# Experiment 4: Resistances in Circuits

Size: px
Start display at page:

Transcription

1 Name: Partners: Date: Experiment 4: Resistances in Circuits EQUIPMENT NEEDED: Circuits Experiment Board Multimeter Resistors Purpose The purpose of this lab is to begin experimenting with the variables that contribute to the operation of an electrical circuit. This is the first of a three connected labs. Procedure 1. Choose the three resistors having the same value. Enter those sets of colors in Table 4.1 below. We will refer to one as #1, another as #2 and the third as #3. 2. Determine the coded value of your resistors. Enter the value in the column labeled Coded Resistance in Table 4.1. Enter the Tolerance value as indicated by the color of the fourth band under Tolerance. 3. Use the Multimeter to measure the resistance of each of your three resistors. Enter these values in Table Determine the percentage experimental error of each resistance value and enter it in the appropriate column. Measured Coded Experimental Error = 100% Coded Colors 1st 2nd 3rd 4th Coded Resistance Measured Resistance % Error Tolerance #1 #2 #3 Table Now connect the three resistors into the SERIES CIRCUIT, figure 4.1, using the spring clips on the Circuits Experiment Board to hold the leads of the resistors together without bending them. Measure the resistances of the combinations as indicated on the diagram by connecting the leads of the Multimeter between the points at the ends of the arrows. 1

2 Series R 12 = R 123 = Figure Construct a PARALLEL CIRCUIT, first using combinations of two of the resistors, and then using all three. Measure and record your values for these circuits. Parallel 7. Connect the COMBINATION CIRCUIT below and measure the various combinations of resistance. Do these follow the rules as you discovered them before? R 12 = R 13 = R 123 = Figure 4.2 Combination Figure Choose three resistors having different values. Repeat steps 1 through 7 as above, recording your data in the spaces on the next page. Note we have called these resistors A, B and C. 2

3 Colors 1st 2nd 3rd 4th Coded Resistance Measured Resistance % Error Tolerance #1 #2 #3 Table 4.2 Series R AB = R BC = Figure 4.4 Parallel R AB = R BC = R AC = Figure 4.5 Combination R A = R BC = Figure 4.6 3

4 Discussion 1. How does the % error compare to the coded tolerance for your resistors? 2. What is the apparent rule for combining equal resistances in series circuits? In parallel circuits? Cite evidence from your data to support your conclusions. 3. What is the apparent rule for combining unequal resistances in series circuits? In parallel circuits? Cite evidence from your data to support your conclusions. 4. What is the apparent rule for the total resistance when resistors are added up in series? In parallel? Cite evidence from your data to support your conclusions. Extension Using the same resistance values as you used before plus any wires needed to help build the circuit, design and test the resistance values for another combination of three resistors. As instructed, build circuits with four and five resistors, testing the basic concepts you discovered in this lab. Reference Figure 4.7 4

5 Name: Partners: Date: Experiment 5: Voltages in Circuits EQUIPMENT NEEDED: Circuits Experiment Board Multimeter D-cell Battery Resistors Wire Leads Purpose The purpose of this lab will be to continue experimenting with the variables that contribute to the operation of an electrical circuit. You should have completed Experiment 4 before working on this lab. Procedure 1. Connect the three equal resistors that you used in Experiment 4 into the series circuit shown below, using the springs to hold the leads of the resistors together without bending them. Connect two wires to the D- cell, carefully noting which wire is connected to the negative and which is connected to the positive. 2. Now use the voltage function on the Multimeter to measure the voltages across the individual resistors and then across the combinations of resistors. Be careful to observe the polarity of the leads (red is +, black is -). Record your readings below. Series Figure 5.1 R 1 = R 2 = R 3 = R 12 = R 123 = V 1 = V 2 = V 3 = V 12 = V 23 = V 123 = 5

6 3. Now connect the parallel circuit below, using all three resistors. Measure the voltage across each of the resistors and the combination, taking care with the polarity as before. NOTE: Keep all three resistors connected throughout the time you are making your measurements. Write down your values as indicated below. Parallel R 1 = R 3 = R 123 = V 1 = V 23 = V 3 = V 123 = Figure Now connect the circuit below and measure the voltages. You can use the resistance readings you took in Experiment 4 for this step. Combination R 1 = R 123 = V 1 = V 23 = V 123 = Figure Use the three unequal resistors that you used in Experiment 4 to construct the circuits shown below. Make the same voltage measurements that you were asked to make before in steps 1 to 4. Use the same resistors for A, B and C that you used in Experiment 4. 6

7 Series Figure 5.4 R A = R B = R C = R AB = R BC = V A = V B = V C = V AB = V BC = V ABC = Parallel R A = R B = R C = V A = V B = V C = V ABC = Figure 5.5 7

8 Combination R A = R BC = V A = V BC = V ABC = Figure 5.6 Discussion 1. On the basis of the data you recorded on the table with Figure 5.1, what is the pattern for how voltage gets distributed in a series circuit with equal resistances? According to the data you recorded with Figure 5.4, what is the pattern for how voltage gets distributed in a series circuit with unequal resistances? Is there any relationship between the size of the resistance and the size of the resulting voltage? 2. Utilizing the data from Figure 5.2, what is the pattern for how voltage distributes itself in a parallel circuit for equal resistances? Based on the data from Figure 5.5, what is the pattern for how voltage distributes itself in a parallel circuit for unequal resistances? Is there any relationship between the size of the resistance and the size of the resulting voltage? 3. Do the voltages in your combination circuits (see Figures 5.3 and 5.6) follow the same rules as they did in your circuits which were purely series or parallel? If not, state the rules you see in operation. 8

10 Name: Partners: Date: Figure 6.3 R 1 = R 2 = R 3 = R 12 = R 123 = I 0 = I 1 = I 2 = I 3 = V 1 = V 2 = V 3 = V 12 = V 23 = V 123 = 4. Connect the parallel circuit below, using all three resistors. Review the instructions for connecting the DMM as an ammeter in step 2. Connect it first between the positive terminal of the battery and the parallel circuit junction to measure I. Then interrupt the various branches of the parallel circuit and measure the individual branch currents. Record your measurements in the table below. Parallel R 1 = R 2 = R 3 = R 123 = I 0 = I 1 = I 2 = I 3 = I 4 = V 1 = V 2 = V 3 = V 123 = Discussion 1. On the basis of your first set of data, what is the pattern for how current behaves in a series circuit? At this point you should be able to summarize the behavior of all three quantities - resistance, voltage and current - in series circuits. 2. On the basis of your second set of data, are there any patterns to the way that currents behave in a parallel circuit? At this time you should be able to write the general characteristics of currents, voltages and resistances in parallel circuits. 10

### Voltage Dividers, Nodal, and Mesh Analysis

Engr228 Lab #2 Voltage Dividers, Nodal, and Mesh Analysis Name Partner(s) Grade /10 Introduction This lab exercise is designed to further your understanding of the use of the lab equipment and to verify

### EE301 RESISTANCE AND OHM S LAW

Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short

### Direct Current Circuits

Name: Date: PC1143 Physics III Direct Current Circuits 5 Laboratory Worksheet Part A: Single-Loop Circuits R 1 = I 0 = V 1 = R 2 = I 1 = V 2 = R 3 = I 2 = V 3 = R 12 = I 3 = V 12 = R 23 = V 23 = R 123

### Name Date Time to Complete. NOTE: The multimeter s 10 AMP range, instead of the 300 ma range, should be used for all current measurements.

Name Date Time to Complete h m Partner Course/ Section / Grade Complex Circuits In this laboratory you will continue your exploration of dc electric circuits with a steady current. The circuits will be

### Capacitors GOAL. EQUIPMENT. CapacitorDecay.cmbl 1. Building a Capacitor

PHYSICS EXPERIMENTS 133 Capacitor 1 Capacitors GOAL. To measure capacitance with a digital multimeter. To make a simple capacitor. To determine and/or apply the rules for finding the equivalent capacitance

### Review of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance.

DC Circuits Objectives The objectives of this lab are: 1) to construct an Ohmmeter (a device that measures resistance) using our knowledge of Ohm's Law. 2) to determine an unknown resistance using our

### PHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

PHYSICS 171 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (0-20 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that

### Name Date Time to Complete

Name Date Time to Complete h m Partner Course/ Section / Grade Complex Circuits In this laboratory you will connect electric lamps together in a variety of circuits. The purpose of these exercises is to

### Experiment 5 Voltage Divider Rule for Series Circuits

Experiment 5 Voltage Divider Rule for Series Circuits EL - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives:. For the student

### EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete

### POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

### Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving

### EXPERIMENT 9 Superconductivity & Ohm s Law

Name: Date: Course number: MAKE SURE YOUR TA OR TI STAMPS EVERY PAGE BEFORE YOU START! Lab section: Partner's name(s): Grade: EXPERIMENT 9 Superconductivity & Ohm s Law 0. Pre-Laboratory Work [2 pts] 1.

### LABORATORY 4 ELECTRIC CIRCUITS I. Objectives

LABORATORY 4 ELECTRIC CIRCUITS I Objectives to be able to discuss potential difference and current in a circuit in terms of electric field, work per unit charge and motion of charges to understand that

### Measurement of Electrical Resistance and Ohm s Law

Measurement of Electrical Resistance and Ohm s Law Objectives In this experiment, measurements of the voltage across a wire coil and the current in the wire coil will be used to accomplish the following

### Introduction. Pre-lab questions: Physics 1BL KIRCHOFF S RULES Winter 2010

Introduction In this lab we will examine more complicated circuits. First, you will derive an expression for equivalent resistance using Kirchhoff s Rules. Then you will discuss the physics underlying

### LAB 3: Capacitors & RC Circuits

LAB 3: Capacitors & C Circuits Name: Circuits Experiment Board Wire leads Capacitors, esistors EQUIPMENT NEEDED: Two D-cell Batteries Multimeter Logger Pro Software, ULI Purpose The purpose of this lab

### Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory

Lab 4 RC Circuits Name Partner s Name I. Introduction/Theory Consider a circuit such as that in Figure 1, in which a potential difference is applied to the series combination of a resistor and a capacitor.

### Ph February, Kirchhoff's Rules Author: John Adams, I. Theory

Ph 122 23 February, 2006 I. Theory Kirchhoff's Rules Author: John Adams, 1996 quark%/~bland/docs/manuals/ph122/elstat/elstat.doc This experiment seeks to determine if the currents and voltage drops in

### KIRCHHOFF S LAWS. Learn how to analyze more complicated circuits with more than one voltage source and numerous resistors.

KIRCHHOFF S LAWS Lab Goals: Learn how to analyze more complicated circuits with more than one voltage source and numerous resistors. Lab Notebooks: Write descriptions of all of your experiments in your

### Physics 102 Lab 4: Circuit Algebra and Effective Resistance Dr. Timothy C. Black Spring, 2005

Physics 02 Lab 4: Circuit Algebra and Effective Resistance Dr. Timothy C. Black Spring, 2005 Theoretical Discussion The Junction Rule: Since charge is conserved, charge is neither created or destroyed

### Lab E3: The Wheatstone Bridge

E3.1 Lab E3: The Wheatstone Bridge Introduction The Wheatstone bridge is a circuit used to compare an unknown resistance with a known resistance. The bridge is commonly used in control circuits. For instance,

### Exercise 1: Thermistor Characteristics

Exercise 1: Thermistor Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics of thermistors. DISCUSSION A thermistor

### Industrial Electricity

Industrial Electricity PRELAB / LAB 7: Series & Parallel Circuits with Faults Name PRELAB due BEFORE beginning the lab (initials required at the bottom of page 3) PLEASE TAKE THE TIME TO READ THIS PAGE

### Lab 4 Series and Parallel Resistors

Lab 4 Series and Parallel Resistors What You Need To Know: The Physics Last week you examined how the current and voltage of a resistor are related. This week you are going to examine how the current and

### Experiment #6. Thevenin Equivalent Circuits and Power Transfer

Experiment #6 Thevenin Equivalent Circuits and Power Transfer Objective: In this lab you will confirm the equivalence between a complicated resistor circuit and its Thevenin equivalent. You will also learn

### Introductory Circuit Analysis

Introductory Circuit Analysis CHAPTER 6 Parallel dc Circuits OBJECTIVES Become familiar with the characteristics of a parallel network and how to solve for the voltage, current, and power to each element.

### Electric Fields. Goals. Introduction

Lab 2. Electric Fields Goals To understand how contour lines of equal voltage, which are easily measured, relate to the electric field produced by electrically charged objects. To learn how to identify

### Notebook Circuits With Metering. 22 February July 2009

Title: Original: Revision: Authors: Appropriate Level: Abstract: Time Required: NY Standards Met: 22 February 2007 14 July 2009 Notebook Circuits With Metering Jim Overhiser, Monica Plisch, and Julie Nucci

### resistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( )

DC Fundamentals Ohm s Law Exercise 1: Ohm s Law Circuit Resistance EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine resistance by using Ohm s law. You will verify

### Figure 1: Capacitor circuit

Capacitors INTRODUCTION The basic function of a capacitor 1 is to store charge and thereby electrical energy. This energy can be retrieved at a later time for a variety of uses. Often, multiple capacitors

### Tactics Box 23.1 Using Kirchhoff's Loop Law

PH203 Chapter 23 solutions Tactics Box 231 Using Kirchhoff's Loop Law Description: Knight/Jones/Field Tactics Box 231 Using Kirchhoff s loop law is illustrated Learning Goal: To practice Tactics Box 231

### 2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter.

PS 12b Lab 1a Fun with Circuits Lab 1a Learning Goal: familiarize students with the concepts of current, voltage, and their measurement. Warm Up: A.) Given a light bulb, a battery, and single copper wire,

### Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and

### Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and

### PC1222 Fundamentals of Physics II. Basic Circuits. Data Table 1

Name: Date: PC1222 Fundamentals of Physics II Basic Circuits 5 Laboratory Worksheet Part A: Ohm s Law and Resistances Resistance Colour Codes 1st 2nd 3rd 4th Resistance R (Ω) Current I (A) Voltage V (V)

### RESISTANCE AND NETWORKS

PURPOSE The purpose of this laboratory is to learn to construct simple circuits; and, to become familiar with the use of power supplies and the digital multimeter. to experimentally find the equivalent

### Physics 2135 Exam 2 October 20, 2015

Exam Total / 200 Physics 2135 Exam 2 October 20, 2015 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A straight wire segment

### AP Physics C. Electric Circuits III.C

AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

### Unit 2. ET Unit 2. Voltage, Current, and Resistance. Electronics Fundamentals Circuits, Devices and Applications - Floyd. Copyright 2009 Pearson

ET 115 - Unit 2 Voltage, Current, and Resistance The Bohr atom The Bohr atom is useful for visualizing atomic structure. The nucleus is positively charged and has the protons and neutrons. Electrons are

### Review of Circuit Analysis

Review of Circuit Analysis Fundamental elements Wire Resistor Voltage Source Current Source Kirchhoff s Voltage and Current Laws Resistors in Series Voltage Division EE 42 Lecture 2 1 Voltage and Current

### ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S

ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S lecture based on 2016 Pearson Education, Ltd. The Electric Battery Electric Current

### Exercise 2: The DC Ohmmeter

Exercise 2: The DC Ohmmeter EXERCISE OBJECTIVE When you have completed this exercise, you will be able to measure resistance by using a basic meter movement. You will verify ohmmeter operation by measuring

### DC Circuit Analysis + 1 R 3 = 1 R R 2

DC Circuit Analysis In analyzing circuits, it is generally the current that is of interest. You have seen how Ohm s Law can be used to analyze very simple circuits consisting of an EMF and single resistance.

### Chapter 18 Electric Currents

Chapter 18 Electric Currents 1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple

### R R V I R. Conventional Current. Ohms Law V = IR

DC Circuits opics EMF and erminal oltage esistors in Series and in Parallel Kirchhoff s ules EMFs in Series and in Parallel Capacitors in Series and in Parallel Ammeters and oltmeters Conventional Current

### Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch Lab 9. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and

### The Digital Multimeter (DMM)

The Digital Multimeter (DMM) Since Physics 152 covers electricity and magnetism, the analysis of both DC and AC circuits is required. In the lab, you will need to measure resistance, potential (voltage),

### Power lines. Why do birds sitting on a high-voltage power line survive?

Power lines At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit high V, low I or high I, low V? (a) high V, low I (b) low V, high

### Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals

Direct Current When the current in a circuit has a constant magnitude and direction, the current is called direct current Because the potential difference between the terminals of a battery is constant,

### Simple circuits - 3 hr

Simple circuits - 3 hr Resistances in circuits Analogy of water flow and electric current An electrical circuit consists of a closed loop with a number of different elements through which electric current

### Electrical Circuits Question Paper 1

Electrical Circuits Question Paper 1 Level IGCSE Subject Physics Exam Board CIE Topic Electricity and Magnetism Sub-Topic Electrical Circuits Paper Type Alternative to Practical Booklet Question Paper

### Complete all the identification fields below or 10% of the lab value will be deduced from your final mark for this lab.

Simple circuits 3 hr Identification page Instructions: Print this page and the following ones before your lab session to prepare your lab report. Staple them together with your graphs at the end. If you

### Lab #6 Ohm s Law. Please type your lab report for Lab #6 and subsequent labs.

Dr. Day, Fall 2004, Rev. 06/22/10 HEFW PH 262 Page 1 of 4 Lab #6 Ohm s Law Please type your lab report for Lab #6 and subsequent labs. Objectives: When you have completed this lab exercise you should be

### Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 21 Physics, 4 th Edition James S. Walker Chapter 21 Electric Current and Direct- Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power

### Experiment 2: Analysis and Measurement of Resistive Circuit Parameters

Experiment 2: Analysis and Measurement of Resistive Circuit Parameters Report Due In-class on Wed., Mar. 28, 2018 Pre-lab must be completed prior to lab. 1.0 PURPOSE To (i) verify Kirchhoff's laws experimentally;

### 3.14 mv ma. Objectives. Overview

Phys 3 Lab 7 Ch 0 Simple DC and RC Circuits Equipment: power supply, banana cables, circuit board, switch, 0, 70, 460, & 30, k,two multi-meters, differential voltage probe, Phys 3 experiment kits: batteries

### RC Circuits. 1. Designing a time delay circuit. Introduction. In this lab you will explore RC circuits. Introduction

Name Date Time to Complete h m Partner Course/ Section / Grade RC Circuits Introduction In this lab you will explore RC circuits. 1. Designing a time delay circuit Introduction You will begin your exploration

### Chapter 26 Direct-Current and Circuits. - Resistors in Series and Parallel - Kirchhoff s Rules - Electric Measuring Instruments - R-C Circuits

Chapter 26 Direct-Current and Circuits - esistors in Series and Parallel - Kirchhoff s ules - Electric Measuring Instruments - -C Circuits . esistors in Series and Parallel esistors in Series: V ax I V

### Lesson Plan: Electric Circuits (~130 minutes) Concepts

Lesson Plan: Electric Circuits (~130 minutes) Concepts 1. Electricity is the flow of electric charge (electrons). 2. Electric Charge is a property of subatomic particles. 3. Current is the movement of

### STEAM Clown Production. Series Circuits. STEAM Clown & Productions Copyright 2017 STEAM Clown. Page 2

Production Series Circuits Page 2 Copyright 2017 Series Parallel Circuits + + SERIES CIRCUIT PARALLEL CIRCUIT Page 3 Copyright 2017 Trick to Remember Ohm s Law V V=I*R R = V I I R I = V R Page 4 Copyright

### Chapter 28. Direct Current Circuits

Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

### Chapter 19 Lecture Notes

Chapter 19 Lecture Notes Physics 2424 - Strauss Formulas: R S = R 1 + R 2 +... C P = C 1 + C 2 +... 1/R P = 1/R 1 + 1/R 2 +... 1/C S = 1/C 1 + 1/C 2 +... q = q 0 [1-e -t/(rc) ] q = q 0 e -t/(rc τ = RC

### NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #4: Electronic Circuits I Lab Writeup Due: Mon/Wed/Thu/Fri, Feb. 12/14/15/16, 2018 Background The concepts

### PHY 156 LABORATORY MANUAL

COLLEGE OF STATEN ISLAND ENGINEERING SCIENCE & PHYSICS DEPARTMENT PHY 156 LABORATORY MANUAL CITY UNIVERSITY OF NEW YORK The Cit y Universit y of N ew York COLLEGE OF STATEN ISLAND Department of Engineering

### Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.

### Chapter 2. Chapter 2

Chapter 2 The Bohr atom The Bohr atom is useful for visualizing atomic structure. The nucleus is positively charged and has the protons and neutrons. Electrons are negatively charged and in discrete shells.

### DC Circuits Analysis

Western Technical College 10660117 DC Circuits Analysis Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 2.00 Total Hours 54.00 This course provides

### Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 Voltage-Current Measurements... 8 7.6

### Herefordshire College of Technology Center Number Student:

Herefordshire College of Technology Center Number 024150 Course: : BTEC Level 3 Subsidiary Diploma in Engineering / Diploma in Electrical/Electronic Engineering Student: Unit/s: 6 Electrical & Electronic

### Relating Voltage, Current and Resistance

Relating Voltage, Current and Resistance Using Ohm s Law in a simple circuit. A Simple Circuit Consists of:! A voltage source often a battery! A load such as a bulb! Conductors arranged to complete a circuit

### The RC Circuit INTRODUCTION. Part 1: Capacitor Discharging Through a Resistor. Part 2: The Series RC Circuit and the Oscilloscope

The RC Circuit INTRODUCTION The goal in this lab is to observe the time-varying voltages in several simple circuits involving a capacitor and resistor. In the first part, you will use very simple tools

### MasteringPhysics: Assignment Print View. Problem 30.50

Page 1 of 15 Assignment Display Mode: View Printable Answers phy260s08 homework 13 Due at 11:00pm on Wednesday, May 14, 2008 View Grading Details Problem 3050 Description: A 15-cm-long nichrome wire is

### Chapter 6 DIRECT CURRENT CIRCUITS. Recommended Problems: 6,9,11,13,14,15,16,19,20,21,24,25,26,28,29,30,31,33,37,68,71.

Chapter 6 DRECT CURRENT CRCUTS Recommended Problems: 6,9,,3,4,5,6,9,0,,4,5,6,8,9,30,3,33,37,68,7. RESSTORS N SERES AND N PARALLEL - N SERES When two resistors are connected together as shown we said that

### Lab 3: The Sum of Vectors. α B. Goals. Figure 1. Materials and Equipment. Material Not Included. Introduction. The Sum of Vectors.

Lab 3: The Sum of Vectors The Sum of Vectors Lab 3 Goals 1. To become aware that at equilibrium, the sum of balanced forces is zero 2. To graphically find the sum of vectors direction, adding vectors is

### DC circuits, Kirchhoff s Laws

DC circuits, Kirchhoff s Laws Alternating Current (AC), Direct Current (DC) DC Circuits Resistors Kirchhoff s Laws CHM6158C - Lecture 2 1 Electric current Movement of electrons in a conductor Examples

### STATEWIDE CAREER/TECHNICAL EDUCATION COURSE ARTICULATION REVIEW MINUTES

STATEWIDE CAREER/TECHNICAL EDUCATION COURSE ARTICULATION REVIEW MINUTES Articulation Agreement Identifier: _ELT 107/ELT 108 (2011-1) Plan-of-Instruction version number (e.g.; INT 100 (2007-1)). Identifier

### Prepare for this experiment!

Notes on Experiment #10 Prepare for this experiment! Read the P-Amp Tutorial before going on with this experiment. For any Ideal p Amp with negative feedback you may assume: V - = V + (But not necessarily

### M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29]

M. C. Escher: Waterfall 18/9/2015 [tsl425 1/29] Direct Current Circuit Consider a wire with resistance R = ρl/a connected to a battery. Resistor rule: In the direction of I across a resistor with resistance

### ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms

### Lab 8 Simple Electric Circuits

Lab 8 Simple Electric Circuits INTRODUCTION When we talk about the current in a river, we are referring to the flow of water. Similarly, when we refer to the electric current in a circuit, we are talking

Science Olympiad Circuit Lab Key Concepts Circuit Lab Overview Circuit Elements & Tools Basic Relationships (I, V, R, P) Resistor Network Configurations (Series & Parallel) Kirchhoff s Laws Examples Glossary

### DC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy

DC Circuits Electromotive Force esistor Circuits Connections in parallel and series Kirchoff s ules Complex circuits made easy C Circuits Charging and discharging Electromotive Force (EMF) EMF, E, is the

### Answer Key. Chapter 23. c. What is the current through each resistor?

Chapter 23. Three 2.0- resistors are connected in series to a 50.0- power source. a. What is the equivalent resistance of the circuit? R R R 2 R 3 2.0 2.0 2.0 36.0 b. What is the current in the circuit?

### Practical 1 RC Circuits

Objectives Practical 1 Circuits 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.

### ANNOUNCEMENT ANNOUNCEMENT

ANNOUNCEMENT Exam : Tuesday September 25, 208, 8 PM - 0 PM Location: Elliott Hall of Music (see seating chart) Covers all readings, lectures, homework from Chapters 2 through 23 Multiple choice (5-8 questions)

### Experiment ES Estimating a Second

Introduction: About Estimating Experiment ES Estimating a Second Before measuring and calculating comes estimation; a chance to exercise ingenuity. Often it's a matter of organizing your rough knowledge

### Exercise 1: Thermocouple Characteristics

The Thermocouple Transducer Fundamentals Exercise 1: Thermocouple Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics

### DRAFT COPY. Leicester, U.K. Experimental Competition

1 of 5 07/06/2017, 21:41 DRAFT COPY 31 st International Physics Olympiad Leicester, U.K. Experimental Competition Wednesday, July 12 th, 2000 Please read this first: 1. The time available is 2 ½ hours

### Electrical Circuits Question Paper 8

Electrical Circuits Question Paper 8 Level IGCSE Subject Physics Exam Board CIE Topic Electricity and Magnetism Sub-Topic Electrical Circuits Paper Type lternative to Practical Booklet Question Paper 8

### Physics Circuits: Series

FACULTY OF EDUCATION Department of Curriculum and Pedagogy Physics Circuits: Series Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund 2012-2013 Series

### Resistance, Ohm s Law and Kirchoff s Laws

Universiti Teknologi MR Fakulti Sains Gunaan Resistance, Ohm s Law and Kirchoff s Laws PHY631: Physical Science ctivity Name: HP: Lab#: Intro Objectives The goal of today s activity is to physically investigate

### Circuit Lab Test. School Name: Competitor Names: For this test:

Circuit Lab Test School Name: Competitor Names: For this test: Use SI units, except when specified otherwise. Make sure not to forget the units when recording your answers. Use positive numbers for voltage

### SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background

SIMPLE D.C. CICUITS AND MEASUEMENTSBackground This unit will discuss simple D.C. (direct current current in only one direction) circuits: The elements in them, the simple arrangements of these elements,

### Tutorial #4: Bias Point Analysis in Multisim

SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs

### Physics Assessment Unit A2 3B

Centre Number 71 Candidate Number ADVANCED General Certificate of Education January 2010 Physics Assessment Unit A2 3B assessing Module 6: Experimental and Investigative Skills A2Y32 [A2Y32] FRIDAY 8 JANUARY,

### Lab 10: DC RC circuits

Name: Lab 10: DC RC circuits Group Members: Date: TA s Name: Objectives: 1. To understand current and voltage characteristics of a DC RC circuit 2. To understand the effect of the RC time constant Apparatus:

### Kirchhoff s Rules and RC Circuits

PHYSICS II LAB 5 SP212 Kirchhoff s Rules and RC Circuits Pages 10 11 are Appendixes added for extra information. Pages 1 9 only are the Lab instructions. I. Introduction A. Today s Lab will investigate