Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 27, 17

Size: px
Start display at page:

Download "Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 27, 17"

Transcription

1 Physics 169 Kitt Peak National Observatory Luis anchordoqui 1

2 Question teady electric current can give steady magnetic field Because of symmetry between electricity and magnetism we can ask: teady magnetic field can give steady electric current OR Changing magnetic field can give steady electric current When a magnet is moved toward a loop of wire sensitive ammeter deflects indicating that current is induced in the loop Ammeter N Ammeter (a) When magnet is held stationary there is no induced current in the loop N even when the magnet is inside the loop (b) When magnet is moved away from loop ammeter deflects in opposite direction indicating that induced current is in opposite direction Ammeter N 2

3 Answer teady electric current can give steady magnetic field Because of symmetry between electricity and magnetism we can ask: teady magnetic field can give steady electric current OR Changing magnetic field can give steady electric current When a magnet is moved toward a loop of wire sensitive ammeter deflects indicating that current is induced in the loop Ammeter N Ammeter (a) When magnet is held stationary there is no induced current in the loop N even when the magnet is inside the loop (b) When magnet is moved away from loop ammeter deflects in opposite direction indicating that induced current is in opposite direction Ammeter N 3

4 9.1 Magnetic Flux Magnetic flux through surface Unit of m Graphical m = Z Weber (Wb) 1Wb = 1Tm 2 ~B d ~ A m number of magnetic field lines passing through surface Flux through plane is zero when magnetic field is parallel to plane surface d A d A B B Flux through plane is maximum when magnetic field is perpendicular to plane 4

5 9.2 Faraday s Law Ammeter witch + Battery Primary coil econdary coil Active Figure 31.2 Faraday s experiment. When the switch in the primary circuit is closed, Faraday s the ammeter experiment in the secondary circuit deflects momentarily. The emf induced in the secondary circuit is caused by the changing magnetic field through the secondary coil. ron At the Active Figu at can open and close th and observe the curre ammeter. When switch in primary circuit is closed ammeter in secondary circuit deflects momentarily emf induced in secondary circuit is caused by changing magnetic field through secondary coil Faraday s law of induction nduced emf E = N d m dt number of coils in circuit 5

6 B = Constant B = Constant ˆB = Constant B = Constant A = Constant  = Constant db/dt = 0 A = Constant da/dt = 0 A = Constant dâ/dt = 0 E =0 E > 0 E > 0 E > 0 Note nduced emf drives a current throughout circuit similar to function of a battery Difference here is that induced emf is distributed throughout circuit consequence we cannot define a potential difference between any two points in circuit! 6

7 uppose there is an induced current in loop can we define V AB? Recall V AB = V A V B = ir > 0 ) V A >V B Going anti-clockwise (same as ) A f we start from going to then we get B f we start from going to then we get B A i V A >V B V B >V A A battery A loop ) We cannot define V AB!! This situation is like when we study interior of a battery o provides energy needed to drive charge carriers around circuit by n chemical reactions changing magnetic flux sources of emf non-electric means 7

8 9.3 Lenz s Law Flux of magnetic field due to induced current opposes change in flux that causes induced current nduced current is in such a direction as to oppose changes that produces it 3 ncorporating Lenz s law into Faraday s Law E = N d m dt f d m dt > 0, m " ) E appears ) nduced current appears ) ~B -field due to ) change in m ) m # induced current so that 8

9 Lenz s Law is consequence from principle of conservation of energy uppose bar is given slight push to right B in This motion sets up a counterclockwise current in the loop BUT R F B v What happens if we assume that current is clockwise such that direction of magnetic force exerted on bar is to the right? This force would accelerate the rod and increase its velocity This (in turn) would cause area enclosed by loop to increase more rapidly this would result in increase in induced current which would cause increase in force which would produce increase in current... and so on... R ystem would acquire energy with no input of energy v F This is clearly inconsistent with all experience and violates law of energy conservation B We are forced to conclude that current must be counterclockwise 9

10 F B v R (b) Likewise if bar is push to the left 10

11 produces v opposes the change F B in the external magnetic flux. etic flux due to an external field directed into the page is increascurrent, if it is to oppose this change, must produce a field e page. Hence, the induced current must be directed countere bar moves to the right. (Use the right-hand rule to verify this When magnet is moved toward stationary conducting loop bar is moving to (b) the left, as in Figure current 31.13b, is induced the external in the direction magthe area enclosed by the loop decreases with time. Because the shown into the page, the direction of the induced current must v be produce a field that also is directed into the page. n either case, nt tends to maintain the original flux through the area enclosed N. this situation using energy considerations. uppose that the bar is to the right. n the preceding analysis, we found that this motion lockwise current Magnetic in field the loop. lines What shown happens are those if due we assume to bar magnet that the This induced current produces its own magnetic field directed to the left (a) that counteracts the increasing external flux N Example (b) v N N Example v N (a) Magnetic field lines shown are those due to induced current in ring (b) (c) 11 (d)

12 When magnet is moved away from stationary conducting loop N Example current is induced in direction shown v N (b) Magnetic field lines shown are those due to (c) bar magnet This induced current produces Figure magnetic field directed (a) When to the the magnet right is moved toward the stationar loop, a current and is induced so counteracts in the direction decreasing shown. external The magnetic flux fie are those due to the bar magnet. (b) This induced current produce magnetic field directed to the left that counteracts the increasing e magnetic field lines shown are those due to the induced current in (c) When the magnet is moved away from the stationary conductin is induced in the direction shown. The magnetic field lines shown a N the bar magnet. (d) This induced current produces a magnetic fiel right and so counteracts the decreasing external flux. The magneti shown are those due to the induced current in the ring. Field lines shown are those due to induced current in ring (d) 12 (d)

13 Question 13

14 Answer 14

15 9.4 Motional EMF traight conductor of length is moving through uniform ~B -field directed into the page L Assume conductor is moving with constant under influence of some external agent ~v? ~ B Electrons in conductor experience force FB ~ = q~v B ~ L ~v B ~ directed along the length perpendicular to both and Under influence of this force electrons move to lower end of conductor and accumulate there leaving net positive charge at upper end Because of this charge separation electric field ~E is produced inside conductor Charges accumulate at both ends until downward magnetic force qvb on charges remaining in conductor is balanced by the upward electric force qe 15

16 At this point electrons move only with random thermal motion Equilibrium requires that ~F E + ~ F B =0 ) q ~ E + q~v ~ B =0 ) ~ E = ~v ~ B Voltage across ends of conductor V = Z L 0 ~E d~s V = EL ) Voltage V = vbl Potential difference is maintained between ends of conductor as long as the conductor continues to move through the uniform magnetic field 16

17 uppose moving wire slides without friction on stationary Motional emf can drive electric current in -shape conductor i U U -shape conductor ) Power is dissipated in circuit ) P out = Vi Joule s heating What is source of this power? Look at the forces acting on conducting rod: Magnetic force ~F m = i ~ L ~ B F m = ilb (pointing left) For wire to continue to move at constant velocity we need to apply an external force ~F ext = F ~ m = ilb (pointing right) 17

18 ) Power required to keep rod moving P in = ~ F ext ~v = iblv = ibl dx dt = ib d(xl) dt = i d(ba) dt xl = A BA = ince energy is not being stored in system ) P in + P out =0 iv + i d m dt We recover Faraday s Law ( area enclosed by circuit) ( magnetic flux) =0 m ) V = d m dt 18

19 Generators and Motors Assume circuit loop is rotating at constant angular velocity (ource of rotation steam produced by burner or water falling from dam)! Magnetic flux through loop B = N Z loop changes with time! =!t number of coils ~B d ~ A = NBAcos nduced emf E = nduced current d B dt = NBA d dt i = E R = NBA! R sin!t (cos!t) = NBA!sin!t 19

20 Alternating current (AC) voltage generator ε ε max t Power has to be provided by source of rotation to overcome torque z} { agram of an AC generator. An emf is induced ~ = Ni A ~ B ~ in (b) The alternating emf induced in the loop ) = NiAB sin acting on a current loop in a magnetic field (b) ~µ At the Act at can adjust the rotation and t field to see th emf generated Net effect of torque is to oppose rotation of coil 20

21 Electric motor is a generator operating in reverse Replace load resistance R with a battery of emf E ) With battery there is a current in coil and it experiencestorque in B-field E ) Rotation of coil leads to an induced emf E ind in direction opposite that of battery Lenz s law ) i = E E ind R ) As motor speeds up E ind ", ) i # P electric = i 2 R + P mechanical Electric power input Mechanical power delivered 21

22 9.5 nduced Electric Field We have seen that a changing magnetic flux induces an emf and a current in a conducting loop n the same way we can relate induced current in conducting loop to an electric field by claiming that electric field is created in conductor as a result of the changing magnetic flux 22

23 nduced electric field is nonconservative unlike electrostatic field produced by stationary charges We can illustrate this point by considering conducting loop of radius r situated in uniform magnetic field that is perpendicular to plane of loop f magnetic field changes with time according to Faraday s law emf E = d B /dt induced in loop E E r nduction of current in loop implies presence of induced electric field which must be tangent to the loop E E B in Because electric force acting on charge work done by electric field in moving charge once around loop because this is direction in which charges in the wire move Figure A conducting loop in response to electric force ~E Work done by -field in moving test charge once around loop These two expressions for work done must be equal ~E q = q ~ E = qe = qe2 r 23

24 ) we see that qe = qe2 r E = E E2 r 1 = 2 r = r db 2 dt d B n general emf for any closed path can be expressed as line integral E = ~E d~s ~E d~s = d dt dt nduced electric field is a nonconservative field that is generated by a changing magnetic field 24

25 ) Faraday s Law becomes C ~E ind d~s = d dt Z ~B d ~ A Direction of d ~ A L.H. = ntegral around a closed loop C R.H. = ntegral over a surface bounded by C determined by direction of line integration C (Right-Hand Rule) 25

26 UMMARY Regular -field nduced ~E -field ~E created by charges created by changing B-field ~E -field lines start from E ~ -field lines form closed loops +q and end on q charge can define electric potential so that we can discuss potential difference between two points Conservative force field Electric potential cannot be defined (or, potential has no meaning) Non-conservative force field Classification of electric and magnetic effects depend on frame of reference of observer!!! e.g. For motional emf observer in reference frame of moving loop ~E will NOT see an induced -field but just a regular -field To be continued next semester in pecial Relativity same bat-time, same bat-channel 26 ~E

27 27

28 28

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law PHYSICS 1444-001 Fall 2012 Lecture 15 Electromagnetic Induction and Faraday s Law A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday Induced emf A primary

More information

Faraday s Law. Faraday s Law of Induction Motional emf. Lenz s Law. Motors and Generators. Eddy Currents

Faraday s Law. Faraday s Law of Induction Motional emf. Lenz s Law. Motors and Generators. Eddy Currents Faraday s Law Faraday s Law of Induction Motional emf Motors and Generators Lenz s Law Eddy Currents Induced EMF A current flows through the loop when a magnet is moved near it, without any batteries!

More information

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

More information

Chapter 9 FARADAY'S LAW Recommended Problems:

Chapter 9 FARADAY'S LAW Recommended Problems: Chapter 9 FARADAY'S LAW Recommended Problems: 5,7,9,10,11,13,15,17,20,21,28,29,31,32,33,34,49,50,52,58,63,64. Faraday's Law of Induction We learned that e. current produces magnetic field. Now we want

More information

PHYSICS 1B. Today s lecture: Motional emf. and. Lenz s Law. Electricity & Magnetism

PHYSICS 1B. Today s lecture: Motional emf. and. Lenz s Law. Electricity & Magnetism PHYSICS 1B Today s lecture: Motional emf and Lenz s Law Electricity & Magnetism PHYSICS 1B Faraday s Law Applications of Faraday s Law - GFCI A GFCI is a Ground Fault Circuit Interrupter. It is designed

More information

CHAPTER 29: ELECTROMAGNETIC INDUCTION

CHAPTER 29: ELECTROMAGNETIC INDUCTION CHAPTER 29: ELECTROMAGNETIC INDUCTION So far we have seen that electric charges are the source for both electric and magnetic fields. We have also seen that these fields can exert forces on other electric

More information

Faraday's Law ds B B G G ΦB B ds Φ ε = d B dt

Faraday's Law ds B B G G ΦB B ds Φ ε = d B dt Faraday's Law ds ds ε= d Φ dt Φ Global Review Electrostatics» motion of q in external E-field» E-field generated by Σq i Magnetostatics» motion of q and i in external -field» -field generated by I Electrodynamics»

More information

General Physics II. Electromagnetic Induction and Electromagnetic Waves

General Physics II. Electromagnetic Induction and Electromagnetic Waves General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field

More information

Chapter 22. Induction

Chapter 22. Induction Chapter 22 Induction Induced emf A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday A primary coil is connected to a battery A secondary coil is connected

More information

Induction and Inductance

Induction and Inductance Welcome Back to Physics 1308 Induction and Inductance Michael Faraday 22 September 1791 25 August 1867 Announcements Assignments for Tuesday, November 6th: - Reading: Chapter 30.6-30.8 - Watch Videos:

More information

LECTURE 17. Reminder Magnetic Flux

LECTURE 17. Reminder Magnetic Flux LECTURE 17 Motional EMF Eddy Currents Self Inductance Reminder Magnetic Flux Faraday s Law ε = dφ B Flux through one loop Φ B = BAcosθ da Flux through N loops Φ B = NBAcosθ 1 Reminder How to Change Magnetic

More information

Sliding Conducting Bar

Sliding Conducting Bar Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction Recall: right hand rule 2 10/28/2013 Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical

More information

PHYS 202 Notes, Week 6

PHYS 202 Notes, Week 6 PHYS 202 Notes, Week 6 Greg Christian February 23 & 25, 2016 Last updated: 02/25/2016 at 12:36:40 This week we learn about electromagnetic induction. Magnetic Induction This section deals with magnetic

More information

Michael Faraday. Chapter 31. EMF Produced by a Changing Magnetic Field, 1. Induction. Faraday s Law

Michael Faraday. Chapter 31. EMF Produced by a Changing Magnetic Field, 1. Induction. Faraday s Law Michael Faraday Chapter 31 Faraday s Law Great experimental physicist and chemist 1791 1867 Contributions to early electricity include: Invention of motor, generator, and transformer Electromagnetic induction

More information

Electromagnetic Induction (Chapters 31-32)

Electromagnetic Induction (Chapters 31-32) Electromagnetic Induction (Chapters 31-3) The laws of emf induction: Faraday s and Lenz s laws Inductance Mutual inductance M Self inductance L. Inductors Magnetic field energy Simple inductive circuits

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 16 Chapter 28 sec. 1-3 Fall 2017 Semester Professor Koltick Magnetic Flux We define magnetic flux in the same way we defined electric flux: φ e = n E da φ m =

More information

Chapter 21 Magnetic Induction Lecture 12

Chapter 21 Magnetic Induction Lecture 12 Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and Work-Energy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy

More information

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 30 Lecture RANDALL D. KNIGHT Chapter 30 Electromagnetic Induction IN THIS CHAPTER, you will learn what electromagnetic induction is

More information

Demo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor

Demo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor Topics Chapter 22 Electromagnetic Induction EMF Induced in a Moving Conductor Magnetic Flux EMF Induced in a Moving Conductor Demo: Solenoid and Magnet v 1 EMF Induced in a Moving Conductor q Work done

More information

Chapter 5: Electromagnetic Induction

Chapter 5: Electromagnetic Induction Chapter 5: Electromagnetic Induction 5.1 Magnetic Flux 5.1.1 Define and use magnetic flux Magnetic flux is defined as the scalar product between the magnetic flux density, B with the vector of the area,

More information

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law 1 Magnetic Flux and Faraday s Law of Electromagnetic Induction We

More information

Slide 1 / 50. Electromagnetic Induction and Faraday s Law

Slide 1 / 50. Electromagnetic Induction and Faraday s Law Slide 1 / 50 Electromagnetic Induction and Faraday s Law Slide 2 / 50 Electromagnetic Induction and Faraday s Law Induced EMF Faraday s Law of Induction Lenz s Law EMF Induced in a Moving Conductor Changing

More information

PHY122 Physics for the Life Sciences II

PHY122 Physics for the Life Sciences II PHY122 Physics for the Life Sciences II Lecture 12 Faraday s Law of Induction Clicker Channel 41 03/12/2015 Lecture 12 1 03/12/2015 Magnetic Materials Like dielectric materials in electric fields, materials

More information

(a) zero. B 2 l 2. (c) (b)

(a) zero. B 2 l 2. (c) (b) 1. Two identical co-axial circular loops carry equal currents circulating in the same direction: (a) The current in each coil decrease as the coils approach each other. (b) The current in each coil increase

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Electromagnetic Induction 2017-07-14 www.njctl.org Table of Contents: Electromagnetic Induction Click on the topic to go to that section. Induced EMF Magnetic Flux and Gauss's Law

More information

Agenda for Today. Elements of Physics II. Forces on currents

Agenda for Today. Elements of Physics II. Forces on currents Forces on currents Physics 132: Lecture e 14 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create B-fields Adding magnetic fields

More information

Lenz s Law (Section 22.5)

Lenz s Law (Section 22.5) Lenz s Law (Section 22.5) : Thursday, 25 of February 7:00 9:00 pm Rooms: Last Name Room (Armes) Seats A - F 201 122 G - R 200 221 S - Z 205 128 2016-02-21 Phys 1030 General Physics II (Gericke) 1 1) Charging

More information

Magnetism is associated with charges in motion (currents):

Magnetism is associated with charges in motion (currents): Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an

More information

Slide 1 / 50. Slide 2 / 50. Slide 3 / 50. Electromagnetic Induction and Faraday s Law. Electromagnetic Induction and Faraday s Law.

Slide 1 / 50. Slide 2 / 50. Slide 3 / 50. Electromagnetic Induction and Faraday s Law. Electromagnetic Induction and Faraday s Law. Electromagnetic Induction and Faraday s Law Slide 1 / 50 Electromagnetic Induction and Faraday s Law Slide 2 / 50 Induced EMF Faraday s Law of Induction Lenz s Law EMF Induced in a Moving Conductor Changing

More information

Electrics. Electromagnetism

Electrics. Electromagnetism Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an

More information

Physics / Higher Physics 1A. Electricity and Magnetism Revision

Physics / Higher Physics 1A. Electricity and Magnetism Revision Physics / Higher Physics 1A Electricity and Magnetism Revision Electric Charges Two kinds of electric charges Called positive and negative Like charges repel Unlike charges attract Coulomb s Law In vector

More information

Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1

Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1 Chapter 20: Electromagnetic Induction PHY2054: Chapter 20 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators and

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators

More information

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Physics 54 Lecture March 1, 2012 OUTLINE Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic

More information

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s)

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s) PHYS 2015 -- Week 12 Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves Reading Journals for Tuesday from table(s) WebAssign due Friday night For exclusive use in PHYS

More information

Motional EMF. Toward Faraday's Law. Phys 122 Lecture 21

Motional EMF. Toward Faraday's Law. Phys 122 Lecture 21 Motional EMF Toward Faraday's Law Phys 122 Lecture 21 Move a conductor in a magnetic field Conducting rail 1. ar moves 2. EMF produced 3. Current flows 4. ulb glows The ig Idea is the induced emf When

More information

Last time. Ampere's Law Faraday s law

Last time. Ampere's Law Faraday s law Last time Ampere's Law Faraday s law 1 Faraday s Law of Induction (More Quantitative) The magnitude of the induced EMF in conducting loop is equal to the rate at which the magnetic flux through the surface

More information

Electromagnetics in Medical Physics

Electromagnetics in Medical Physics Electromagnetics in Medical Physics Part 4. Biomagnetism Tong In Oh Department of Biomedical Engineering Impedance Imaging Research Center (IIRC) Kyung Hee University Korea tioh@khu.ac.kr Dot Product (Scalar

More information

Recap (1) Maxwell s Equations describe the electric field E and magnetic field B generated by stationary charge density ρ and current density J:

Recap (1) Maxwell s Equations describe the electric field E and magnetic field B generated by stationary charge density ρ and current density J: Class 13 : Induction Phenomenon of induction and Faraday s Law How does a generator and transformer work? Self- and mutual inductance Energy stored in B-field Recap (1) Maxwell s Equations describe the

More information

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other.

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other. Exam II Solutions Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. 1.! Concerning electric and magnetic fields, which of the following is wrong?!! A

More information

FARADAY S AND LENZ LAW B O O K P G

FARADAY S AND LENZ LAW B O O K P G FARADAY S AND LENZ LAW B O O K P G. 4 3 6-438 MOTIONAL EMF AND MAGNETIC FLUX (DERIVIATION) Motional emf = vbl Let a conducting rod being moved through a magnetic field B During time t 0 the rod has been

More information

Problem Fig

Problem Fig Problem 9.53 A flexible circular loop 6.50 cm in diameter lies in a magnetic field with magnitude 0.950 T, directed into the plane of the page, as shown. The loop is pulled at the points indicated by the

More information

PHY 1214 General Physics II

PHY 1214 General Physics II PHY 1214 General Physics II Lecture 19 Induced EMF and Motional EMF July 5-6, 2005 Weldon J. Wilson Professor of Physics & Engineering Howell Hall 221H wwilson@ucok.edu Lecture Schedule (Weeks 4-6) We

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) Right-Hand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the

More information

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II Physics Course Materials 2015 16. Faraday's Law Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Induction Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 25! Last week we learned that a current-carrying loop in a magnetic field experiences a torque! If we start with a loop with

More information

Chapter 30. Induction and Inductance

Chapter 30. Induction and Inductance Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears

More information

Electromagnetic Induction and Faraday s Law

Electromagnetic Induction and Faraday s Law Electromagnetic Induction and Faraday s Law Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: He found no evidence

More information

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned Magnetic Fields Magnets Domain = small magnetized region of a magnetic material all the atoms are grouped together and aligned Magnets Ferromagnetic materials domains can be forced to line up by applying

More information

PHYSICS - GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION.

PHYSICS - GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A coil of wire with a VOLTAGE across each end will have a current in it - Wire doesn t HAVE to have voltage source, voltage can be INDUCED i V Common

More information

Physics 182. Assignment 4

Physics 182. Assignment 4 Physics 182 Assignment 4 1. A dipole (electric or magnetic) in a non-uniform field will in general experience a net force. The electric case was the subject of a problem on the midterm exam; here we examine

More information

AP Physics 2 Electromagnetic Induction Multiple Choice

AP Physics 2 Electromagnetic Induction Multiple Choice Slide 1 / 50 AP Physics 2 Electromagnetic Induction Multiple Choice www.njctl.org Slide 2 / 50 1 A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the

More information

Can a Magnetic Field Produce a Current?

Can a Magnetic Field Produce a Current? Can a Magnetic Field Produce a Current? In our study of magnetism we learned that an electric current through a wire, or moving electrically charged objects, produces a magnetic field. Could the reverse

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter

More information

Motional EMF & Lenz law

Motional EMF & Lenz law Phys 102 Lecture 13 Motional EMF & Lenz law 1 Physics 102 recently Basic principles of magnetism Lecture 10 magnetic fields & forces Lecture 11 magnetic dipoles & current loops Lecture 12 currents & magneticfields

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on

More information

Lecture 30: WED 04 NOV

Lecture 30: WED 04 NOV Physics 2113 Jonathan Dowling Lecture 30: WED 04 NOV Induction and Inductance II Fender Stratocaster Solenoid Pickup F a r a d a y ' s E x p e r i m e n t s I n a s e r i e s o f e x p e r i m e n t s,

More information

Can a Magnetic Field Produce a Current?

Can a Magnetic Field Produce a Current? Can a Magnetic Field Produce a Current? In our study of magnetism we learned that an electric current through a wire, or moving electrically charged objects, produces a magnetic field. Could the reverse

More information

Lecture 13.1 :! Electromagnetic Induction Continued

Lecture 13.1 :! Electromagnetic Induction Continued Lecture 13.1 :! Electromagnetic Induction Continued Lecture Outline:! Faraday s Law! Induced Fields! Applications! Textbook Reading:! Ch. 33.5-33.7 April 7, 2015 1 Announcements! Homework #10 due on Tuesday,

More information

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION English Michael Faraday (1791 1867) who experimented with electric and magnetic phenomena discovered that a changing magnetic

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive

More information

Magnetic flux. where θ is the angle between the magnetic field and the area vector. The unit of magnetic flux is the weber. 1 Wb = 1 T m 2.

Magnetic flux. where θ is the angle between the magnetic field and the area vector. The unit of magnetic flux is the weber. 1 Wb = 1 T m 2. Magnetic flux Magnetic flux is a measure of the number of magnetic field lines passing through something, such as a loop. If we define the area of the loop as a vector, with its direction perpendicular

More information

Electromagnetic Induction Practice Problems Homework PSI AP Physics B

Electromagnetic Induction Practice Problems Homework PSI AP Physics B Electromagnetic Induction Practice Problems Homework PSI AP Physics B Name Multiple Choice Questions 1. A square loop of wire is placed in a uniform magnetic field perpendicular to the magnetic lines.

More information

Electricity & Magnetism

Electricity & Magnetism Ch 31 Faraday s Law Electricity & Magnetism Up to this point, we ve seen electric fields produced by electric charges... E =... and magnetic fields produced by moving charges... k dq E da = q in r 2 B

More information

Chapter 12. Magnetism and Electromagnetism

Chapter 12. Magnetism and Electromagnetism Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

More information

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions 1. A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the coils do not carry a current,

More information

Chapters 34,36: Electromagnetic Induction. PHY2061: Chapter

Chapters 34,36: Electromagnetic Induction. PHY2061: Chapter Chapters 34,36: Electromagnetic Induction PHY2061: Chapter 34-35 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators

More information

Induced Electric Field

Induced Electric Field Lecture 18 Chapter 33 Physics II Induced Electric Field Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Applications of Faraday s Law (some leftovers from the previous class) Applications

More information

PH 1120: Summary Homework 4 Solutions

PH 1120: Summary Homework 4 Solutions PH 112: Summary Homework Solutions Term B8 1.(a) The path of the ion is a semicircle curving to the right from the point of entry, and terminating at the point X on the plate. (b) From the right hand rule,

More information

Dr. Fritz Wilhelm page 1 of 13 C:\physics\230 lecture\ch31 Faradays law.docx; 5/3/2009

Dr. Fritz Wilhelm page 1 of 13 C:\physics\230 lecture\ch31 Faradays law.docx; 5/3/2009 Dr. Fritz Wilhelm page 1 of 13 C:\physics\3 lecture\ch31 Faradays law.docx; 5/3/9 Homework: See website. Table of Contents: 31.1 Faraday s Law of Induction, 31. Motional emf and Power, 4 31.a Transformation

More information

Faraday s Law; Inductance

Faraday s Law; Inductance This test covers Faraday s Law of induction, motional emf, Lenz s law, induced emf and electric fields, eddy currents, self-inductance, inductance, RL circuits, and energy in a magnetic field, with some

More information

Chapter 23: Magnetic Flux and Faraday s Law of Induction

Chapter 23: Magnetic Flux and Faraday s Law of Induction Chapter 3: Magnetic Flux and Faraday s Law of Induction Answers Conceptual Questions 6. Nothing. In this case, the break prevents a current from circulating around the ring. This, in turn, prevents the

More information

Chapter 21 Lecture Notes

Chapter 21 Lecture Notes Chapter 21 Lecture Notes Physics 2424 - Strauss Formulas: Φ = BA cosφ E = -N Φ/ t Faraday s Law E = Bvl E = NABω sinωt M = (N 2 Φ 2 )/I 1 E 2 = -M I 1 / t L = NΦ/I E = -L I/ t L = µ 0 n 2 A l Energy =

More information

Electromagnetic Induction

Electromagnetic Induction lectromagnetic Induction Induced MF We already know that moving charge (=current) causes magnetic field It also works the other way around: changing magnetic field (e.g. moving permanent magnet) causes

More information

ECE 341 Test 2, Spring 2019 Your Name Tue 4/16/2019

ECE 341 Test 2, Spring 2019 Your Name Tue 4/16/2019 Problem 1. Electrostatics One surface of an infinitely large ideal conductor plate is at the plane x = 0 of the Cartesian coordinate system, with the x-y plane being the plane of the paper and the z axis

More information

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A Physics in Session 2: I n Physics / Higher Physics 1B (PHYS1221/1231) n Science, dvanced Science n Engineering: Electrical, Photovoltaic,Telecom n Double Degree: Science/Engineering n 6 UOC n Waves n Physical

More information

ElectroMagnetic Induction

ElectroMagnetic Induction ElectroMagnetic Induction Physics 1 What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday first

More information

Chapter 5. Electromagnetic Induction

Chapter 5. Electromagnetic Induction Chapter 5 Electromagnetic Induction Overview In the last chapter, we studied how a current produces a magnetic field. Here we will study the reverse effect: A magnetic field can produce an electric field

More information

a) head-on view b) side view c) side view Use the right hand rule for forces to confirm the direction of the force in each case.

a) head-on view b) side view c) side view Use the right hand rule for forces to confirm the direction of the force in each case. Electromagnetism Magnetic Force on a Wire Magnetic Field around a Bar Magnet Direction of magnetic field lines: the direction that the North pole of a small test compass would point if placed in the field

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 11-1 ELECTROMAGNETIC INDUCTION Essential Idea: The majority of electricity generated throughout the world is generated by machines that

More information

AP Physics C Unit 11: Electromagnetic Induction. Part 1 - Faraday s Law and Lenz s Law

AP Physics C Unit 11: Electromagnetic Induction. Part 1 - Faraday s Law and Lenz s Law AP Physics C Unit 11: Electromagnetic Induction Part 1 - Faraday s Law and Lenz s Law What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle

More information

Electromagnetism IB 12

Electromagnetism IB 12 Electromagnetism Magnetic Field around a Bar Magnet Direction of magnetic field lines: the direction that the North pole of a small test compass would point if placed in the field (N to S) What is the

More information

10 Chapter. Faraday s Law of Induction

10 Chapter. Faraday s Law of Induction 10 Chapter Faraday s Law of Induction 10.1 Faraday s Law of Induction... 10-3 10.1.1 Magnetic Flux... 10-5 10.2 Motional EMF... 10-6 10.3 Faraday s Law (see also Faraday s Law Simulation in Section 10.13)...

More information

Induced Electric Field

Induced Electric Field Lecture 18 Chapter 30 Physics II Induced Electric Field Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 30: Section 30.5, 30.6 Section 30.7

More information

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-04: FARADAY'S EXPERIMENT - EME SET - 20, 40, 80 TURN COILS K2-62: CAN SMASHER - ELECTROMAGNETIC K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-44: EDDY CURRENT PENDULUM K4-06: MAGNETOELECTRIC GENERATOR

More information

Induction and Inductance

Induction and Inductance Induction and Inductance Key Contents Faraday s law: induced emf Induction and energy transfer Inductors and inductance RL circuits Magnetic energy density The First Experiment 1. A current appears only

More information

Faraday s Law of Electromagnetic Induction

Faraday s Law of Electromagnetic Induction Faraday s Law of Electromagnetic Induction 2.1 Represent and reason The rectangular loop with a resistor is pulled at constant velocity through a uniform external magnetic field that points into the paper

More information

CHAPTER 7 ELECTRODYNAMICS

CHAPTER 7 ELECTRODYNAMICS CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,

More information

PHYS 1442 Section 004 Lecture #14

PHYS 1442 Section 004 Lecture #14 PHYS 144 Section 004 Lecture #14 Wednesday March 5, 014 Dr. Chapter 1 Induced emf Faraday s Law Lenz Law Generator 3/5/014 1 Announcements After class pickup test if you didn t Spring break Mar 10-14 HW7

More information

Faraday s Law. Lecture 17. Chapter 33. Physics II. Course website:

Faraday s Law. Lecture 17. Chapter 33. Physics II. Course website: Lecture 17 Chapter 33 Physics II Faraday s Law Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html Electromagnetic

More information

Physics 152. = N d dt = N. Specifically, Lenz s Law. states: More Faraday. Motional EMF. Announcements. Monday, April 23, 2007

Physics 152. = N d dt = N. Specifically, Lenz s Law. states: More Faraday. Motional EMF. Announcements. Monday, April 23, 2007 ics Mon pr.23. nnouncements More araday Lenzs Law Motional EM Monday, pril 23, 2007 Help sessions W 9-10 pm in C 119 Masteringics WU #22 due ri., pril 27 Hwk #5 due ri., May 4 o class on Wednesday http://www.voltnet.com/ladder/

More information

Electromagnetic Induction and Waves (Chapters 33-34)

Electromagnetic Induction and Waves (Chapters 33-34) Electromagnetic nduction and Waves (Chapters 33-34) The laws of emf induction: Faraday s and Lenz s laws Concepts of classical electromagnetism. Maxwell equations nductance Mutual inductance M Self inductance

More information

iclicker Quiz a) True b) False

iclicker Quiz a) True b) False iclicker Quiz (1) I have completed at least 50% of the reading and studyguide assignments associated with the lecture, as indicated on the course schedule. a) True b) False Note on Monday is fee late day

More information

Lecture 10 Induction and Inductance Ch. 30

Lecture 10 Induction and Inductance Ch. 30 Lecture 10 Induction and Inductance Ch. 30 Cartoon - Faraday Induction Opening Demo - Thrust bar magnet through coil and measure the current Topics Faraday s Law Lenz s Law Motional Emf Eddy Currents LR

More information

\SB ~ --J decreasing

\SB ~ --J decreasing Faraday's Law 203 *Q31.13 (i) Answer (b). The battery makes counterclockwise current 1, in the primary coil, so its magnetic field El is to the right and increasing just after the switch is closed. The

More information