Michael Faraday. Chapter 31. EMF Produced by a Changing Magnetic Field, 1. Induction. Faraday s Law


 Shon Grant
 6 years ago
 Views:
Transcription
1 Michael Faraday Chapter 31 Faraday s Law Great experimental physicist and chemist Contributions to early electricity include: Invention of motor, generator, and transformer Electromagnetic induction Electrolysis: A method of separating bonded elements and compounds by passing an electric current through them Induction An induced current is produced by a changing magnetic field There is an induced emf associated with the induced current A current can be produced without a battery present in the circuit Faraday s law of induction describes the induced emf EMF Produced by a Changing Magnetic Field, 1 A loop of wire is connected to a sensitive ammeter When a magnet is moved toward the loop, the ammeter deflects 1
2 EMF Produced by a Changing Magnetic Field, 2 When the magnet is held stationary, there is no deflection of the ammeter Therefore, there is no induced current Even though the magnet is in the loop EMF Produced by a Changing Magnetic Field, 3 The magnet is moved away from the loop The ammeter deflects in the opposite direction Faraday s Law Statements Faraday s law of induction states that the emf induced in a circuit is directly proportional to the time rate of change of the magnetic flux through the circuit Mathematically, dφ e = B Faraday s Law Statements, cont Remember Φ B is the magnetic flux through the circuit and is found by Φ B = B d A If the circuit consists of N loops, all of the same area, and if Φ B is the flux through one loop, an emf is induced in every loop and Faraday s law becomes dφb e= N 2
3 Faraday s Law Example Assume a loop enclosing an area A lies in a uniform magnetic field B The magnetic flux through the loop is Φ B = BA cos θ The induced emf is ε =  d/(ba cos θ) Ways of Inducing an emf The magnitude of B can change with time The area enclosed by the loop can change with time The angle θ between B and the normal to the loop can change with time Any combination of the above can occur Lenz s Law Faraday s law indicates that the induced emf and the change in flux have opposite algebraic signs This has a physical interpretation that has come to be known as Lenz s law Developed by German physicist Heinrich Lenz Lenz s Law, cont. Lenz s law: the induced current in a loop is in the direction that creates a magnetic field that opposes the change in magnetic flux through the area enclosed by the loop The induced current tends to keep the original magnetic flux through the circuit from changing 3
4 Problem 1 A wire loop is moving to the right as shown in the figure. What is the direction of the induced magnetic field and current as the loop passes through an external magnetic field pointing inward. How can we calculate the induced emf? B(induced) is +k. I (induced) is counterclockwise. Problem 2 A 30 turn circular coil of radius 0.040m and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = t t 2, where t is in seconds and B is in Tesla. Calculate the induced emf in the coil at t = 5.00 s. [61.8 mv] Applications of Faraday s Law Electric Generator Generators An electric conductor, like a copper wire, is moved through a magnetic field, which causes an electric current to flow (be induced) in the conductor Electric generators take in energy by work and transfer it out by electrical transmission The AC generator consists of a loop of wire rotated by some external means in a magnetic field 4
5 Applications of Faraday s Law Pickup Coil Applications of Faraday s Law Transformers The coil is placed near the vibrating string and causes a portion of the string to become magnetized When the string vibrates at the same frequency, the magnetized segment produces a changing flux through the coil The induced emf is fed to an amplifier An alternating current in one winding creates a timevarying magnetic flux in the core, which induces a voltage in the other windings Is this a stepup or a stepdown transformer? Yamanashi maglev The magnetized coil running along the track, called a guideway, repels the large magnets on the train's undercarriage, allowing the train to levitate between 0.39 and 3.93 inches (1 to 10 cm) above the guideway. Induced emf and Electric Fields An electric field is created in the conductor as a result of the changing magnetic flux Even in the absence of a conducting loop, a changing magnetic field will generate an electric field in empty space This induced electric field is nonconservative Unlike the electric field produced by stationary charges 5
6 Induced emf and Electric Fields, cont. The emf for any closed path can be expressed as the line integral of E. ds over the path Faraday s law can be written in a general form: dφ E.ds = B s Maxwell s Equations q E.dA = ε 0 Gauss s Law in Electricity B.dA = 0 Gauss s Law in Magnetism s dφ B E.ds = Faraday s Law dφe B.dl = µ 0I + µ 0ε 0 AmpereMaxwell Law Maxwell s Equations, Details q Gauss s law (electrical): E.dA = The total electric flux through any closed surface equals the net charge inside that surface divided by ε o This relates an electric field to the charge distribution that creates it s ε 0 Maxwell s Equations, Details 2 Gauss s law (magnetism): B.dA = 0 The total magnetic flux through s any closed surface is zero This says the number of field lines that enter a closed volume must equal the number that leave that volume This implies the magnetic field lines cannot begin or end at any point Isolated magnetic monopoles have not been observed in nature 6
7 Maxwell s Equations, Details 3 dφb Faraday s law of Induction: E.ds = This describes the creation of an electric field by a changing magnetic flux The law states that the emf, which is the line integral of the electric field around any closed path, equals the rate of change of the magnetic flux through any surface bounded by that path One consequence is the current induced in a conducting loop placed in a timevarying B Maxwell s Equations, Details 4 The AmpereMaxwell law is a generalization of Ampere s law B dφe. ds = µ 0I + µ 0e0 It describes the creation of a magnetic field by an electric field and electric currents The line integral of the magnetic field around any closed path is the given sum The Lorentz Force Law Once the electric and magnetic fields are known at some point in space, the force acting on a particle of charge q can be calculated F = qe + qv x B This relationship is called the Lorentz force law Maxwell s equations, together with this force law, completely describe all classical electromagnetic interactions Maxwell s Equations, Symmetry The two Gauss s laws are symmetrical, apart from the absence of the term for magnetic monopoles in Gauss s law for magnetism Faraday s law and the AmpereMaxwell law are symmetrical in that the line integrals of E and B around a closed path are related to the rate of change of the respective fluxes Maxwell s equations are of fundamental importance to all of science 7
Sliding Conducting Bar
Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field
More informationPHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law
PHYSICS 1444001 Fall 2012 Lecture 15 Electromagnetic Induction and Faraday s Law A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday Induced emf A primary
More informationPhysics 202 Chapter 31 Oct 23, Faraday s Law. Faraday s Law
Physics 202 Chapter 31 Oct 23, 2007 Faraday s Law Faraday s Law The final step to ignite the industrial use of electromagnetism on a large scale. Light, toasters, cars, TVs, telephones, ipods, industrial
More informationPHYSICS 1B. Today s lecture: Motional emf. and. Lenz s Law. Electricity & Magnetism
PHYSICS 1B Today s lecture: Motional emf and Lenz s Law Electricity & Magnetism PHYSICS 1B Faraday s Law Applications of Faraday s Law  GFCI A GFCI is a Ground Fault Circuit Interrupter. It is designed
More informationChapter 31. Faraday s Law
Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive
More informationChapter 31. Faraday s Law
Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter
More informationElectricity & Magnetism
Ch 31 Faraday s Law Electricity & Magnetism Up to this point, we ve seen electric fields produced by electric charges... E =... and magnetic fields produced by moving charges... k dq E da = q in r 2 B
More informationChapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law
Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law 1 Magnetic Flux and Faraday s Law of Electromagnetic Induction We
More informationDisplacement Current. Ampere s law in the original form is valid only if any electric fields present are constant in time
Displacement Current Ampere s law in the original form is valid only if any electric fields present are constant in time Maxwell modified the law to include timesaving electric fields Maxwell added an
More informationElectrics. Electromagnetism
Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an
More informationPhysics 54 Lecture March 1, Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields
Physics 54 Lecture March 1, 2012 OUTLINE Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic
More informationPHY 1214 General Physics II
PHY 1214 General Physics II Lecture 20 Magnetic Flux and Faraday s Law July 67, 2005 Weldon J. Wilson Professor of Physics & Engineering Howell Hall 221H wwilson@ucok.edu Lecture Schedule (Weeks 46)
More informationSlide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger
Slide 1 / 24 Electromagnetic Induction 2011 by Bryan Pflueger Slide 2 / 24 Induced Currents If we have a galvanometer attached to a coil of wire we can induce a current simply by changing the magnetic
More informationVersion The diagram below represents lines of magnetic flux within a region of space.
1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field
More informationLecture 30: WED 04 NOV
Physics 2113 Jonathan Dowling Lecture 30: WED 04 NOV Induction and Inductance II Fender Stratocaster Solenoid Pickup F a r a d a y ' s E x p e r i m e n t s I n a s e r i e s o f e x p e r i m e n t s,
More informationFaraday s Law. Faraday s Law of Induction Motional emf. Lenz s Law. Motors and Generators. Eddy Currents
Faraday s Law Faraday s Law of Induction Motional emf Motors and Generators Lenz s Law Eddy Currents Induced EMF A current flows through the loop when a magnet is moved near it, without any batteries!
More informationMagnetism is associated with charges in motion (currents):
Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an
More informationiclicker Quiz a) True b) False
iclicker Quiz (1) I have completed at least 50% of the reading and studyguide assignments associated with the lecture, as indicated on the course schedule. a) True b) False Note on Monday is fee late day
More informationr r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.
MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and
More informationHomework 6 solutions PHYS 212 Dr. Amir
Homework 6 solutions PHYS 1 Dr. Amir Chapter 8 18. (II) A rectangular loop of wire is placed next to a straight wire, as shown in Fig. 8 7. There is a current of.5 A in both wires. Determine the magnitude
More informationCHAPTER 29: ELECTROMAGNETIC INDUCTION
CHAPTER 29: ELECTROMAGNETIC INDUCTION So far we have seen that electric charges are the source for both electric and magnetic fields. We have also seen that these fields can exert forces on other electric
More informationInduction and Inductance
Induction and Inductance Key Contents Faraday s law: induced emf Induction and energy transfer Inductors and inductance RL circuits Magnetic energy density The First Experiment 1. A current appears only
More informationElectricity & Optics
Physics 24100 Electricity & Optics Lecture 16 Chapter 28 sec. 13 Fall 2017 Semester Professor Koltick Magnetic Flux We define magnetic flux in the same way we defined electric flux: φ e = n E da φ m =
More informationIntroduction. First Experiment
Course : Bsc Applied Physical Science(Computer Science) IInd Year (Semester IV) Paper no : 14 Paper title : Electromagnetic Theory Lecture No : 14 Tittle : Faraday s Law of Induction Introduction Hello
More informationChapter 30. Induction and Inductance
Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears
More informationMagnetic inductance & Solenoids. P.Ravindran, PHY041: Electricity & Magnetism 22 February 2013: Magnetic inductance, and Solenoid
Magnetic inductance & Solenoids Changing Magnetic Flux A changing magnetic flux in a wire loop induces an electric current. The induced current is always in a direction that opposes the change in flux.
More informationChapter 22. Induction
Chapter 22 Induction Induced emf A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday A primary coil is connected to a battery A secondary coil is connected
More informationPhysics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 27, 17
Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 Question teady electric current can give steady magnetic field Because of symmetry between electricity and magnetism we can ask: teady magnetic
More informationFARADAY S AND LENZ LAW B O O K P G
FARADAY S AND LENZ LAW B O O K P G. 4 3 6438 MOTIONAL EMF AND MAGNETIC FLUX (DERIVIATION) Motional emf = vbl Let a conducting rod being moved through a magnetic field B During time t 0 the rod has been
More informationMaxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law
Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar
More informationPart 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is
1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field
More informationPhysics / Higher Physics 1A. Electricity and Magnetism Revision
Physics / Higher Physics 1A Electricity and Magnetism Revision Electric Charges Two kinds of electric charges Called positive and negative Like charges repel Unlike charges attract Coulomb s Law In vector
More informationElectroMagnetic Induction
ElectroMagnetic Induction Physics 1 What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday first
More informationElectromagnetic Induction! March 11, 2014 Chapter 29 1
Electromagnetic Induction! March 11, 2014 Chapter 29 1 Notes! Exam 4 next Tuesday Covers Chapters 27, 28, 29 in the book Magnetism, Magnetic Fields, Electromagnetic Induction Material from the week before
More informationMotional Electromotive Force
Motional Electromotive Force The charges inside the moving conductive rod feel the Lorentz force The charges drift toward the point a of the rod The accumulating excess charges at point a create an electric
More informationGeneral Physics II. Electromagnetic Induction and Electromagnetic Waves
General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field
More informationFaraday's Law ds B B G G ΦB B ds Φ ε = d B dt
Faraday's Law ds ds ε= d Φ dt Φ Global Review Electrostatics» motion of q in external Efield» Efield generated by Σq i Magnetostatics» motion of q and i in external field» field generated by I Electrodynamics»
More informationElectromagnetic Induction
Electromagnetic Induction Name Section Theory Electromagnetic induction employs the concept magnetic flux. Consider a conducting loop of area A in a magnetic field with magnitude B. The flux Φ is proportional
More informationCourse Updates. 2) Assignment #9 posted by Friday (due Mar 29)
Course Updates http://www.phys.hawaii.edu/~varner/phys272spr10/physics272.html Reminders: 1) Assignment #8 due now 2) Assignment #9 posted by Friday (due Mar 29) 3) Chapter 29 this week (start Inductance)
More informationCh 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120V source. What current does the toaster carry, and what is its resistance?
Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120V source. What current does the toaster carry, and what is its resistance? 33. How many 100W lightbulbs can you use in a 120V
More informationMagnetism. and its applications
Magnetism and its applications Laws of Magnetism 1) Like magnetic poles repel, and 2) unlike poles attract. Magnetic Direction and Strength Law 3  Magnetic force, either attractive or repelling varies
More informationIntroduction to Electromagnetism
Introduction to Electromagnetism Electric Field Lines If a charge feels an electrostatic force (Coulombic Force), it is said to be in an electric field. We like to represent electric fields with lines.
More informationUnit 8: Electromagnetism
Multiple Choice Portion Unit 8: Electromagnetism 1. Four compasses are placed around a conductor carrying a current into the page, as shown below. Which compass correctly shows the direction of the magnetic
More informationElectromagnetic Induction
Chapter 29 Electromagnetic Induction PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 29 Looking forward
More informationLECTURE 23 INDUCED EMF. Instructor: Kazumi Tolich
LECTURE 23 INDUCED EMF Instructor: Kazumi Tolich Lecture 23 2 Reading chapter 23.1 to 23.4. Induced emf Magnetic flux Faraday s law Lenz s law Quiz: 1 3 Consider the circuits shown. Which of the following
More informationInduction and inductance
PH C Fall 01 Induction and inductance Lecture 15 Chapter 30 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th etion) 1 Chapter 30 Induction and Inductance In this chapter we will study the following
More informationChapter 9 FARADAY'S LAW Recommended Problems:
Chapter 9 FARADAY'S LAW Recommended Problems: 5,7,9,10,11,13,15,17,20,21,28,29,31,32,33,34,49,50,52,58,63,64. Faraday's Law of Induction We learned that e. current produces magnetic field. Now we want
More informationChapter 30. Induction and Inductance
Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears
More informationPS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions
PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions 1. A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the coils do not carry a current,
More informationPHYSICS  GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION.
!! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A coil of wire with a VOLTAGE across each end will have a current in it  Wire doesn t HAVE to have voltage source, voltage can be INDUCED i V Common
More informationProblem Fig
Problem 9.53 A flexible circular loop 6.50 cm in diameter lies in a magnetic field with magnitude 0.950 T, directed into the plane of the page, as shown. The loop is pulled at the points indicated by the
More informationElectromagnetic Induction. Bo Zhou Faculty of Science, Hokudai
Electromagnetic Induction Bo Zhou Faculty of Science, Hokudai Oersted's law Oersted s discovery in 1820 that there was a close connection between electricity and magnetism was very exciting until then,
More informationPhysics 2B: Review for Celebration #2. Chapter 22: Current and Resistance
Physics 2: eview for Celebration #2 Chapter 22: Current and esistance Current: q Current: I [I] amps (A) 1 A 1 C/s t Current flows because a potential difference across a conductor creates an electric
More informationDemo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor
Topics Chapter 22 Electromagnetic Induction EMF Induced in a Moving Conductor Magnetic Flux EMF Induced in a Moving Conductor Demo: Solenoid and Magnet v 1 EMF Induced in a Moving Conductor q Work done
More informationAP Physics C  E & M
AP Physics C  E & M Electromagnetic Induction 20170714 www.njctl.org Table of Contents: Electromagnetic Induction Click on the topic to go to that section. Induced EMF Magnetic Flux and Gauss's Law
More informationCh. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies
Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf  Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When
More information1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields.
1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 2. An isolated moving point charge produces around it.
More informationPHYS102 Previous Exam Problems. Induction
PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with
More informationn Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A
Physics in Session 2: I n Physics / Higher Physics 1B (PHYS1221/1231) n Science, dvanced Science n Engineering: Electrical, Photovoltaic,Telecom n Double Degree: Science/Engineering n 6 UOC n Waves n Physical
More informationChapter 5. Electromagnetic Induction
Chapter 5 Electromagnetic Induction Overview In the last chapter, we studied how a current produces a magnetic field. Here we will study the reverse effect: A magnetic field can produce an electric field
More informationElectromagnetic Field Theory Chapter 9: Timevarying EM Fields
Electromagnetic Field Theory Chapter 9: Timevarying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric
More informationCOLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES
COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Induced emf: Faraday s Law and Lenz s Law We observe that, when a magnet is moved near a conducting loop,
More informationQuestions A hair dryer is rated as 1200 W, 120 V. Its effective internal resistance is (A) 0.1 Ω (B) 10 Ω (C) 12Ω (D) 120 Ω (E) 1440 Ω
Questions 441 36. Three 1/ µf capacitors are connected in series as shown in the diagram above. The capacitance of the combination is (A).1 µf (B) 1 µf (C) /3 µf (D) ½ µf (E) 1/6 µf 37. A hair dryer is
More informationMagnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics
Magnetostatics Magnetic Fields We saw last lecture that some substances, particularly iron, possess a property we call magnetism that exerts forces on other magnetic materials We also saw that t single
More informationELECTROMAGNETIC INDUCTION AND FARADAY S LAW
ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic
More informationLecture 33. PHYC 161 Fall 2016
Lecture 33 PHYC 161 Fall 2016 Faraday s law of induction When the magnetic flux through a single closed loop changes with time, there is an induced emf that can drive a current around the loop: Recall
More informationPHYS 241 EXAM #2 November 9, 2006
1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages
More informationTactics: Evaluating line integrals
Tactics: Evaluating line integrals Ampère s law Whenever total current I through passes through an area bounded by a closed curve, the line integral of the magnetic field around the curve is given by Ampère
More informationAP Physics Electromagnetic Wrap Up
AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle
More informationChapter 21 Magnetic Induction Lecture 12
Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and WorkEnergy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy
More informationAgenda for Today. Elements of Physics II. Lenz Law. Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop
Lenz Law Physics 132: Lecture e 22 Elements of Physics II Agenda for Today Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop Physics 201: Lecture 1, Pg 1 Lenz s Law Physics 201:
More informationMagnetic flux. where θ is the angle between the magnetic field and the area vector. The unit of magnetic flux is the weber. 1 Wb = 1 T m 2.
Magnetic flux Magnetic flux is a measure of the number of magnetic field lines passing through something, such as a loop. If we define the area of the loop as a vector, with its direction perpendicular
More informationCalculus Relationships in AP Physics C: Electricity and Magnetism
C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the
More informationLecture 35. PHYC 161 Fall 2016
Lecture 35 PHYC 161 Fall 2016 Induced electric fields A long, thin solenoid is encircled by a circular conducting loop. Electric field in the loop is what must drive the current. When the solenoid current
More informationChapter 12. Magnetism and Electromagnetism
Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the
More informationPhysics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1
Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Magnetic flux What is a magnetic flux? This is very similar to the concept of an electric flux through an area
More informationPhysics 4. Magnetic Induction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Physics 4 Magnetic Induction Before we can talk about induction we need to understand magnetic flux. You can think of flux as the number of field lines passing through an area. Here is the formula: flux
More informationDr. Fritz Wilhelm page 1 of 13 C:\physics\230 lecture\ch31 Faradays law.docx; 5/3/2009
Dr. Fritz Wilhelm page 1 of 13 C:\physics\3 lecture\ch31 Faradays law.docx; 5/3/9 Homework: See website. Table of Contents: 31.1 Faraday s Law of Induction, 31. Motional emf and Power, 4 31.a Transformation
More informationFXA 2008 Φ = BA. Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux :
1 Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux : Φ = BAcosθ MAGNETIC FLUX (Φ) As we have already stated, a magnetic field is
More informationAP Physics 2 Electromagnetic Induction Multiple Choice
Slide 1 / 50 AP Physics 2 Electromagnetic Induction Multiple Choice www.njctl.org Slide 2 / 50 1 A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the
More informationInformation for Physics 1201 Midterm I Wednesday, February 20
My lecture slides are posted at http://www.physics.ohiostate.edu/~humanic/ Information for Physics 1201 Midterm I Wednesday, February 20 1) Format: 10 multiple choice questions (each worth 5 points) and
More informationPhysics 212 Question Bank III 2010
A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic
More informationChapter 31 HW. Due Tuesday Nov 18 th Turn in Thursday, Nov 20 th, Exam Day
Chapter 31 HW 4/5, 8/9, 15/13, 17/18, 2224/2022, 28, 37, 43, 49/50, 57/60 Due Tuesday Nov 18 th Turn in Thursday, Nov 20 th, Exam Day Print out and use NEW equation sheet for the Exam! Practice Exam
More informationPhysics 132: Lecture 15 Elements of Physics II Agenda for Today
Physics 132: Lecture 15 Elements of Physics II Agenda for Today Lenz Law Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop Physics 132: Lecture 15, Pg 1 Lenz s Law Physics 132:
More informationMagnetic field and magnetic poles
Magnetic field and magnetic poles Magnetic Field B is analogically similar to Electric Field E Electric charges (+ and )are in analogy to magnetic poles(north:n and South:S). Paramagnetism, Diamagnetism,
More informationLecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field
Lecture 1101 Sound Waves Review Physics Help Q&A: tutor.leiacademy.org Force on a Charge Moving in a Magnetic Field A charge moving in a magnetic field can have a magnetic force exerted by the Bfield.
More informationRevision Guide for Chapter 15
Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on
More informationFaraday s Law. Underpinning of Much Technology
Module 21: Faraday s Law 1 Faraday s Law Fourth (Final) Maxwell s Equation Underpinning of Much Technology 2 Demonstration: Falling Magnet 3 Magnet Falling Through a Ring Link to movie Falling magnet slows
More informationElectromagnetic Induction
Chapter 29 Electromagnetic Induction PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 8_4_2008 Topics for Chapter
More informationLast time. Gauss' Law: Examples (Ampere's Law)
Last time Gauss' Law: Examples (Ampere's Law) 1 Ampere s Law in Magnetostatics iotsavart s Law can be used to derive another relation: Ampere s Law The path integral of the dot product of magnetic field
More informationLecture 10 Induction and Inductance Ch. 30
Lecture 10 Induction and Inductance Ch. 30 Cartoon  Faraday Induction Opening Demo  Thrust bar magnet through coil and measure the current Topics Faraday s Law Lenz s Law Motional Emf Eddy Currents LR
More information21 MAGNETIC FORCES AND MAGNETIC FIELDS
CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) RightHand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the
More informationPhysics 1402: Lecture 18 Today s Agenda
Physics 1402: Lecture 18 Today s Agenda Announcements: Midterm 1 distributed available Homework 05 due Friday Magnetism Calculation of Magnetic Field Two ways to calculate the Magnetic Field: iotsavart
More informationLast Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15,
Chapter 33. Electromagnetic Induction Electromagnetic induction is the scientific principle that underlies many modern technologies, from the generation of electricity to communications and data storage.
More informationSlide 1 / 50. Electromagnetic Induction and Faraday s Law
Slide 1 / 50 Electromagnetic Induction and Faraday s Law Slide 2 / 50 Electromagnetic Induction and Faraday s Law Induced EMF Faraday s Law of Induction Lenz s Law EMF Induced in a Moving Conductor Changing
More informationMagnetic Fields; Sources of Magnetic Field
This test covers magnetic fields, magnetic forces on charged particles and currentcarrying wires, the Hall effect, the BiotSavart Law, Ampère s Law, and the magnetic fields of currentcarrying loops
More informationSlide 1 / 50. Slide 2 / 50. Slide 3 / 50. Electromagnetic Induction and Faraday s Law. Electromagnetic Induction and Faraday s Law.
Electromagnetic Induction and Faraday s Law Slide 1 / 50 Electromagnetic Induction and Faraday s Law Slide 2 / 50 Induced EMF Faraday s Law of Induction Lenz s Law EMF Induced in a Moving Conductor Changing
More informationOutside the solenoid, the field lines are spread apart, and at any given distance from the axis, the field is weak.
Applications of Ampere s Law continued. 2. Field of a solenoid. A solenoid can have many (thousands) of turns, and perhaps many layers of windings. The figure shows a simple solenoid with just a few windings
More informationApplication Of Faraday s Law
Application Of Faraday s Law Dr Miguel Cavero September 2, 2014 Application Of Faraday s Law September 2, 2014 1 / 23 The PHYS120 Exam will be divided into three sections as follows: Section A: Short Questions
More informationMagnetic Induction. VIII. Magnetic Induction. 1. Dynamo Rule. A. Dynamos & Generators. B. Faraday s Law. C. Inductance. A. Dynamos & Generators
Magnetic Induction VIII. Magnetic Induction A. Dynamos & Generators Dr. Bill Pezzaglia B. Faraday s Law C. Inductance Updated 03Aug5 Michael Faraday (79867) 3 A. Dynamos & Generators 4 8 Creates first
More information