Ph February, Kirchhoff's Rules Author: John Adams, I. Theory


 Chastity Karin Richard
 2 years ago
 Views:
Transcription
1 Ph February, 2006 I. Theory Kirchhoff's Rules Author: John Adams, 1996 quark%/~bland/docs/manuals/ph122/elstat/elstat.doc This experiment seeks to determine if the currents and voltage drops in a twoloop circuit obey Kirchhoff s rules. A twoloop circuit is a circuit that has two distinct paths through which current can flow. The currents and voltage drops in such a circuit containing multiple resistors and power supplies will be measured. An diagram of the twoloop circuit we will study today is shown in Figure 1 below. One can use a simple I1 I2 algebraic method to calculate the voltage drop across and the current R2 + R through each resistor. The algebraic R I method involves the application of ε Kirchhoff's two rules. loop 1  loop 2 Loop Rule: When any closed circuit loop is R traversed, the algebraic sum of 1 R4 the voltage drops around that closed loop must equal zero. Figure 1. Twoloop circuit. Junction Rule: At any junction point in a circuit where the current can divide (such as where two or more wires connect), the sum of the currents into the junction must equal the sum of the currents out of the junction. Now, we ll demonstrate how to calculate these quantities. During this laboratory experiment, however, we will experimentally measure each current and voltage drop. Your instructor will explain how to apply these rules to the circuit you will study today. For this discussion, we will only outline how to determine the current in each part of the circuit. Once we've calculated the current in each part of the circuit, calculating the voltage drops is trivial. When we analyze the circuit shown above using Kirchhoff's rules we obtain the following three equations: (a) ε 1 = V 2 + V 3 + V 1. (b) ε 2 = V 5 + V 3 + V 4. (c) I 3 = I 1 +I 2 We can rewrite equations (a) and (b) in terms of I 1 and I 2 and then solve the three equations for I 1 and I 2. Therefore upon solving we get: (1) I 2 = (1/R 3 )(ε 1 I 1 (R 1 +R 2 +R 3 )) (2) I 1 {(1/R 3 )(R 1 +R 2 +R 3 )(R 3 +R 4 +R 5 )R 3 } = ε 1 {(1/R 3 )(R 3 +R 4 +R 5 )}ε ε Kirchhoff  1
2 The first circuit you will study will contain resistors of approximately 100 Ω and power supplies, ε 1 and ε 2, set at approximately 10 V and 5 V, respectively. Substituting 100 Ω for all resistances, 10 V for ε 1, and 5 V for ε 2 into equations (1), (2), and (c) we obtain the following values: I 1 = ma I 2 = 6.25 ma I 3 = 37.5 ma We will use these values for I 1, I 2, and I 3 to benchmark our results. Important Note: In the following procedures, the initial meter s scale settings are given as a general starting place for you to begin making your measurements. You should, however, use a meter scale, according to the value being measured, so that you obtain the most accurate reading possible. For example, if you are measuring 1 ma, a fullscale setting of 4 ma gives a much more accurate measurement than a fullscale setting of 400 ma. Newer meters such as ours may autorange to the most sensitive setting possible. II. Experimental Procedure A. Verifying Kirchhoff s Rules The resistor boards should be preconnected with the 100Ω resistors as shown Figure 1. Assume the resistors on the circuit board are all exactly 100Ω. In this part you will use the values of the currents calculated above, using equations (1), (2), and (c) and assuming the resistors are exactly 100 Ω. Then you will actually measure the currents and from your measurements decide whether or not the equations you used to calculate the theoretical values are accurate. Record all measurements on the Results Sheet. 1. We will be using two power sources in this experiment. Adjust one to 10V; this is ε Adjust the other power supply to 5 V; this is ε Connect the power supplies to the circuit as shown in Figure Turn the ammeter to the "400mA" setting. Measure the current I 1 by measuring the current through resistor R 2. Record I Measure the current I 2 by measuring the current through resistor R 5. Record I Measure the current I 3 by measuring the current through resistor R 3. Record I Also measure and record the currents through resistors R 1 and R Turn the multimeter to the "V" setting. Measure the voltage drop across each resistor. Record V 1, V 2, V 3, V 4, and V Answer the questions on the Results Sheet part A. B. Detailed Measurements on a Two Loop Circuit The twoloop circuit in this part of the experiment will be constructed using approximately 75 Ω resistors (some other value may possibly be supplied). In this section, once again, you will measure the currents and voltage drops, and from your measurements you will decide if the currents and voltage drops in the twoloop circuit obey Kirchoff s rules. Also, you Kirchhoff  2
3 will determine if the labeling scheme for the currents used in your circuit diagram is consistent with the values measured during the experiment. 1. Disassemble the entire circuit from part I. You should now have a completely bare resistor board. 2. Now construct the two loop circuit shown in figure 1 using the 75 Ω resistors. Measure the resistance of each resistor as you add it to the circuit, and record on the Results Sheet. I suggest that you begin constructing the circuit at R 1. Measure the resistance of R 1 and then attach that resistor to the circuit board in the R 1 position according to the circuit diagram. 3. Connect the two power supplies to the circuit as shown in figure Turn the ammeter to the "400mA" setting. Measure the currents through the five resistors and record on the Results Sheet. 5. Turn the voltmeter to the "V" setting. Measure the voltage difference provided by each power supply and the voltage drop across each resistor. 6. Answer the questions in part B on the Results Sheet. III. Equipment protoboard five 100 Ω resistors (band coding: brown/black/brown) five 75 Ω resistors (band coding: violet/green/black) multimeter (Metex M38500) dual power supply with +5V and 015 V (HY ) wire leads: 3 short red and three short black, and one red and one black wire with banana plug on one end and minigrabber on the other. IV. Appendix: The Resistor Code One of the important components in an electric circuit is the resistor. The most common kind is made from a thin carbon film. You should have some at your table. Their resistance can vary from less than one ohm to 20 million ohms or so. Each one is marked with the value of its resistance, using the resistor color code. (See Table I.) There are four colored bands on a resistor. The first three colors represent numbers: a, b, and c. The value of the resistance in ohms is then given by the number c R = abx10 Ω Kirchhoff  3 a b c d TABLE I. RESISTOR Figure 2. A colorcoded resistor. COLOR CODE color number black 0 brown 1 red 2 orange 3 yellow 4 green 5 blue 6 violet 7 gray 8 white 9 silver 10% precision gold 5% precision
4 For example, if a=6, b=8, and c=3, R = 68 x 10 3 ohms. The fourth band indicates the precision with which the resistance is known. NOTE: you may be supplied with highprecision resistors, which have five bands, with the extra band used to give another significant figure to the resistance value. Kirchhoff  4
5 Phys 122 Name: Date: Lab Section: Results Sheet Kirchhoff s Rules A. Verifying Kirchhoff s Rules Current Through Voltage Drop R 1 V 1 = R 2 I 1 = V 2 = R 3 I 3 = V 3 = R 4 V 4 = R 5 I 2 = V 5 = 1. Compare the current through R 1 with the current through R 2 and compare the current through R 4 with the current through R 5. What do these values tell you? 2. Compare the values for I 1, I 2, and I 3 that you measured to the values that were calculated using equations (1), (2), and (c). Do the calculated values agree closely enough with the measured values to trust that equations (1), (2), and (c) are correct expressions for the currents? 3. Using your measured values, does I 3 = I 1 + I 2? Can you assert with confidence that the measured currents obey Kirchoff s Junction Rule? 4. Using your measured values, are equations (a) and (b) valid, within reason? Explain your answer. Kirchhoff  5
6 B. Detailed Measurements on a Two Loop Circuit Measured with Ohmmeter Current Voltage Drop R 1 R 1 = R 2 R 2 = R 3 R 3 = R 4 R 4 = R 5 R 5 = 1. Which of the five resistors should carry the same current and which currents, in terms of I 1, I 2, and I 3, are they? 2. How does your experimental data support your answer to 1) above? Explain your answer in detail, using the experimental values as proof for your answer. 3. Explain in detail if I 3 = I 1 + I 2 for your complete set of measured current values (at both of the nodes in the circuit). What does this mean, in terms of conservation of electric charge? 4. Discuss, using your experimental data as support for your answer, whether or not the equations (a) and (b) are satisfied, within reasonable margins. Explain your answer. 5 Why are the voltages in Part II the same as in Part I, while the currents are different? A qualitative argument will be good enough. Kirchhoff  6
Review of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance.
DC Circuits Objectives The objectives of this lab are: 1) to construct an Ohmmeter (a device that measures resistance) using our knowledge of Ohm's Law. 2) to determine an unknown resistance using our
More informationResistance, Ohm s Law and Kirchoff s Laws
Universiti Teknologi MR Fakulti Sains Gunaan Resistance, Ohm s Law and Kirchoff s Laws PHY631: Physical Science ctivity Name: HP: Lab#: Intro Objectives The goal of today s activity is to physically investigate
More informationLABORATORY 4 ELECTRIC CIRCUITS I. Objectives
LABORATORY 4 ELECTRIC CIRCUITS I Objectives to be able to discuss potential difference and current in a circuit in terms of electric field, work per unit charge and motion of charges to understand that
More informationMeasurement of Electrical Resistance and Ohm s Law
Measurement of Electrical Resistance and Ohm s Law Objectives In this experiment, measurements of the voltage across a wire coil and the current in the wire coil will be used to accomplish the following
More informationPHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).
PHYSICS 171 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (020 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that
More informationComplete all the identification fields below or 10% of the lab value will be deduced from your final mark for this lab.
Simple circuits 3 hr Identification page Instructions: Print this page and the following ones before your lab session to prepare your lab report. Staple them together with your graphs at the end. If you
More informationVoltage Dividers, Nodal, and Mesh Analysis
Engr228 Lab #2 Voltage Dividers, Nodal, and Mesh Analysis Name Partner(s) Grade /10 Introduction This lab exercise is designed to further your understanding of the use of the lab equipment and to verify
More informationIntroduction. Prelab questions: Physics 1BL KIRCHOFF S RULES Winter 2010
Introduction In this lab we will examine more complicated circuits. First, you will derive an expression for equivalent resistance using Kirchhoff s Rules. Then you will discuss the physics underlying
More informationPhysics 102 Lab 4: Circuit Algebra and Effective Resistance Dr. Timothy C. Black Spring, 2005
Physics 02 Lab 4: Circuit Algebra and Effective Resistance Dr. Timothy C. Black Spring, 2005 Theoretical Discussion The Junction Rule: Since charge is conserved, charge is neither created or destroyed
More informationEE301 RESISTANCE AND OHM S LAW
Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short
More informationExperiment 4: Resistances in Circuits
Name: Partners: Date: Experiment 4: Resistances in Circuits EQUIPMENT NEEDED: Circuits Experiment Board Multimeter Resistors Purpose The purpose of this lab is to begin experimenting with the variables
More informationLab #6 Ohm s Law. Please type your lab report for Lab #6 and subsequent labs.
Dr. Day, Fall 2004, Rev. 06/22/10 HEFW PH 262 Page 1 of 4 Lab #6 Ohm s Law Please type your lab report for Lab #6 and subsequent labs. Objectives: When you have completed this lab exercise you should be
More informationScience Olympiad Circuit Lab
Science Olympiad Circuit Lab Key Concepts Circuit Lab Overview Circuit Elements & Tools Basic Relationships (I, V, R, P) Resistor Network Configurations (Series & Parallel) Kirchhoff s Laws Examples Glossary
More informationChapter 7 DirectCurrent Circuits
Chapter 7 DirectCurrent Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 VoltageCurrent Measurements... 8 7.6
More informationEXPERIMENT 12 OHM S LAW
EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete
More informationDC Circuit Analysis + 1 R 3 = 1 R R 2
DC Circuit Analysis In analyzing circuits, it is generally the current that is of interest. You have seen how Ohm s Law can be used to analyze very simple circuits consisting of an EMF and single resistance.
More information3.14 mv ma. Objectives. Overview
Phys 3 Lab 7 Ch 0 Simple DC and RC Circuits Equipment: power supply, banana cables, circuit board, switch, 0, 70, 460, & 30, k,two multimeters, differential voltage probe, Phys 3 experiment kits: batteries
More informationPractical 1 RC Circuits
Objectives Practical 1 Circuits 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.
More informationDirect Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1
Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving
More informationPOLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems
POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this
More informationExperiment 5 Voltage Divider Rule for Series Circuits
Experiment 5 Voltage Divider Rule for Series Circuits EL  DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives:. For the student
More informationDirect Current Circuits
Name: Date: PC1143 Physics III Direct Current Circuits 5 Laboratory Worksheet Part A: SingleLoop Circuits R 1 = I 0 = V 1 = R 2 = I 1 = V 2 = R 3 = I 2 = V 3 = R 12 = I 3 = V 12 = R 23 = V 23 = R 123
More informationEXPERIMENT 9 Superconductivity & Ohm s Law
Name: Date: Course number: MAKE SURE YOUR TA OR TI STAMPS EVERY PAGE BEFORE YOU START! Lab section: Partner's name(s): Grade: EXPERIMENT 9 Superconductivity & Ohm s Law 0. PreLaboratory Work [2 pts] 1.
More informationresistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( )
DC Fundamentals Ohm s Law Exercise 1: Ohm s Law Circuit Resistance EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine resistance by using Ohm s law. You will verify
More informationChapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationLab 5 RC Circuits. What You Need To Know: Physics 212 Lab
Lab 5 R ircuits What You Need To Know: The Physics In the previous two labs you ve dealt strictly with resistors. In today s lab you ll be using a new circuit element called a capacitor. A capacitor consists
More informationOutline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.
Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in
More informationAgenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws
Resistance Resistors Series Parallel Ohm s law Electric Circuits Physics 132: Lecture e 17 Elements of Physics II Current Kirchoff s laws Agenda for Today Physics 201: Lecture 1, Pg 1 Clicker Question
More informationET 162 Circuit Analysis. Current and Voltage. Electrical and Telecommunication Engineering Technology. Professor Jang
ET 162 Circuit Analysis Current and Voltage Electrical and Telecommunication Engineering Technology Professor Jang Acknowledgement I want to express my gratitude to Prentice Hall giving me the permission
More informationLab 4. Series and Parallel Resistors
Lab 4. Series and Parallel Resistors Goals To understand the fundamental difference between resistors connected in series and in parallel. To calculate the voltages and currents in simple circuits involving
More informationSirindhorn International Institute of Technology Thammasat University at Rangsit
Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology COURSE : ECS 304 Basic Electrical Engineering Lab INSTRUCTOR
More informationMultiloop DC Circuits (Kirchhoff s Rules)
Multiloop DC Circuits (Kirchhoff s Rules) In analyzing circuits, it is generally the current that is of interest. You have seen how Ohm s Law can be used to analyze very simple circuits consisting of an
More informationMasteringPhysics: Assignment Print View. Problem 30.50
Page 1 of 15 Assignment Display Mode: View Printable Answers phy260s08 homework 13 Due at 11:00pm on Wednesday, May 14, 2008 View Grading Details Problem 3050 Description: A 15cmlong nichrome wire is
More informationM. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29]
M. C. Escher: Waterfall 18/9/2015 [tsl425 1/29] Direct Current Circuit Consider a wire with resistance R = ρl/a connected to a battery. Resistor rule: In the direction of I across a resistor with resistance
More informationElectric Current & DC Circuits
Electric Current & DC Circuits Circuits Click on the topic to go to that section Conductors Resistivity and Resistance Circuit Diagrams Measurement EMF & Terminal Voltage Kirchhoff's Rules Capacitors*
More informationPhysics 1214 Chapter 19: Current, Resistance, and DirectCurrent Circuits
Physics 1214 Chapter 19: Current, Resistance, and DirectCurrent Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When
More informationSome Important Electrical Units
Some Important Electrical Units Quantity Unit Symbol Current Charge Voltage Resistance Power Ampere Coulomb Volt Ohm Watt A C V W W These derived units are based on fundamental units from the meterkilogramsecond
More informationLab 5 RC Circuits. What You Need To Know: Physics 212 Lab
Lab 5 R ircuits What You Need To Know: The Physics In the previous two labs you ve dealt strictly with resistors. In today s lab you ll be using a new circuit element called a capacitor. A capacitor consists
More informationANNOUNCEMENT ANNOUNCEMENT
ANNOUNCEMENT Exam : Tuesday September 25, 208, 8 PM  0 PM Location: Elliott Hall of Music (see seating chart) Covers all readings, lectures, homework from Chapters 2 through 23 Multiple choice (58 questions)
More informationKirchhoff s Rules. Kirchhoff s rules are statements used to solve for currents and voltages in complicated circuits. The rules are
Kirchhoff s Rules Kirchhoff s rules are statements used to solve for currents and voltages in complicated circuits. The rules are Rule. Sum of currents into any junction is zero. i = 0 i 1 2 = 12 Why?
More informationKirchhoff's Laws and Circuit Analysis (EC 2)
Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,
More informationIn this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY.
Recall: Chemistry and the Atom! What are the 3 subatomic Where are they found in the particles? atom? What electric charges do they have? How was a positive ion created? How was a negative ion created?
More informationPower lines. Why do birds sitting on a highvoltage power line survive?
Power lines At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit high V, low I or high I, low V? (a) high V, low I (b) low V, high
More informationLab 4 Series and Parallel Resistors
Lab 4 Series and Parallel Resistors What You Need To Know: The Physics Last week you examined how the current and voltage of a resistor are related. This week you are going to examine how the current and
More informationTopic 5.2 Heating Effect of Electric Currents
Topic 5.2 Heating Effect of Electric Currents Kari Eloranta 2017 Jyväskylän Lyseon lukio International Baccalaureate February 14, 2017 Topic 5.2 Heating Effect of Electric Currents In subtopic 5.2 we study
More informationThe General Resistor Circuit Problem
The General Resistor Circuit Problem We re now ready to attack the general resistor circuit problem that may have many sources of EMF, many resistors, and many loops. Remember, the basic laws that we ll
More informationMEP 382: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis
Faculty of Engineering MEP 38: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis Outline oltage and Current Ohm s Law Kirchoff s laws esistors Series and Parallel oltage Dividers
More informationResistor. l A. Factors affecting the resistance are 1. Crosssectional area, A 2. Length, l 3. Resistivity, ρ
Chapter 2 Basic Laws. Ohm s Law 2. Branches, loops and nodes definition 3. Kirchhoff s Law 4. Series resistors circuit and voltage division. 5. Equivalent parallel circuit and current division. 6. WyeDelta
More informationECE 1311: Electric Circuits. Chapter 2: Basic laws
ECE 1311: Electric Circuits Chapter 2: Basic laws Basic Law Overview Ideal sources series and parallel Ohm s law Definitions open circuits, short circuits, conductance, nodes, branches, loops Kirchhoff's
More informationKirchhoff s Rules and RC Circuits
PHYSICS II LAB 5 SP212 Kirchhoff s Rules and RC Circuits Pages 10 11 are Appendixes added for extra information. Pages 1 9 only are the Lab instructions. I. Introduction A. Today s Lab will investigate
More informationChapter 26 & 27. Electric Current and Direct Current Circuits
Chapter 26 & 27 Electric Current and Direct Current Circuits Electric Current and Direct Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination
More informationChapter 6 DIRECT CURRENT CIRCUITS. Recommended Problems: 6,9,11,13,14,15,16,19,20,21,24,25,26,28,29,30,31,33,37,68,71.
Chapter 6 DRECT CURRENT CRCUTS Recommended Problems: 6,9,,3,4,5,6,9,0,,4,5,6,8,9,30,3,33,37,68,7. RESSTORS N SERES AND N PARALLEL  N SERES When two resistors are connected together as shown we said that
More informationThe Digital Multimeter (DMM)
The Digital Multimeter (DMM) Since Physics 152 covers electricity and magnetism, the analysis of both DC and AC circuits is required. In the lab, you will need to measure resistance, potential (voltage),
More informationClass 8. Resistivity and Resistance Circuits. Physics 106. Winter Press CTRLL to view as a slide show. Class 8. Physics 106.
and Circuits and Winter 2018 Press CTRLL to view as a slide show. Last time we learned about Capacitance Problems ParallelPlate Capacitors Capacitors in Circuits Current Ohm s Law and Today we will learn
More information4 Electric circuits. Serial and parallel resistors V 3 V 2 V Serial connection of resistors:
4 lectric circuits PHY67 Spring 006 Serial and parallel resistors Serial connection of resistors: As the current I through each of serially connected resistors is the same, one can use Ohm s law and write...
More informationSIMPLE D.C. CIRCUITS AND MEASUREMENTS Background
SIMPLE D.C. CICUITS AND MEASUEMENTSBackground This unit will discuss simple D.C. (direct current current in only one direction) circuits: The elements in them, the simple arrangements of these elements,
More informationElectricity & Magnetism
Electricity & Magnetism D.C. Circuits Marline Kurishingal Note : This chapter includes only D.C. In AS syllabus A.C is not included. Recap... Electrical Circuit Symbols : Draw and interpret circuit diagrams
More informationChapter 21 Electric Current and Direct Current Circuits
Chapter 21 Electric Current and Direct Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s
More informationLecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 21 Physics, 4 th Edition James S. Walker Chapter 21 Electric Current and Direct Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power
More informationCapacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery
Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape
More informationIntroductory Circuit Analysis
Introductory Circuit Analysis CHAPTER 6 Parallel dc Circuits OBJECTIVES Become familiar with the characteristics of a parallel network and how to solve for the voltage, current, and power to each element.
More informationEngineering Fundamentals and Problem Solving, 6e
Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive
More informationExercise 2: The DC Ohmmeter
Exercise 2: The DC Ohmmeter EXERCISE OBJECTIVE When you have completed this exercise, you will be able to measure resistance by using a basic meter movement. You will verify ohmmeter operation by measuring
More informationLab 3: The Sum of Vectors. α B. Goals. Figure 1. Materials and Equipment. Material Not Included. Introduction. The Sum of Vectors.
Lab 3: The Sum of Vectors The Sum of Vectors Lab 3 Goals 1. To become aware that at equilibrium, the sum of balanced forces is zero 2. To graphically find the sum of vectors direction, adding vectors is
More informationMan Struck By Lightning: Faces Battery Charge. Electricity
Man Struck By Lightning: Faces Battery Charge Electricity Properties of Electric Charge (Elektrisk ladning) Electric charges (q) repel or attract each other Like charges repel Opposite charges attract
More informationR R V I R. Conventional Current. Ohms Law V = IR
DC Circuits opics EMF and erminal oltage esistors in Series and in Parallel Kirchhoff s ules EMFs in Series and in Parallel Capacitors in Series and in Parallel Ammeters and oltmeters Conventional Current
More informationChapter 21 Electric Current and Direct Current Circuits
Chapter 21 Electric Current and Direct Current Circuits 1 Overview of Chapter 21 Electric Current and Resistance Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s Rules
More informationQUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below.
F 14 1250 QUIZ 1 SOLUTION EX: Find the numerical value of v 2 in the circuit below. Show all work. SOL'N: One method of solution is to use Kirchhoff's and Ohm's laws. The first step in this approach is
More informationELECTRICAL THEORY. Ideal Basic Circuit Element
ELECTRICAL THEORY PROF. SIRIPONG POTISUK ELEC 106 Ideal Basic Circuit Element Has only two terminals which are points of connection to other circuit components Can be described mathematically in terms
More informationINTRODUCTION TO ELECTRONICS
INTRODUCTION TO ELECTRONICS Basic Quantities Voltage (symbol V) is the measure of electrical potential difference. It is measured in units of Volts, abbreviated V. The example below shows several ways
More informationIntroduction to Electrical Theory and DC Circuits
Introduction to Electrical Theory and DC Circuits For Engineers of All Disciplines by James Doane, PhD, PE Contents 1.0 Course Overview... 4 2.0 Fundamental Concepts... 4 2.1 Electric Charges... 4 2.1.1
More informationAP Physics C. Electric Circuits III.C
AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the crosssectional area of the conductor changes. If a conductor has no current,
More information52 VOLTAGE, CURRENT, RESISTANCE, AND POWER
52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 1. What is voltage, and what are its units? 2. What are some other possible terms for voltage? 3. Batteries create a potential difference. The potential/voltage
More informationPhysics 1402: Lecture 10 Today s Agenda
Physics 1402: Lecture 10 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #3: On Masterphysics : due Friday at 8:00 AM Go to masteringphysics.com
More informationExperiment #6. Thevenin Equivalent Circuits and Power Transfer
Experiment #6 Thevenin Equivalent Circuits and Power Transfer Objective: In this lab you will confirm the equivalence between a complicated resistor circuit and its Thevenin equivalent. You will also learn
More informationPhysics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules
Physics 115 General Physics II Session 24 Circuits Series and parallel R Meters Kirchoff s Rules R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/15/14 Phys
More informationElectric Circuits Part 2: Kirchhoff s Rules
Electric Circuits Part 2: Kirchhoff s Rules Last modified: 31/07/2018 Contents Links Complex Circuits Applying Kirchhoff s Rules Example Circuit Labelling the currents Kirchhoff s First Rule Meaning Kirchhoff
More information1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera
CURRENT ELECTRICITY Q # 1. What do you know about electric current? Ans. Electric Current The amount of electric charge that flows through a cross section of a conductor per unit time is known as electric
More informationParallel Resistors (32.6)
Parallel Resistors (32.6) Resistors connected at both ends are called parallel resistors Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 1 Parallel Resistors (32.6)
More informationPHYS 2212L  Principles of Physics Laboratory II
PHYS 2212L  Principles of Physics Laboratory II Laboratory Advanced Sheet Resistors 1. Objectives. The objectives of this laboratory are a. to verify the linear dependence of resistance upon length of
More informationUse these circuit diagrams to answer question 1. A B C
II Circuit Basics Use these circuit diagrams to answer question 1. B C 1a. One of the four voltmeters will read 0. Put a checkmark beside it. b. One of the ammeters is improperly connected. Put a checkmark
More informationParallel Resistors (32.6)
Parallel Resistors (32.6) Resistors connected at both ends are called parallel resistors The important thing to note is that: the two left ends of the resistors are at the same potential. Also, the two
More informationLab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory
Lab 4 RC Circuits Name Partner s Name I. Introduction/Theory Consider a circuit such as that in Figure 1, in which a potential difference is applied to the series combination of a resistor and a capacitor.
More informationElectricity and Light Pre Lab Questions
Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.
More informationSTATEWIDE CAREER/TECHNICAL EDUCATION COURSE ARTICULATION REVIEW MINUTES
STATEWIDE CAREER/TECHNICAL EDUCATION COURSE ARTICULATION REVIEW MINUTES Articulation Agreement Identifier: _ELT 107/ELT 108 (20111) PlanofInstruction version number (e.g.; INT 100 (20071)). Identifier
More informationResistivity and Temperature Coefficients (at 20 C)
Homework # 4 Resistivity and Temperature Coefficients (at 0 C) Substance Resistivity, Temperature ( m) Coefficient, (C )  Conductors Silver.59 x 00.006 Copper.6 x 00.006 Aluminum.65 x 00.0049 Tungsten
More informationLaboratory 1. Introduction  Resistor Codes, Breadboard, and Basic Measurements. Learn how to construct basic electrical circuits using a breadboard.
Lab 1 Laboratory 1 Introduction  Resistor Codes, Breadboard, and Basic Measurements Required Components: 3 1k resistors 1.1 Introduction and Objectives Welcome to the world of mechatronics. Your experiences
More informationCOOKBOOK KVL AND KCL A COMPLETE GUIDE
1250 COOKBOOK KVL AND KCL A COMPLETE GUIDE Example circuit: 1) Label all source and component values with a voltage drop measurement (+, ) and a current flow measurement (arrow): By the passive sign convention,
More informationExperiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.
Experiment 4 RC Circuits 4.1 Objectives Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Graphically determine the time constant τ for the decay. 4.2
More informationExperiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell.
Experiment I: Electromotive force and internal resistance Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell. Experimental tools and materials:
More informationReview of Circuit Analysis
Review of Circuit Analysis Fundamental elements Wire Resistor Voltage Source Current Source Kirchhoff s Voltage and Current Laws Resistors in Series Voltage Division EE 42 Lecture 2 1 Voltage and Current
More informationChapter 3: Electric Current And DirectCurrent Circuits
Chapter 3: Electric Current And DirectCurrent Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field
More informationA.M. WEDNESDAY, 13 May minutes
Candidate Name Centre Number Candidate Number 0 GCSE 293/02 ELECTRONICS MODULE TEST E1 HIGHER TIER AM WEDNESDAY, 13 May 2009 45 minutes For Examiner s use Total Mark ADDITIONAL MATERIALS In addition to
More informationDownloaded from
CLASS XII MLL Questions Current Electricity Q.. The sequence of bands marked on a carbon resistor is red, red. Red silver. What is the value of resistance? Ans: 0 ±0% Q. Does the drift velocity vary with
More informationEXPERIMENT 2 Ohm s Law
İzmir University of Economics EEE 0 Fundamentals of Electrical Circuits Lab EXPERMENT Ohm s Law A. Background When a voltage over a resistor is applied, there will be a flow of electrons through the resistor,
More informationNORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I
NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #4: Electronic Circuits I Lab Writeup Due: Mon/Wed/Thu/Fri, Feb. 12/14/15/16, 2018 Background The concepts
More informationChapter 26 DirectCurrent Circuits
Chapter 26 DirectCurrent Circuits 1 Resistors in Series and Parallel In this chapter we introduce the reduction of resistor networks into an equivalent resistor R eq. We also develop a method for analyzing
More informationPhysics 102: Lecture 06 Kirchhoff s Laws
Physics 102: Lecture 06 Kirchhoff s Laws Physics 102: Lecture 6, Slide 1 Today Last Lecture Last Time Resistors in series: R eq = R 1 R 2 R 3 Current through each is same; Voltage drop is IR i Resistors
More informationPHY 156 LABORATORY MANUAL
COLLEGE OF STATEN ISLAND ENGINEERING SCIENCE & PHYSICS DEPARTMENT PHY 156 LABORATORY MANUAL CITY UNIVERSITY OF NEW YORK The Cit y Universit y of N ew York COLLEGE OF STATEN ISLAND Department of Engineering
More informationSimple circuits  3 hr
Simple circuits  3 hr Resistances in circuits Analogy of water flow and electric current An electrical circuit consists of a closed loop with a number of different elements through which electric current
More information