/2) in sin(θ/2)) m Λ = (m cos(θ/2) i(nm) sin(θ/2)) Λ = (m cos(θ/2) + i(mn) sin(θ/2)) Λ = m( Λ) 2 = m xp(inθ) This is a rotation of th vctor m that lis in th in plan by θ as dsird. 4

5 2.1.2 Th rotation bivctor. W want drivativs of th Λ objct. Λ = θ ( sin(θ/2) in cos(θ/2)) iṅ cos(θ/2) 2 = in θ (in sin(θ/2) cos(θ/2)) iṅ cos(θ/2) 2 = 1 2 xp( inθ/2)in θ iṅ cos(θ/2) So w hav Ω = 2 Λ Λ = in θ 2 xp(inθ/2)iṅ cos(θ/2) = in θ 2 cos(θ/2) (cos(θ/2) in sin(θ/2)) iṅ = in θ 2 cos(θ/2) (cos(θ/2)iṅ + nṅ sin(θ/2)) Sinc n ṅ = 0, w hav nṅ = n ṅ, and sur nough all th trms ar bivctors. Spcifically w hav Ω = θ(in) (1 + cos θ)(iṅ) sin θ(n ṅ) 2.2 Omga bivctor for boost. TODO. 3 Tnsor variation of th Rotor Lorntz forc rsult. Thr isn t anything in th initial Lorntz forc rotor rsult that intrinsically rquirs gomtric algbra. At last until on actually wants to xprss th Lorntz transformation consisly in trms of half angl or boost rapidity xponntials. In fact th logic abov is not much diffrnt than th approach usd in [Tong()] for rigid body motion. Lt s try this in matrix or tnsor form and s how it looks. 5

6 3.1 Tnsor stup. Bfor anything ls som notation for th tnsor work must b stablishd. Similar to 1 writ a Lorntz transformd vctor as a linar transformation. Sinc w want only th matrix of this linar transformation with rspct to a spcific obsrvr fram, th dtails of th transformation can b omittd for now. Writ y = L(x) (6) and introduc an orthonormal fram {γ }, and th corrsponding rciprocal fram {γ }, whr γ γ ν = δ ν. In this basis, th rlationship btwn th vctors bcoms y γ = L(x ν γ ν ) = x ν L(γ ν ) Or y = x ν L(γ ν ) γ Th matrix of th linar transformation can now b writtn as Λ ν = L(γ ν ) γ (7) and this can now b usd to xprss th coordinat transformation in abstract indx notation y = x ν Λ ν (8) Similarily, for th invrs transformation, w can writ x = L 1 (y) (9) Π ν = L 1 (γ ν ) γ (10) x = y ν Π ν (11) I v sn this xprssd using primd indxs and th sam symbol Λ usd for both th forward and invrs transformation... lacking skill in tricky indx manipulation I v avoidd such a notation bcaus I ll probably gt it wrong. Instad diffrnt symbols for th two diffrnt matrixs will b usd hr and Π was pickd for th invrs rathr arbitrarily. 6

7 With substitution y = x ν Λ ν = (y α Π α ν )Λ ν x = y ν Π ν = (x α Λ α ν )Π ν th pair of xplicit invrs rlationships btwn th two matrixs can b rad off as δ α = Π α ν Λ ν = Λ α ν Π ν (12) 3.2 Lab fram vlocity of particl in tnsor form. In tnsor form w want to xprss th worldlin of th particl in th lab fram coordinats. That is v = L(ctγ 0 ) = L(x 0 γ 0 ) = x 0 L(γ 0 ) Or v = x 0 L(γ 0 ) γ = x 0 Λ Lorntz forc in tnsor form. Th Lorntz forc quation 4 in tnsor form will also b ndd. Th bivctor F is So w can writ F = 1 2 F νγ γ ν F v = 1 2 F ν(γ γ ν ) γ α v α = 1 2 F ν(γ δ ν α γ ν δ α)v α = 1 2 (vα F α γ v α F αν γ ν ) 7

8 And v σ = mc (F v) γ σ = 2mc (vα F α γ v α F αν γ ν ) γ σ = 2mc vα (F σα F ασ ) = mc vα F σα Or v σ = 3.4 Evolution of Lab fram vctor. mc vα F σ α (13) Givn a lab fram vctor with all th (propr) tim volution xprssd via th Lorntz transformation y = x ν Λ ν w want to calculat th drivativs as in th GA procdur ẏ = x ν Λ ν = x α δ α ν Λ ν = x α Λ α β Π β ν Λ ν With y = v, this is v σ = v α Π α ν Λ σ ν = v α mc Fσ α So w can mak th idntification of th bivctor fild with th Lorntz transformation matrix Π α ν Λ σ ν = mc Fσ α 8

9 With an additional summation to invrt w hav Λ β α Π α ν Λ σ ν = Λ β α mc Fσ α This lavs a tnsor diffrntial quation that will provid th complt tim volution of th lab fram worldlin for th particl in th fild Λ ν = mc Λ α F ν α (14) This is th quivalnt of th GA quation 5. Howvr, whil th GA quation is dirctly intgrabl for constant F, how to do this in th quivalnt tnsor formulation is not so clar. Want to rvisit this, and try to prform this intgral in both forms, idally for both th simplr constant fild cas, as wll as for a mor gnral fild. Evn bttr would b to b abl to xprss F in trms of th currnt dnsity vctor, and thn trat th propr intraction of two chargd particls. 4 Gaug transformation for spin. In th Baylis articl 5 is transformd as Λ Λ ω0 xp( i 3 ω 0 τ). Using this w hav Λ d dτ (Λ ω 0 xp( i 3 ω 0 τ)) = Λ ω0 xp( i 3 ω 0 τ) Λ ω0 (i 3 ω 0 ) xp( i 3 ω 0 τ) For th transformd 5 this givs Λ ω0 xp( i 3 ω 0 τ) Λ ω0 (i 3 ω 0 ) xp( i 3 ω 0 τ) = Cancling th xponntials, and shuffling Λ ω0 = 2mc FΛ ω 0 xp( i 3 ω 0 τ) 2mc FΛ ω 0 + Λ ω0 (i 3 ω 0 ) (15) How dos h commut th i 3 trm with th Lorntz transform? about instad transforming as Λ xp( i 3 ω 0 τ)λ ω0. Using this w hav How Λ d dτ (xp( i 3ω 0 τ)λ ω0 ) = xp( i 3 ω 0 τ) Λ ω0 (i 3 ω 0 ) xp( i 3 ω 0 τ)λ ω0 9

10 thn, th transformd 5 givs xp( i 3 ω 0 τ) Λ ω0 (i 3 ω 0 ) xp( i 3 ω 0 τ)λ ω0 = 2mc F xp( i 3ω 0 τ)λ ω0 Multiplying by th invrs xponntial, and shuffling, noting that xp(i 3 α) commuts with i 3, w hav Λ ω0 = (i 3 ω 0 )Λ ω0 + 2mc xp(i 3ω 0 τ)f xp( i 3 ω 0 τ)λ ω0 = ( ) 2mc (i 3 ω 0 ) + xp(i 3 ω 0 τ)f xp( i 3 ω 0 τ) 2mc So, if on writs F ω0 = xp(i 3 ω 0 τ)f xp( i 3 ω 0 τ), thn th transformd diffrntial quation for th Lorntz transformation taks th form Λ ω0 Λ ω0 = ( ) 2mc (i 3 ω 0 ) + F ω0 Λ ω0 2mc This is closr to Baylis s quation 31. Dropping ω 0 subscripts this is Λ = ( ) 2mc (i 3 ω 0 ) + F Λ 2mc A phas chang in th Lorntz transformation rotor has introducd an additional trm, on that Baylis appars to idntify with th spin vctor S. My way of gtting thr sms fishy, so I think that I m missing somthing. Ah, I s. If w go back to 15, thn with S = Λ ω0 (i 3 ) Λ ω0 (an application of a Lorntz transform to th unit bivctor for th 2 3 plan), on has Rfrncs Λ ω0 = 1 2 ( ) mc F + 2ω 0S Λ ω0 [Baylis t al.(2007)baylis, Cabrra, and Kslica] W. E. Baylis, R. Cabrra, and D. Kslica. Quantum/classical intrfac: Frmion spin, URL http: // [Doran and Lasnby(2003)] C. Doran and A.N. Lasnby. Gomtric algbra for physicists. Cambridg Univrsity Prss Nw York, [Tong()] Dr. David Tong. Classical mchanics. uk/usr/tong/dynamics.htm. 10

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

Sundials and Linear Algebra

Sundials and Linear Algebra Sundials and Linar Algbra M. Scot Swan July 2, 25 Most txts on crating sundials ar dirctd towards thos who ar solly intrstd in making and using sundials and usually assums minimal mathmatical background.

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS PHYSICS 489/489 LECTURE 7: QUANTUM ELECTRODYNAMICS REMINDER Problm st du today 700 in Box F TODAY: W invstigatd th Dirac quation it dscribs a rlativistic spin /2 particl implis th xistnc of antiparticl

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

On the Hamiltonian of a Multi-Electron Atom

On the Hamiltonian of a Multi-Electron Atom On th Hamiltonian of a Multi-Elctron Atom Austn Gronr Drxl Univrsity Philadlphia, PA Octobr 29, 2010 1 Introduction In this papr, w will xhibit th procss of achiving th Hamiltonian for an lctron gas. Making

More information

ELECTRON-MUON SCATTERING

ELECTRON-MUON SCATTERING ELECTRON-MUON SCATTERING ABSTRACT Th lctron charg is considrd to b distributd or xtndd in spac. Th diffrntial of th lctron charg is st qual to a function of lctron charg coordinats multiplid by a four-dimnsional

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 3.4 Forc Analysis of Linkas An undrstandin of forc analysis of linkas is rquird to: Dtrmin th raction forcs on pins, tc. as a consqunc of a spcifid motion (don t undrstimat th sinificanc of dynamic or

More information

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian Drivation of Elctron-Elctron Intraction Trms in th Multi-Elctron Hamiltonian Erica Smith Octobr 1, 010 1 Introduction Th Hamiltonian for a multi-lctron atom with n lctrons is drivd by Itoh (1965) by accounting

More information

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):. Division of Mchanics Lund Univrsity MULTIBODY DYNMICS Examination 7033 Nam (writ in block lttrs):. Id.-numbr: Writtn xamination with fiv tasks. Plas chck that all tasks ar includd. clan copy of th solutions

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

INTEGRATION BY PARTS

INTEGRATION BY PARTS Mathmatics Rvision Guids Intgration by Parts Pag of 7 MK HOME TUITION Mathmatics Rvision Guids Lvl: AS / A Lvl AQA : C Edcl: C OCR: C OCR MEI: C INTEGRATION BY PARTS Vrsion : Dat: --5 Eampls - 6 ar copyrightd

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by: Elctromagntic Induction. Lorntz forc on moving charg Point charg moving at vlocity v, F qv B () For a sction of lctric currnt I in a thin wir dl is Idl, th forc is df Idl B () Elctromotiv forc f s any

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Differential Equations

Differential Equations Prfac Hr ar m onlin nots for m diffrntial quations cours that I tach hr at Lamar Univrsit. Dspit th fact that ths ar m class nots, th should b accssibl to anon wanting to larn how to solv diffrntial quations

More information

The Relativistic Stern-Gerlach Force C. Tschalär 1. Introduction

The Relativistic Stern-Gerlach Force C. Tschalär 1. Introduction Th Rlativistic Strn-Grlach Forc C. Tschalär. Introduction For ovr a dcad, various formulations of th Strn-Grlach (SG) forc acting on a particl with spin moving at a rlativistic vlocity in an lctromagntic

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l h 4D, 4th Rank, Antisytric nsor and th 4D Equivalnt to th Cross Product or Mor Fun with nsors!!! Richard R Shiffan Digital Graphics Assoc 8 Dunkirk Av LA, Ca 95 rrs@isidu his docunt dscribs th four dinsional

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Elctromagntic scattring Graduat Cours Elctrical Enginring (Communications) 1 st Smstr, 1388-1389 Sharif Univrsity of Tchnology Contnts of lctur 8 Contnts of lctur 8: Scattring from small dilctric objcts

More information

Computing and Communications -- Network Coding

Computing and Communications -- Network Coding 89 90 98 00 Computing and Communications -- Ntwork Coding Dr. Zhiyong Chn Institut of Wirlss Communications Tchnology Shanghai Jiao Tong Univrsity China Lctur 5- Nov. 05 0 Classical Information Thory Sourc

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condnsd Mattr Physics pcific hat M.P. Vaughan Ovrviw Ovrviw of spcific hat Hat capacity Dulong-Ptit Law Einstin modl Dby modl h Hat Capacity Hat capacity h hat capacity of a systm hld at

More information

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle CHPTER 1 Introductory Concpts Elmnts of Vctor nalysis Nwton s Laws Units Th basis of Nwtonian Mchanics D lmbrt s Principl 1 Scinc of Mchanics: It is concrnd with th motion of matrial bodis. odis hav diffrnt

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Outline. Thanks to Ian Blockland and Randy Sobie for these slides Lifetimes of Decaying Particles Scattering Cross Sections Fermi s Golden Rule

Outline. Thanks to Ian Blockland and Randy Sobie for these slides Lifetimes of Decaying Particles Scattering Cross Sections Fermi s Golden Rule Outlin Thanks to Ian Blockland and andy obi for ths slids Liftims of Dcaying Particls cattring Cross ctions Frmi s Goldn ul Physics 424 Lctur 12 Pag 1 Obsrvabls want to rlat xprimntal masurmnts to thortical

More information

2. Background Material

2. Background Material S. Blair Sptmbr 3, 003 4. Background Matrial Th rst of this cours dals with th gnration, modulation, propagation, and ction of optical radiation. As such, bic background in lctromagntics and optics nds

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

surface of a dielectric-metal interface. It is commonly used today for discovering the ways in

surface of a dielectric-metal interface. It is commonly used today for discovering the ways in Surfac plasmon rsonanc is snsitiv mchanism for obsrving slight changs nar th surfac of a dilctric-mtal intrfac. It is commonl usd toda for discovring th was in which protins intract with thir nvironmnt,

More information

There is an arbitrary overall complex phase that could be added to A, but since this makes no difference we set it to zero and choose A real.

There is an arbitrary overall complex phase that could be added to A, but since this makes no difference we set it to zero and choose A real. Midtrm #, Physics 37A, Spring 07. Writ your rsponss blow or on xtra pags. Show your work, and tak car to xplain what you ar doing; partial crdit will b givn for incomplt answrs that dmonstrat som concptual

More information

Brief Introduction to Statistical Mechanics

Brief Introduction to Statistical Mechanics Brif Introduction to Statistical Mchanics. Purpos: Ths nots ar intndd to provid a vry quick introduction to Statistical Mchanics. Th fild is of cours far mor vast than could b containd in ths fw pags.

More information

As the matrix of operator B is Hermitian so its eigenvalues must be real. It only remains to diagonalize the minor M 11 of matrix B.

As the matrix of operator B is Hermitian so its eigenvalues must be real. It only remains to diagonalize the minor M 11 of matrix B. 7636S ADVANCED QUANTUM MECHANICS Solutions Spring. Considr a thr dimnsional kt spac. If a crtain st of orthonormal kts, say, and 3 ar usd as th bas kts, thn th oprators A and B ar rprsntd by a b A a and

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

UNTYPED LAMBDA CALCULUS (II)

UNTYPED LAMBDA CALCULUS (II) 1 UNTYPED LAMBDA CALCULUS (II) RECALL: CALL-BY-VALUE O.S. Basic rul Sarch ruls: (\x.) v [v/x] 1 1 1 1 v v CALL-BY-VALUE EVALUATION EXAMPLE (\x. x x) (\y. y) x x [\y. y / x] = (\y. y) (\y. y) y [\y. y /

More information

First order differential equation Linear equation; Method of integrating factors

First order differential equation Linear equation; Method of integrating factors First orr iffrntial quation Linar quation; Mtho of intgrating factors Exampl 1: Rwrit th lft han si as th rivativ of th prouct of y an som function by prouct rul irctly. Solving th first orr iffrntial

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Gradebook & Midterm & Office Hours

Gradebook & Midterm & Office Hours Your commnts So what do w do whn on of th r's is 0 in th quation GmM(1/r-1/r)? Do w nd to driv all of ths potntial nrgy formulas? I don't undrstand springs This was th first lctur I actually larnd somthing

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

Pipe flow friction, small vs. big pipes

Pipe flow friction, small vs. big pipes Friction actor (t/0 t o pip) Friction small vs larg pips J. Chaurtt May 016 It is an intrsting act that riction is highr in small pips than largr pips or th sam vlocity o low and th sam lngth. Friction

More information

Classical Magnetic Dipole

Classical Magnetic Dipole Lctur 18 1 Classical Magntic Dipol In gnral, a particl of mass m and charg q (not ncssarily a point charg), w hav q g L m whr g is calld th gyromagntic ratio, which accounts for th ffcts of non-point charg

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

MATH 319, WEEK 15: The Fundamental Matrix, Non-Homogeneous Systems of Differential Equations

MATH 319, WEEK 15: The Fundamental Matrix, Non-Homogeneous Systems of Differential Equations MATH 39, WEEK 5: Th Fundamntal Matrix, Non-Homognous Systms of Diffrntial Equations Fundamntal Matrics Considr th problm of dtrmining th particular solution for an nsmbl of initial conditions For instanc,

More information

1 General boundary conditions in diffusion

1 General boundary conditions in diffusion Gnral boundary conditions in diffusion Πρόβλημα 4.8 : Δίνεται μονοδιάτατη πλάκα πάχους, που το ένα άκρο της κρατιέται ε θερμοκραία T t και το άλλο ε θερμοκραία T 2 t. Αν η αρχική θερμοκραία της πλάκας

More information

High Energy Physics. Lecture 5 The Passage of Particles through Matter

High Energy Physics. Lecture 5 The Passage of Particles through Matter High Enrgy Physics Lctur 5 Th Passag of Particls through Mattr 1 Introduction In prvious lcturs w hav sn xampls of tracks lft by chargd particls in passing through mattr. Such tracks provid som of th most

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e 8/7/018 Cours Instructor Dr. Raymond C. Rumpf Offic: A 337 Phon: (915) 747 6958 E Mail: rcrumpf@utp.du EE 4347 Applid Elctromagntics Topic 3 Skin Dpth & Powr Flow Skin Dpth Ths & Powr nots Flow may contain

More information

Collisions between electrons and ions

Collisions between electrons and ions DRAFT 1 Collisions btwn lctrons and ions Flix I. Parra Rudolf Pirls Cntr for Thortical Physics, Unirsity of Oxford, Oxford OX1 NP, UK This rsion is of 8 May 217 1. Introduction Th Fokkr-Planck collision

More information

Schrodinger Equation in 3-d

Schrodinger Equation in 3-d Schrodingr Equation in 3-d ψ( xyz,, ) ψ( xyz,, ) ψ( xyz,, ) + + + Vxyz (,, ) ψ( xyz,, ) = Eψ( xyz,, ) m x y z p p p x y + + z m m m + V = E p m + V = E E + k V = E Infinit Wll in 3-d V = x > L, y > L,

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpnCoursWar http://ocw.mit.du 5.80 Small-Molcul Spctroscopy and Dynamics Fall 008 For information about citing ths matrials or our Trms of Us, visit: http://ocw.mit.du/trms. Lctur # 3 Supplmnt Contnts

More information

The Transmission Line Wave Equation

The Transmission Line Wave Equation 1//5 Th Transmission Lin Wav Equation.doc 1/6 Th Transmission Lin Wav Equation Q: So, what functions I (z) and V (z) do satisfy both tlgraphr s quations?? A: To mak this asir, w will combin th tlgraphr

More information

ECE 344 Microwave Fundamentals

ECE 344 Microwave Fundamentals ECE 44 Microwav Fundamntals Lctur 08: Powr Dividrs and Couplrs Part Prpard By Dr. hrif Hkal 4/0/08 Microwav Dvics 4/0/08 Microwav Dvics 4/0/08 Powr Dividrs and Couplrs Powr dividrs, combinrs and dirctional

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 43 Introduction to Finit Elmnt Analysis Chaptr 3 Computr Implmntation of D FEM Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 301 Signals & Systms Prof. Mark Fowlr ot St #21 D-T Signals: Rlation btwn DFT, DTFT, & CTFT 1/16 W can us th DFT to implmnt numrical FT procssing This nabls us to numrically analyz a signal to find

More information

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued)

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued) Introduction to th Fourir transform Computr Vision & Digital Imag Procssing Fourir Transform Lt f(x) b a continuous function of a ral variabl x Th Fourir transform of f(x), dnotd by I {f(x)} is givn by:

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved.

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved. 6.1 Intgration by Parts and Prsnt Valu Copyright Cngag Larning. All rights rsrvd. Warm-Up: Find f () 1. F() = ln(+1). F() = 3 3. F() =. F() = ln ( 1) 5. F() = 6. F() = - Objctivs, Day #1 Studnts will b

More information

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory Ch. 4 Molcular Raction Dynamics 1. Collision Thory Lctur 16. Diffusion-Controlld Raction 3. Th Matrial Balanc Equation 4. Transition Stat Thory: Th Eyring Equation 5. Transition Stat Thory: Thrmodynamic

More information

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator. Exam N a m : _ S O L U T I O N P U I D : I n s t r u c t i o n s : It is important that you clarly show your work and mark th final answr clarly, closd book, closd nots, no calculator. T i m : h o u r

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra Lctur 8 Titl: Diatomic Molcul : Vibrational and otational spctra Pag- In this lctur w will undrstand th molcular vibrational and rotational spctra of diatomic molcul W will start with th Hamiltonian for

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

General Notes About 2007 AP Physics Scoring Guidelines

General Notes About 2007 AP Physics Scoring Guidelines AP PHYSICS C: ELECTRICITY AND MAGNETISM 2007 SCORING GUIDELINES Gnral Nots About 2007 AP Physics Scoring Guidlins 1. Th solutions contain th most common mthod of solving th fr-rspons qustions and th allocation

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

Sec 2.3 Modeling with First Order Equations

Sec 2.3 Modeling with First Order Equations Sc.3 Modling with First Ordr Equations Mathmatical modls charactriz physical systms, oftn using diffrntial quations. Modl Construction: Translating physical situation into mathmatical trms. Clarly stat

More information

Review of Exponentials and Logarithms - Classwork

Review of Exponentials and Logarithms - Classwork Rviw of Eponntials and Logarithms - Classwork In our stud of calculus, w hav amind drivativs and intgrals of polnomial prssions, rational prssions, and trignomtric prssions. What w hav not amind ar ponntial

More information

3 2x. 3x 2. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

3 2x. 3x 2.   Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Math B Intgration Rviw (Solutions) Do ths intgrals. Solutions ar postd at th wbsit blow. If you hav troubl with thm, sk hlp immdiatly! () 8 d () 5 d () d () sin d (5) d (6) cos d (7) d www.clas.ucsb.du/staff/vinc

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

San José State University Aerospace Engineering AE 138 Vector-Based Dynamics for Aerospace Applications, Fall 2016

San José State University Aerospace Engineering AE 138 Vector-Based Dynamics for Aerospace Applications, Fall 2016 San José Stat Univrsity Arospac Enginring AE 138 Vctor-Basd Dynamics for Arospac Applications, Fall 2016 Instructor: Offic Location: Email: Offic Hours: Class Days/Tim: Classroom: Prof. J.M. Huntr E272F

More information

Announce. ECE 2026 Summer LECTURE OBJECTIVES READING. LECTURE #3 Complex View of Sinusoids May 21, Complex Number Review

Announce. ECE 2026 Summer LECTURE OBJECTIVES READING. LECTURE #3 Complex View of Sinusoids May 21, Complex Number Review ECE 06 Summr 018 Announc HW1 du at bginning of your rcitation tomorrow Look at HW bfor rcitation Lab 1 is Thursday: Com prpard! Offic hours hav bn postd: LECTURE #3 Complx Viw of Sinusoids May 1, 018 READIG

More information

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming CPSC 665 : An Algorithmist s Toolkit Lctur 4 : 21 Jan 2015 Lcturr: Sushant Sachdva Linar Programming Scrib: Rasmus Kyng 1. Introduction An optimization problm rquirs us to find th minimum or maximum) of

More information

Using Tangent Boost along a Worldline and Its Associated Matrix in the Lie Algebra of the Lorentz Group

Using Tangent Boost along a Worldline and Its Associated Matrix in the Lie Algebra of the Lorentz Group Journal of Modrn Physics, 7, 8, 9- http://www.scirp.org/journal/jmp ISSN Onlin: 5-X ISSN Print: 5-96 Using Tangnt Boost along a Worldlin and Its Associatd Matrix in th Li Algbra of th Lorntz Group Michl

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Maxwellian Collisions

Maxwellian Collisions Maxwllian Collisions Maxwll ralizd arly on that th particular typ of collision in which th cross-sction varis at Q rs 1/g offrs drastic siplifications. Intrstingly, this bhavior is physically corrct for

More information

GEOMETRICAL PHENOMENA IN THE PHYSICS OF SUBATOMIC PARTICLES. Eduard N. Klenov* Rostov-on-Don, Russia

GEOMETRICAL PHENOMENA IN THE PHYSICS OF SUBATOMIC PARTICLES. Eduard N. Klenov* Rostov-on-Don, Russia GEOMETRICAL PHENOMENA IN THE PHYSICS OF SUBATOMIC PARTICLES Eduard N. Klnov* Rostov-on-Don, Russia Th articl considrs phnomnal gomtry figurs bing th carrirs of valu spctra for th pairs of th rmaining additiv

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

Y 0. Standing Wave Interference between the incident & reflected waves Standing wave. A string with one end fixed on a wall

Y 0. Standing Wave Interference between the incident & reflected waves Standing wave. A string with one end fixed on a wall Staning Wav Intrfrnc btwn th incint & rflct wavs Staning wav A string with on n fix on a wall Incint: y, t) Y cos( t ) 1( Y 1 ( ) Y (St th incint wav s phas to b, i.., Y + ral & positiv.) Rflct: y, t)

More information

Lecture 6.4: Galois groups

Lecture 6.4: Galois groups Lctur 6.4: Galois groups Matthw Macauly Dpartmnt of Mathmatical Scincs Clmson Univrsity http://www.math.clmson.du/~macaul/ Math 4120, Modrn Algbra M. Macauly (Clmson) Lctur 6.4: Galois groups Math 4120,

More information

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018 Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

MSLC Math 151 WI09 Exam 2 Review Solutions

MSLC Math 151 WI09 Exam 2 Review Solutions Eam Rviw Solutions. Comput th following rivativs using th iffrntiation ruls: a.) cot cot cot csc cot cos 5 cos 5 cos 5 cos 5 sin 5 5 b.) c.) sin( ) sin( ) y sin( ) ln( y) ln( ) ln( y) sin( ) ln( ) y y

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

CS 361 Meeting 12 10/3/18

CS 361 Meeting 12 10/3/18 CS 36 Mting 2 /3/8 Announcmnts. Homwork 4 is du Friday. If Friday is Mountain Day, homwork should b turnd in at my offic or th dpartmnt offic bfor 4. 2. Homwork 5 will b availabl ovr th wknd. 3. Our midtrm

More information

MCE503: Modeling and Simulation of Mechatronic Systems Discussion on Bond Graph Sign Conventions for Electrical Systems

MCE503: Modeling and Simulation of Mechatronic Systems Discussion on Bond Graph Sign Conventions for Electrical Systems MCE503: Modling and Simulation o Mchatronic Systms Discussion on Bond Graph Sign Convntions or Elctrical Systms Hanz ichtr, PhD Clvland Stat Univrsity, Dpt o Mchanical Enginring 1 Basic Assumption In a

More information

2.3 Matrix Formulation

2.3 Matrix Formulation 23 Matrix Formulation 43 A mor complicatd xampl ariss for a nonlinar systm of diffrntial quations Considr th following xampl Exampl 23 x y + x( x 2 y 2 y x + y( x 2 y 2 (233 Transforming to polar coordinats,

More information