Synchronization of regular automata

Size: px
Start display at page:

Download "Synchronization of regular automata"

Transcription

1 Synhrniztin f rgulr utmt Diir Cul IM CNRS Univrsité Pris-Est ul@univ-mlv.fr strt. Funtinl grph grmmrs r finit vis whih gnrt th lss f rgulr utmt. W rll th ntin f synhrniztin y grmmrs, n fr ny givn grmmr w nsir th lss f lngugs rgniz y utmt gnrt y ll its synhrniz grmmrs. Th synhrniztin is n utmtn-rlt ntin: ll grmmrs gnrting th sm utmtn synhrniz th sm lngugs. Whn th synhrnizing utmtn is unmiguus, th lss f its synhrniz lngugs frms n fftiv ln lgr lying twn th lsss f rgulr lngugs n unmiguus ntxt-fr lngugs. W itinlly prvi suffiint nitins fr suh lsss t ls unr ntntin n its itrtin. Intrutin n utmtn vr sm lpht n simply sn s finit r untl st f lll rs tgthr with tw sts f initil n finl vrtis. Suh n utmtn rgnizs th lngug f ll wrs llling n pting pth, i.. pth ling frm n initil t finl vrtx. It is wll-knwn tht finit utmt rgniz th rgulr lngugs. By pplying si nstrutins t finit utmt, w tin th ni lsur prprtis f rgulr lngugs, nmly thir lsur unr ln prtins, ntntin n its itrtin. Fr instn th synhrniztin prut n th trminiztin f finit utmt rsptivly yil th lsur f rgulr lngugs unr intrstin n unr mplmnt. This i n xtn t mr gnrl lsss f utmt. In this ppr, w will intrst in th lss f rgulr utmt, whih rgniz ntxtfr lngugs n r fin s th (gnrlly infinit) utmt gnrt y funtinl grph grmmrs [C 07]. Rgulr utmt f finit gr r ls prisly ths utmt whih n finitly mps y istn, s wll s th rgulr rstritins f trnsitin grphs f pushwn utmt [MS 85], [C 07]. Evn thugh th lss f ntxt-fr lngugs s nt njy th sm lsur prprtis s rgulr lngugs, n n fin sulsss f ntxt-fr lngugs whih, using th ntin f synhrniztin. Th ntin f synhrniztin ws first fin twn grmmrs [CH 08]. grmmr S is synhrniz y grmmr R if fr ny pting pth µ f (th grph gnrt y) S, thr xists n pting pth λ f R with th sm ll u suh tht λ n µ r synhrniz: fr vry prfix v f u, th prfixs

2 f λ n µ lll y v l t vrtis f th sm lvl (whr th lvl f vrtx is th miniml numr f rwriting stps nssry fr th grmmr t pru it). lngug is synhrniz y grmmr R if it is rgniz y n utmtn gnrt y grmmr synhrniz y R. funmntl rsult is tht tw grmmrs gnrting th sm utmtn yil th sm lss f synhrniz lngugs [C 08]. This wy, th ntin f synhrniztin n trnsfrr t th lvl f utmt: fr rgulr utmtn, th fmily Syn() is th st f lngugs synhrniz y ny grmmr gnrting. By xtning th v-mntin nstrutins frm finit utmt t grmmrs, n n stlish svrl lsur prprtis f ths fmilis f synhrniz lngugs. Th sum f tw grmmrs n th synhrniztin prut f grmmr with finit utmtn rsptivly ntil th lsur f Syn() unr unin n unr intrstin with rgulr lngug fr ny rgulr utmtn. Th (lvl prsrving) synhrniztin prut f tw grmmrs yils th lsur unr intrstin f Syn() whn is unmiguus i.. whn ny tw pting pths f hv istint lls. Nrmlizing f grmmr int grmmr nly ntining rs n thn th (lvl prsrving) trminiztin yils, fr ny unmiguus utmtn, th lsur f Syn() unr mplmnt rltiv t L(). This nrmliztin ls llws us t xprss Syn() in th s f n infinit gr utmtn, y prfrming th - lsur f Syn(H) fr sm finit gr utmtn H using n xtr ll. finl usful nrmliztin nly llws th prsn f initil n finl vrtis t lvl 0. It yils suffiint nitins fr th lsur f lsss f synhrniz lngugs unr ntntin n its itrtin. In Stin, w rll th finitin f rgulr utmt. In th nxt stin, w summriz knwn rsults n th synhrniztin f rgulr utmt [C 06], [NS 07], [CH 08], [C 08]. In th lst stin, w prsnt simplr nstrutin fr th lsur unr mplmnt f Syn() fr unmiguus [C 08] n prsnt nw rsults, spilly suffiint nitins fr th lsur f Syn() unr ntntin n its itrtin. Rgulr utmt n utmtn is lll rint simpl grph with input n utput vrtis. It rgnizs th st f wrs llling th pths frm n input t n utput. Finit utmt r utmt hving finit numr f vrtis, thy rgniz th lss f rgulr lngugs. Rgulr utmt r th utmt gnrt y funtinl grph grmmrs, thy rgniz th lss f ntxt-fr lngugs. ky rsult, riginlly u t Mullr n Shupp, intifis th rgulr utmt f finit gr with th utmt finitly gnrt y istn. n utmtn vr n lpht (finit st f symls) T f trminls is just st f rs lll vr T ( simpl lll rint grph) with initil n finl vrtis. W us tw symls n t mrk rsptivly th initil n finl vrtis. Mr prisly n utmtn is fin y T V V {, } V

3 whr V is n ritrry st suh tht th fllwing st f vrtis V = { s V (, s) (, s) T t V (, s, t) (, t, s) } is finit r untl. ny tripl (, s, t) is n r lll y frm sur s t gl t it is intifi with th lll trnsitin s t r irtly s t if is unrst. ny pir (, s) is lur vrtx s y {, } ls writtn s. vrtx is initil (rsp. finl) if it is lur y (rsp. ) i.. s (rsp. s ). n xmpl f n utmtn is givn y = { n n + n 0 } { n x n n > 0 } { n y n n > 0 } { x n+ x n n > 0 } { y n+ y n n > 0 } {0, y} { x n n > 0 } { y n+ n 0 } n is rprsnt (up t ismrphism) lw. Figur. n utmtn. n utmtn is thus simpl vrtx- n r-lll grph. hs finit gr if fr ny vrtx s, th st { t (s t t s) } f its jnt vrtis is finit. Rll tht (s 0,, s,..., n, s n ) fr n 0 n s 0 s... s n n s n is pth frm s 0 t s n lll y u =... n u u w writ s 0 = s n r irtly s 0 = s n if is unrst. n pting pth is pth frm n initil vrtx t finl vrtx. n utmtn is unmiguus if tw pting pths hv istint lls. Th utmtn f Figur. is unmiguus. Th lngug rgniz y n utmtn is th st L() f ll lls f its pting pths: L() = { u T s, t (s = u t s, t ) }. Nt tht ε L() if thr xists vrtx s whih is initil n finl: s, s. Th utmtn f Figur. rgnizs th lngug L() = { m n 0 < n m } { n n n > 0 } { n n 0 }. Th lngugs rgniz y finit utmt r th rgulr lngugs vr T. W gnrliz finit utmt t rgulr utmt using funtinl grph grmmrs. T fin grph grmmr, w n t xtn n r (rsp. grph) t hyprr (rsp. hyprgrph). lthugh suh n xtnsin is nturl, this my xplin why funtinl grph grmmrs r nt vry wispr t th mmnt. But w will s in th lst stin tht fr ur purps, w n rstrit t grmmrs using nly rs. Lt F st f symls rnk y mpping : F IN ssiting t h f F its rity (f) 0 suh tht F n = { f F (f) = n } is untl fr vry n 0 with T F n, F. hyprgrph is sust f n 0 F n V n whr V is n ritrry st. ny

4 tupl (f, s,..., s (f) ), ls writtn fs...s (f), is hyprr f ll f n f sussiv vrtis s,..., s (f). W th nitin tht th st f vrtis V is finit r untl, n th st f lls F is finit. n r is hyprr fst lll y f F n is ls nt y s f t. Fr n, hyprr fs...s n is pit s n rrw lll f n sussivly linking s,..., s n. Fr n = n n = 0, it is rsptivly pit s ll f (ll lur) n vrtx s n s n islt ll f ll nstnt. This is illustrt in th nxt figurs. Fr instn th fllwing hyprgrph: = {4, 5, 5, 5 3, 6 3, 4, 6, 456} with, F n F 3, is rprsnt lw Figur. finit hyprgrph. (lur) grph is hyprgrph whs lls r nly f rity r : F F F. n utmtn vr th lpht T is grph with st f lls F T {, }. W n nw intru funtinl grph grmmrs t gnrt rgulr utmt. grph grmmr R is finit st f ruls f th frm fx...x (f) H whr fx...x (f) is hyprr f ll f ll nn-trminl jining pirwis istint vrtis x... x (f) n H is finit hyprgrph. W nt y N R th st f nn-trminls f R i.. th lls f th lft hn sis, y T R = { f F N R H Im(R), f F H } th trminls f R i.. th lls f R whih r nt nn-trminls, n y F R = N R T R th lls f R. W us grmmrs t gnrt utmt hn in th fllwing, w my ssum tht T R T {, }. W rstrit ny hyprgrph H t th utmtn [H] f its trminl rs n lur vrtis: [H] = H (T V H V H {, } V H ). Similrly t ntxt-fr grmmrs (n wrs), grph grmmr hs n xim: n initil finit hyprgrph. T init this xim, w ssum tht ny grmmr R hs nstnt nn-trminl N R F 0 whih is nt ll f ny right hn si th xim f R is th right hn si H f th rul f : H F K fr ny K Im(R). Strting frm th xim, w wnt R t gnrt uniqu utmtn up t ismrphism. S w finlly ssum tht ny grmmr R is funtinl mning tht thr is nly n rul pr nn-trminl: if (X, H), (Y, K) R with X() = Y () thn (X, H) = (Y, K). Fr ny rul fx...x (f) H, w sy tht x,..., x (f) r th inputs f f, n V H [H] is th st f utputs f f. T wrk with ths grmmrs, it is simplr t ssum tht ny grmmr R is trminl-utsi [C 07]: ny trminl r r lur in right hn si links t

5 t lst n nn input vrtx: H (T V X V X {, } V X ) = fr ny rul (X, H) R. In prtiulr n input is nt initil n nt finl. W will us uppr-s lttrs, B, C,... fr nn-trminls n lwr-s lttrs,,... fr trminls. Hr is n xmpl f (funtinl grph) grmmr R : B B 3 Figur.3 (funtinl grph) grmmr. Fr th prvius grmmr R, w hv N R = {,, B} with th xim n () = (B) = 3, T R = {,,, } n,, 3 r th inputs f n B. ivn grmmr R, th rwriting rltin is th inry rltin twn R hyprgrphs fin s fllws: M rwrits int N, writtn M R N, if w n hs nn-trminl hyprr X = s...s p in M n rul x...x p H in R suh tht N n tin y rpling X y H in M: N = (M X) h(h) fr sm funtin h mpping h x i t s i, n th thr vrtis f H injtivly t vrtis utsi f M this rwriting is nt y M R, X f hyprr X is xtn in n vius wy t th rwriting R, E f nn-trminl hyprrs. Th mplt prlll rwriting = R rwriting ring t th st f ll nn-trminl hyprrs: M= R N. Th rwriting R, X f ny st E is simultnus N if M N whr E is th st f ll nn-trminl hyprrs f M. W pit lw th first thr stps f th prlll rivtin f th prvius grmmr frm its nstnt nn-trminl : = = B = Figur.4 Prlll rivtin fr th grmmr f Figur.3. n utmtn is gnrt y R (frm its xim) if lngs t th fllwing st R ω f ismrphi utmt: R ω = { n 0 [H n] H 0 =... H n = H n+... }. R R R Nt tht in ll gnrlity, w n t nsir hyprgrphs with multipliitis. Hwvr using n pprprit nrml frm, this thnility n sfly mitt [C 07]. Fr instn th utmtn f Figur. is gnrt y th grmmr f Figur.3. rgulr utmtn is n utmtn gnrt y (funtinl grph) grmmr. Nt tht rgulr utmtn hs finit numr f nn-ismrphi nnt mpnnts, n hs finit numr f istint vrtx grs. nthr xmpl is givn y th fllwing grmmr: R, E

6 whih gnrts th fllwing utmtn: rgnizing th lngug { uũ u {, } + } whr ũ is th mirrr f u. Th lngug rgniz y grmmr R is th lngug L(R) rgniz y its gnrt utmtn: L(R) = L() fr (ny) R ω. This lngug is wll-fin sin ll utmt gnrt y givn grmmr r ismrphi. grmmr R is n unmiguus grmmr if th utmtn it gnrts is unmiguus. Thr is nnil wy t gnrt th rgulr utmt f finit gr whih llws t hrtriz ths utmt withut th xpliit us f grmmrs. This is th finit mpsitin y istn. Th invrs f n utmtn is th utmtn tin frm y rvrsing its rs n y xhnging initil n finl vrtis: = { t s s t } { s s } { s s }. S rgnizs th mirrr f th wrs rgniz y. Th rstritin I f t sust I f vrtis is th sugrph f inu y I : I = (T I I {, } I). Th istn I (s) f vrtx s t I is th miniml lngth f th unirt pths u twn s n I : I (s) = min{ u r I, r = s } with min( ) = +. W tk nw lur # F {, } n fin fr ny intgr n 0, D # n(, I) = { s I(s) n } { #s I (s) = n }. In prtiulr D # 0 (, I) = { # s s I }. W sy tht n utmtn is finitly mpsl y istn if fr h nnt mpnnt C f thr xists finit nn mpty st I f vrtis suh tht n 0 D# n(c, I) hs finit numr f nn-ismrphi nnt mpnnts. Suh finitin llws th

7 hrtriztin f th lss f ll utmt f finit gr whih r rgulr. Thrm.5 n utmtn f finit gr is rgulr if n nly if it is finitly mpsl y istn n it hs nly finit numr f nn ismrphi nnt mpnnts. Th prf is givn in [C 07] n is slight xtnsin f [MS 85] (ut withut using pushwn utmt). Rgulr utmt f finit gr r ls th trnsitin grphs f pushwn utmt rstrit t rgulr sts f nfigurtins n with rgulr sts f initil n finl nfigurtins. In prtiulr, rgulr utmt f finit gr rgniz th sm lngugs s pushwn utmt. Prpsitin.6 Th (rsp. unmiguus) rgulr utmt rgniz xtly th (rsp. unmiguus) ntxt-fr lngugs. This prpsitin rmins tru if w rstrit t utmt f finit gr. W nw us grmmrs t xtn th fmily f rgulr lngugs t ln lgrs f unmiguus ntxt-fr lngugs. 3 Synhrniztin f rgulr utmt W intru th i f synhrniztin twn grmmrs. Th lss f lngugs synhrniz y grmmr R r th lngugs rgniz y grmmrs synhrniz y R. W shw tht ths fmilis f lngugs r ls unr unin y pplying th sum f grmmrs, r ls unr intrstin with rgulr lngug y fining th synhrniztin prut f grmmr with finit utmtn, n r ls unr intrstin (in th s f grmmrs gnrting unmiguus utmt) y prfrming th synhrniztin prut f grmmrs. Finlly w shw tht ll grmmrs gnrting th sm utmtn synhrniz th sm lngugs. T h vrtx s f n utmtn R ω gnrt y grmmr R, w ssit nn ngtiv intgr l(s) whih is th miniml numr f rwritings ppli frm th xim nssry t rh s. Mr prisly fr = n 0 [H n] with H 0 =...H n = H n+..., th lvl l(s) f s V, ls writtn l R (s) R R R t spify n R,is l(s) = min{ n s V Hn }. W pit lw th lvls f sm vrtis f th rgulr utmtn f Figur. gnrt y th grmmr f Figur.3. This utmtn is rprsnt y vrtis f inrsing lvl: vrtis t sm lvl r lign vrtilly.

8 Figur 3. Vrtx lvls with th grmmr f Figur.3. W sy tht grmmr S is synhrniz y grmmr R writtn S R, r quivlntly tht R synhrnizs S writtn R S, if fr ny pting pth µ ll y u f th utmtn gnrt y S, thr is n pting pth λ ll y u f th utmtn gnrt y R suh tht fr vry prfix v f u, th prfixs f λ n µ lll y v l t vrtis f th sm lvl: fr (ny) R ω n (ny) H S ω n fr ny t 0 t... n t n with t 0, t n H, H H thr xists s 0 s... n s n with s 0, s n n l R (s i) = l S H (t i) i [0, n]. Fr instn th grmmr f Figur.3 synhrnizs th fllwing grmmr: B B Figur 3. grmmr synhrniz y th grmmr f Figur.3. In prtiulr fr S R, w hv L(S) L(R). Nt tht th mpty grmmr {(, )} is synhrniz y ny grmmr. Th synhrniztin rltin is rflxiv n trnsitiv rltin. W nt th i-synhrniztin rltin: R S if R S n S R. Nt tht i-synhrniz grmmrs R S my gnrt istint utmt: R ω S ω. Fr ny grmmr R, th img f R y is th fmily (R) = { S R S } f grmmrs synhrniz y R n Syn(R) = { L(S) S R } is th fmily f lngugs synhrniz y R. Nt tht Syn(R) is fmily f lngugs inlu in L(R) n ntining th mpty lngug n L(R). Nt ls tht Syn(R) = Syn(S) fr R S. Stnr prtins n finit utmt r xtn t grmmrs in rr t tin lsur prprtis f Syn(R). Fr instn th synhrniztin prut f finit utmt is xtn t ritrry utmt n H y H = { (s, p) (t, q) s t p q } { (s, p) s p H } { (s, p) s p H } whih rgnizs L( H) = L() L(H). Th synhrniztin prut f rgulr utmtn, gnrt y grmmr R, with finit utmtn K rmins rgulr: it is gnrt y grmmr R K tht w fin [CH 08]. Lt {q,..., q n } th vrtx st f K. T h N R, w ssit nw syml (, n) f rity () n xpt tht (, 0) = H

9 , n t h hyprr r...r m with m = (), w ssit th hyprr (r...r m ) K = (, n)(r, q )...(r, q n )...(r m, q )...(r m, q n ). Th grmmr R K ssits t h rul (X, H) R th fllwing rul: X K [H] K { (BY ) K BY H B N R }. Exmpl 3.3 Lt us nsir th fllwing grmmr R : s t gnrting th fllwing (rgulr) utmtn : n rgnizing th rstrit Dyk lngug D vr th pir (, ) [B 79] : L(R) = L() = D. W nsir th fllwing finit utmtn K : rgnizing th st f wrs vr {, } hving n vn numr f. S R K is th fllwing grmmr: p q (s,p) (, ) (s,q) (,p) (, ) (,q) (,p) (,q) (t,p) (, ) (t,q) gnrting th utmtn K : whih rgnizs D rstrit t th wrs with n vn numr f (r ). Th synhrniztin prut f grmmr R with finit utmtn K is synhrniz y R i.. R K R n rgnizs L(R K) = L(R) L(K). Prpsitin 3.4 Fr ny grmmr R, th fmily Syn(R) is ls unr intrstin with rgulr lngug. Prpsitins.6 n 3.4 imply th wll-knwn lsur prprty f th fmily f ntxt-fr lngugs unr intrstin with rgulr lngug. s R K is unmiguus fr R unmiguus n K trministi, it ls fllws Thrm 6.4. f [H 78] : th fmily f unmiguus ntxt-fr lngugs is ls

10 unr intrstin with rgulr lngug. nthr si prtin n finit utmt is th isjint unin. This prtin is xtn t ny grmmrs R n R. Fr ny i {, }, w nt R i = R ( i { i i T } {i, i} ) in rr t istinguish th vrtis f R n R. Fr (, H ) R n (, H ) R, th sum f R n R is th grmmr R + R = {(, H H )} (R {(, H )}) (R {(, H )}). S (R + R ) ω = { R ω R ω V V = } hn L(R + R ) = L(R ) L(R ). In prtiulr if S R n S R thn S + S R + R. Prpsitin 3.5 Fr ny grmmr R, Syn(R) is ls unr unin. Th synhrniztin prut f rgulr utmt n nn rgulr. Furthrmr fr th rgulr utmtn :,,,,,, th lngugs { m m n m, n 0 } n { m n n m, n 0 } r in Syn() ut thir intrstin { n n n n 0 } is nt ntxt-fr lngug. Th synhrniztin prut f grmmr with finit utmtn is xtn fr tw grmmrs R n S fr gnrting th lvl synhrniztin prut R,SH f thir gnrt utmt R ω n H S ω whih is th rstritin f H t pirs f vrtis with sm lvl: R,SH = ( H) P fr P = { (s, p) V V H l R (s) = ls H (p) }. This prut n gnrt y grmmr R S tht w fin. Lt (, B) N R N S ny pir f nn-trminls n E [, ()] [, (B)] inry rltin vr inputs suh tht fr ll i, j [, ()], if E(i) E(j) thn E(i) = E(j), whr E(i) = {j (i, j) E} nts th img f i [, ()] y E. Intuitivly fr pir (, B) N R N S f nn-trminls, rltin E [, ()] [, (B)] is us t mmriz whih ntris f n B r ing synhrniz. T ny suh, B n E, w ssit nw syml [, B, E] f rity E (whr [,, ] is ssimilt t ). T h nn-trminl hyprr r...r m f R ( N R n m = ()) n h nn-trminl hyprr Bs...s n f S (B N S n n = (B)), w ssit th hyprr [r...r m, Bs... s n, E] = [, B, E](r, s ) E... (r, s n ) E... (r m, s ) E...(r m, s n ) E with (r i, s j ) E = (r i, s j ) if (i, j) E, n ε thrwis. Th grmmr R S is thn fin y ssiting t h (X, P) R, h (BY, Q) S, n h E ( [ ()] [ (B)], ) th rul f lft hn si [X, BY, E] n f right hn si [P] [Q] E {[CU, DV, E ] CU P C N R DV Q D N S } with E = { (X(i), Y (j)) (i, j) E } ( V P V X ) ( VQ V Y ) n E = { (i, j) [ (C)] [ (D)] (U(i), V (j)) E }.

11 Exmpl 3.6 Lt us illustrt th lvl synhrniztin prut f tw grmmrs. W tk first grmmr R : B B x s t 3 3 B gnrting grph : sn grmmr S is th fllwing: J I y p J q K K J r gnrting grph H : Th lvl synhrniztin prut R,SH f th prvius tw grphs is th grph: This grph is gnrt y th fllwing grmmr R S rstrit t th ruls ssil frm : (x,y) U U (,) (,) (s,p) V (,) (,) (3,) V (,) (,) (3,) W (t,q) (,) (,) (,) (3,) W (3,) X (t,r) (3,) X (3,) W (t,q)

12 with U = [, I, {(, )}] V = [B, J, {(, ), (, ), (3, )}] W = [B, K, {(, ), (3, )}] X = [B, J, {(, ), (3, )}]. Nt tht R S is synhrniz y R n S, n is i-synhrnniz with S fr S R. Furthrmr R S gnrts R,SH fr R ω n H S ω hn rgnizs sust f L(R) L(S). Hwvr fr grmmrs S n S synhrniz y n unmiguus grmmr R, w hv L(S S ) = L(S) L(S ). Prpsitin 3.7 Fr ny unmiguus grmmr R, th fmily Syn(R) is ls unr intrstin. By xtning si prtins n finit utmt t grmmrs, it pprs tht grph grmmrs r t ntxt-fr lngugs wht finit utmt r t rgulr lngugs. W will ntinu ths xtnsins in th nxt stin. Lt us prsnt funmntl rsult nrning grmmr synhrniztin, whih stts tht Syn(R) is inpnnt f th wy th utmtn R ω is gnrt. Thrm 3.8 Fr ny grmmrs R n S suh tht R ω = S ω, w hv Syn(R) = Syn(S). Prf skth. By symmtry f R n S, it is suffiint t shw tht Syn(R) Syn(S). Lt R R. W wnt t shw tht L(R ) Syn(S). W hv t shw th xistn f S S suh tht L(S ) = L(R ). Nt tht it is pssil tht thr is n grmmr S synhrniz y S n gnrting th sm utmtn s R (i.. S S n S ω = R ω ). Lt R ω = S ω. ny vrtx s f hs lvl l R (s) ring t R n lvl l S (s) ring t S. Lt H R ω n lt K = ( lh) P th utmtn tin y lvl synhrniztin prut f with H n rstrit t th st P f vrtis ssil frm n -ssil frm. Th rstritin y ssiility frm n -ssiility frm n n y i-synhrniz grmmr [C 08]. By finitin f R R, th utmtn K n gnrt y grmmr R i-synhrniz t R with l R K (s, p) = lr (s) = lr H (p) fr vry (s, p) V K. In prtiulr L(K) = L(R ). Lt us shw tht K is gnrt y grmmr synhrniz y S. W giv th prf fr R ω f finit gr. In tht s n fr = N R (), l R (s) lr (t). (s, t) fr vry s, t V. Furthrmr K is ls f finit gr. W shw tht K is finitly mpsl nt y istn ut ring t l S K (s) fr th vrtis (s, p) f K.

13 Lt n 0 n C nnt mpnnt f K {(s,p) VK l S (s) n }. S C is fully trmin y its frntir : Fr K (C) = V C V K C its intrf : Int K (C) = { s t {s, t} Fr K (C) }. C Lt (s 0, p 0 ) Fr K (C) n D th nnt mpnnt f { s l S (s) n } ntining s 0. It rmins t fin un inpnnt f n suh tht (s, p) lr K (t, q) fr vry (s, p), (t, q) Fr K(C). l R K Fr ny (s, p), (t, q) Fr K (C), w hv s, t Fr (D) hn D (s, t) is un y th intgr = mx{ S ω ()(i, j) < + N S i, j [, ()] } whs S ω () = { n 0 [H n]... () = H 0 = S thus it fllws tht l R K... H n = S H n+... } (s, p) lr K (t, q) = lr (s) lr (t) (s, t) D (s, t). Fr f infinit gr n y Prpsitin 4.9, w n xprss Syn() s n ε-lsur f Syn(H) fr sm rgulr utmtn H f finit gr using ε- trnsitins. Thrm 3.8 llws t trnsfr th npt f grmmr synhrniztin t th lvl f rgulr utmt: fr ny rgulr utmtn, w n fin Syn() = Syn(R) fr (ny) R suh tht R ω. Th synhrniztin rltin is ls xtn twn rgulr utmt. rgulr utmtn H is synhrniz y rgulr utmtn, n w writ H r H, if thr xists grmmr S gnrting H whih is synhrniz y grmmr R gnrting : S R, H S ω n R ω. Lt us illustrt ths is y prsnting sm xmpls f wll-knwn sufmilis f ntxt-fr lngugs tin y synhrniztin. Exmpl 3.9 Fr ny finit utmtn, Syn() is th fmily f rgulr lngugs inlu in L(). Exmpl 3.0 Fr th fllwing rgulr utmtn : Syn() is th fmily f input-rivn lngugs [M 80] with pushing, ppping n intrnl. s th initil vrtx is nt sur f n r lll y, Syn() s nt ntin ll th rgulr lngugs. Exmpl 3. W mplt th prvius utmtn y ing n -lp n th initil vrtx t tin th fllwing utmtn :,

14 Th st Syn() is th fmily f visily pushwn lngugs [M 04] with pushing, ppping n intrnl. Exmpl 3. Fr th fllwing rgulr utmtn : th st Syn() is th fmily f ln lngugs [BB 0] with, pushing with thir rrspning ppping lttrs,, n is intrnl. Exmpl 3.3 Fr th fllwing rgulr utmtn : th fmily Syn( ) is th st f lngugs gnrt frm I y th fllwing linr ntxt-fr grmmrs: I = P + m m with m 0 n P {,..., m m } = Q + n n with n > 0 n Q {,..., n n }. Exmpl 3.4 Fr th fllwing rgulr utmtn : th fmily Syn( ) is th st f lngugs gnrt frm I y th fllwing linr ntxt-fr grmmrs: I = P + m m with m 0 n P {,..., m m } = Q + n n with n > 0 n Q {,..., n n }. Exmpl 3.5 Fr th fllwing unmiguus rgulr utmtn :

15 w hv Syn() = { L L L Syn( ) L Syn( ) } fr th rgulr utmt n f th prvius Exmpls 3.3 n 3.4. Exmpl 3.6 Th rgulr utmtn : synhrnizs th rgulr utmtn: whih rgnizs th lngug gnrt y th fllwing ntxt-fr grmmr: I = + + B = + B B = + B Mr gnrlly Syn() is th fmily f lngugs gnrt y th linr ntxt-fr grmmrs: I = L 0 + n0 + n0 BM 0 = L + n + n BM B = L + n B n fin fr n 0 0 n n > 0, n fr I 0, J 0, K 0 [0, n 0 [ n I, J, K [0, n [ suh tht fr vry k {0, }, L k = { i+ i+ j i I k j J k j i [j, i[ K k = } M k = { n k j j J k [j, n k [ K k = } L = { i+ i+ i I [0, i[ K = }. Intuitivly, th intgr n 0 (rsp. n ) is th lngth f th s (rsp. f th pri ) n fr ny k {0, }, I k, J k, K k r th susts f [0, n k [ suh tht I k is th st f th gls f th -ignls, J k is th st f th psitins f th utputs, n K k is th st f th nn llw psitins: thr r n gl f -hrizntl. Fr h rgulr utmtn mng th prvius xmpls, Syn() is ln lgr ring t L() n, fr th Exmpls 3.9, 3.0 n 3., is ls ls unr ntntin n its itrtin. W nw nsir nw lsur prprtis f synhrniz lngugs fr rgulr utmt.

16 4 Clsur prprtis W hv sn tht th fmily Syn() f lngugs synhrniz y rgulr utmtn is ls unr unin n unr intrstin with rgulr lngug, n unr intrstin whn is unmiguus. In this stin, w nsir th lsur f Syn() unr mplmnt rltiv t L() n unr ntntin n its trnsitiv lsur. T tin ths lsur prprtis, w first pply grmmr nrmliztins prsrving th synhrniz lngugs. Ths nrmliztins ls llw us t ε-rs t ny rgulr utmtn t gt rgulr utmtn f finit gr with th sm synhrniz lngugs. First w put ny grmmr in n quivlnt nrml frm with th sm st f synhrniz lngugs. s in th s f finit utmt, w trnsfrm ny utmtn int th pint utmtn whih is lngug quivlnt L( ) = L(), with uniqu initil vrtx V whih is gl f n r n n finl, n with uniqu nn initil n finl vrtx V whih is sur f n r: = ( {, } V ) {, } { s (s, s ) } { t s (s t s ) } { s t (s t t ) } { s, t (s t s, t ) }. Fr instn, th finit gr rgulr utmtn f Figur. is trnsfrm int th fllwing infinit gr rgulr utmtn : Figur 4. pint rgulr utmtn. Nt tht if is unmiguus, rmins unmiguus. Th pint trnsfrmtin f rgulr utmtn rmins rgulr utmtn whih n gnrt y n 0-grmmr : nly th xim hs initil n finl vrtis. Lt R ny grmmr n, tw symls whih r nt vrtis f R. Lt R ω with, V. W fin n 0-grmmr R gnrting n prsrving th synhrniz lngugs: Syn(R ) = Syn(R). First w trnsfrm R int grmmr R in whih w mmriz in th nntrminls th input vrtis whih r link t initil r finl vrtis f th gnrt utmtn. Mr prisly t ny N R n I, J [, ()], w ssit nw syml I,J f rity () with =,. W fin th grmmr

17 R ssiting t h (X, H) R n I, J [, ()] th fllwing rul: I,J X [H] { B I,J Y BY H B N R } with I = { i Y (i) I Y (i) H } n J = { j Y (j) J Y (j) H } n w rstrit th ruls f R t th nn-trminls ssil frm. Nt tht th st L(R) T f lttrs rgniz y R n trmin s { ( I,J X, H) R ( i I t, X(i) [H] t t H) ( j J s, s X(j) s H) ( s, t, s t s, t H) } [H] [H] n ε L(R) H Im( R) s (s, s H). T ny N R {} n ny I, J [, ()], w ssit nw syml I,J f rity () +, n w fin th grmmr R ntining th xim rul H, {, } { ε L(R) } { L(R) T } fr (, H) R, n fr ny ( I,J X, H) R with, w tk in R th rul I,J X H I,J suh tht H I,J is th fllwing hyprgrph: H I,J = ([H] {, }) V H ) { B P,Q X B P,QX H B P,Q N R } { t i I (X(i) t) s (s H s t) } [H] [H] { s j J (s X(j)) t (t H s t) } n w put R int trminl-utsi frm [C 07]. [H] [H] Exmpl 4. Lt us nsir th fllwing grmmr R : B B C C gnrting th fllwing utmtn (with vrtx lvls): First this grmmr is trnsfrm int th fllwing grmmr R :,, B, B, C, C,, In prtiulr ε,, L(R). Thn R is trnsfrm int th grmmr R :

18 ,,, B, B, C, C,, tht w put in trminl-utsi frm:,,, B, B,, C, C,,,, S R gnrts :,,,,,, Th grmmrs R n R synhrniz th sm lngugs. Prpsitin 4.3 Fr ny rgulr utmtn with, V, th pint utmtn rmins rgulr n Syn( ) = Syn(). It fllws tht, in rr t fin fmilis f lngugs y synhrniztin y rgulr utmtn, w n rstrit t pint utmt. strngr nrmliztin is t trnsfrm ny grmmr R int grmmr S suh tht Syn(S) = Syn(R) n S is n r-grmmr in th fllwing sns: S is n 0-grmmr whs ny nn-trminl N S {} is f rity, n fr ny nn xim rul st H, thr is n r in H f gl s r f sur t : fr ny p q, w hv p t n q s. H W n trnsfrm ny 0-grmmr R int i-synhrniz r-grmmr R. W ssum tht h rul f R is f th frm... () H fr ny N R.

19 W tk nw syml 0 (nt vrtx f R) n nw ll i,j f rity fr h N R n h i, j [, ()] in rr t gnrt pths frm i t j in R ω (... ()). W fin th splitting f ny F R -hyprgrph withut vrtx 0 s ing th grph: = [] { X(i) i,j X(j) X N R i, j [ ()] } n fr p, q V n P V with 0 V, w fin p,p,q = ( { s t t p s q s, t P } ) fr p q I p,p,p = ( { s with I = { s p = t t p s, t P } { s 0 s p } ) J s = q } n J = { s p = s = 0 }. This llws t fin th splitting R f R s ing th fllwing r-grmmr: H i,j h i,j ( (H ) i,[ ()] {i,j},j ) fr h NR n i, j [, ()] whr h i,j is th vrtx rnming fin y h i,j (i) =, h i,j (j) =, h i,j (x) = x thrwis, fr i j h i,i (i) =, h i,i (0) =, h i,i (x) = x thrwis. Thus R n R r i-synhrniz, n R is unmiguus whn R is unmiguus. Nt tht w n put R int ru frm y rmving ny nn-trminl i,j suh tht R ω ( i,j ) is withut pth frm t. Exmpl 4.4 Th fllwing 0-grmmr R : B 3 B 3 gnrts th fllwing utmtn : Th splitting R f R is th fllwing grmmr:,,,, B, B,,, B,3 B,3, gnrting th fllwing utmtn:

20 s R R, w hv Syn(R) = Syn( R ). T stuy lsur prprtis f Syn(R) fr ny grmmr R, w n wrk with its nrml frm R whih is n r-grmmr gnrting pint utmtn. This nrmliztin is rlly usful t stuy th lsur prprty f Syn(R) unr mplmnt rltiv t L(R), unr ntntin n its itrtin. W hv sn tht Syn(R) is nt ls in gnrl unr intrstin, hn it is nt ls unr mplmnt ring t L(R) sin fr ny L, M L(R), L M = L(R) [(L(R) L) (L(R) M)]. Fr R unmiguus, Syn(R) is ls unr intrstin, n this rmins tru unr mplmnt ring t L(R) [C 08]. W giv hr simplr nstrutin. s R rmins unmiguus, w n ssum tht R is n r-grmmr. Lt S R. W wnt t shw tht L(R) L(S) Syn(R). S S is n 0-grmmr n S is lvl-unmiguus s fin in [C 08]: fr ny pting pths λ, µ with th sm ll u n fr vry prfix v f u, th prfixs f λ n µ lll y v l t vrtis f th sm lvl i.. fr (ny) S ω, s 0 s... n s n t 0 = l S (s i) = l S (t i) i [0, n]. t... n t n s 0, t 0, s n, t n Thus S is lvl-unmiguus r-grmmr. W tk nw lur F {, } n fr ny grmmr S, w nt S (rsp. S ) th grmmr tin frm S y rpling th finl lur y (rsp. y ). S R + S is n r-grmmr n (R + S ) is lvl-unmiguus. It rmins t pply th grmmr trminiztin fin in [C 08] n givn lw, t gt th grmmr R/S = Dt(R + S ) suh tht (R/S) is unmiguus n i-synhrniz t (R+ S ). Finlly w kp in R/S th finl vrtis whih r nt lur y t tin grmmr synhrniz y R n rgnizing L(R) L(S). Thrm 4.5 Fr ny unmiguus rgulr utmtn, th st Syn() is n fftiv ln lgr ring t L(), ntining ll th rgulr lngugs inlu in L(). S w n i th inlusin L(S) L(S ) fr tw grmmrs S n S synhrniz y mmn unmiguus grmmr. Furthrmr fr grmmrs R n R suh tht R + R is lvl-unmiguus, Syn(R + R ) = { L L L Syn(R ) L Syn(R ) } is ln lgr inlu in L(R ) L(R ),

21 ntining Syn(R ) n Syn(R ). Th utmt f Exmpls 3.9 t 3.6 r unmiguus hn thir fmilis f synhrniz lngugs r ln lgr. This rgulr utmtn : is -miguus: thr r tw pting pths fr th wrs n n n with n > 0 n uniqu pting pth fr th thr pt wrs. But Syn() is nt ls unr intrstin sin { m m n m, n 0 } n { m n n m, n 0 } r lngugs synhrniz y. Lt us giv th Dt prtin ppli n ny r-grmmr. s fr th lvl synhrniztin prut, th stnr pwrst nstrutin t trminiz grph is nly n lvl prsrving. Th lvl-trminiztin f ny grmmr R is Dt(R ω ) := { K R ω, K ismrphi t Dt() } whs th lvl-trminiztin Dt() f ny R ω is fin y Dt() := { P Q P, Q Π Q Su (P) q Su (P) Q, Q {q} Π } { P P Π p P p q (q q P = P {q} Π) } { P P Π F {} p P p } rstrit t th vrtis ssil frm n suh tht Π is th st f susts f vrtis with sm lvl: Π := { P P V p, q P, l(p) = l(q) } n Su (P) is th st f sussrs f vrtis in P Π y F F : Su (P) := { q p P (p q) }. Cntrry t th lvl synhrniztin prut, Dt s nt prsrv th rgulrity. Hwvr Dt(R ω ) n gnrt y grmmr whn R is n r-grmmr. Lt R ny r grmmr with R ω ssil frm. W nt H th right hn si f th rul f N R. T ny N R {}, w ssit nw syml f rity n w fin th grmmr R tin frm R y ing th ruls H fr ll N R {}, n thn y rpling in th right hn sis ny nn-trminl r s B y s B :

22 R := { (, H ) } { (, (H N R V H ) { Bs B N R Bs H } ) N R {} } { (, (H N R V H ) { Bs B N R Bs H } ) N R {} }. W tk linr rr < n N R {} f smllst lmnt ( s nt ppr in th right hn si f R). T h P N R {}, w ssit nw syml P f rity P hyprr <P> = P p...p m with {p,..., p m } = P n p <... < p m n w tk grph H P suh tht { P } {} = R n fr P =, w fin < > = n H = H. T h P N R {}, w pply n H P th lvl-trminiztin t gt th grph H P := Dt(H P)[ /{}] { } whs th vrtx lvl l is fin y l() = 0 P N R l() = P N R l(s) = s V HP (P {}). Nt tht th lvl l() f is nt signifint us thr is n r f gl in H P. T h P N R {}, w ssit th fllwing rul: <P> [H P ] { <Q>[U E/E] E Q U V H P Q } with Q := { N R s U, s } H P U := U U E := { t s U E, s t } fr ny E Q. H P Nt tht fr R unmiguus, w n rstrit <P > t <P> = P p...p m with {p,..., p m } = P. By tking ll th ruls ssil frm, w gt grmmr Dt(R). Lt us illustrt th nstrutin f Dt(R) t th fllwing r grmmr R : H P B B B gnrting th fllwing grph : W hv th fllwing prlll rwriting:

23 B = B t B B s p q Tking l() = l(b) = n l(s) = l(t) = l(p) = l(q) =, th right hn si H,B givs y lvl-trminiztin th fllwing grph Dt(H,B ): {} {} {B} {,B},, B {p,s} {t} {q} {q,t} n th fllwing grmmr Dt(R): {, B} {} {B} {,B} {} {, B} {, B} {B} {,B} gnrting Dt(): similr xmpl is givn y th fllwing r grmmr R : B B B B gnrting th fllwing grph :

24 W tin th fllwing grmmr Dt(R): {, B} {} {B} {,B} {} {, B} {, B} {B} {,B} gnrting Dt(): Fr ny rgulr utmtn, th lsur f Syn() unr ntntin (rsp. unr its trnsitiv lsur + ) s nt rquir th unmiguity f. s L() Syn(), nssry nitin is t hv L().L() Syn() (rsp. L() + Syn()). Nt tht this nssry nitin implis tht L() is ls unr (rsp. + ). In prtiulr Syn() is nt ls unr n + fr th utmt f Exmpls 3. t 3.6. But this nssry nitin is nt suffiint sin th fllwing rgulr utmtn :,

25 rgnizs L() = ε + M( + ) fr M = { n n n > 0 }, hn L().L() = L() = L() + ut M Syn() n M.M, M + Syn(). Lt us giv simpl n gnrl nitin n grmmr R suh tht Syn(R) is ls unr n +. W sy tht grmmr is itrtiv if ny initil vrtx is in th xim n fr (ny) R ω n ny pting pth s 0 s... n s n with s 0, s n n fr ny finl vrtx t i.. t, thr xists pth t t... n t n with t n suh tht l(t i ) = l(t) + l(s i ) fr ll i [, n]. Fr instn th utmtn f Exmpl 3.0 n gnrt y n itrtiv grmmr. n ny 0-grmmr gnrting rgulr utmtn hving uniqu initil vrtx whih is th uniqu finl vrtx, is itrtiv. Stnr nstrutins n finit utmt fr th ntntin n its itrtin n xtn t itrtiv grmmrs. Prpsitin 4.6 Fr ny itrtiv grmmr R, th fmily Syn(R) is ls unr ntntin n its trnsitiv lsur. Hwvr th utmtn f Exmpl 3. nnt gnrt y n itrt grmmr ut Syn() is ls unr n + [M 04]. W n ls tin fmilis f synhrniz lngugs whih r ls unr n + y sturting grmmrs. Th sturtin + f n utmtn is th utmtn + = { s r r t (s t t ) } rgnizing L( + ) = (L()) +. Nt tht if is rgulr with infinit sts f initil n finl vrtis, + n nn rgulr (ut is lwys prfix-rgnizl). If is gnrt y n 0- grmmr R, its sturtin + n gnrt y grmmr R + tht w fin. Lt (, H) th xim rul f R n r,..., r p th initil vrtis f H w n ssum tht r,..., r p r nt vrtis f R {(, H)}. T h N R {} n I [, ()], w ssit nw syml I f rity () + p n w fin R + with th fllwing ruls: [H] + { { i X(i) H } Xr...r p X H N R } I Xr...r p K I fr h (X, K) R n n I [, ()] whs K I is th utmtn tin frm K s fllws: K I = [K] { s r j j [p] i I (s X(i)) } { B { j i I, Y (j)=x(i) } Y r...r p BY K B N R }. S R is synhrniz y R + n + (R + ) ω fr R ω. T hrtriz Syn(R + ) frm Syn(R), w fin th rgulr lsur Rg(E) f ny lngug fmily E s ing th smllst fmily f lngugs ntining E n ls unr,, +. K Prpsitin 4.7 Fr ny 0-grmmr R, Syn(R + ) = Rg(Syn(R)). By Prpsitins 4.3, 4.6 n 4.7, th fllwing rgulr utmtn :

26 ,,,,,,, hs th sm synhrniz lngugs thn th utmtn f Exmpl 3.0: Syn() is th fmily f input-rivn lngugs (fr pushing, ppping n intrnl). By ing n -lp n th initil (n finl) vrtx f, w tin n utmtn H suh tht Syn(H) is th fmily f visily pushwn lngugs hn y Prpsitin 4.7, is ls unr n +. Exmpl 4.8 nturl xtnsin f th visily pushwn lngugs is t rst lttrs. Fr pushing, ppping n intrnl, w rst lttr t fin th fllwing rgulr utmtn :,,, ny lngug f Syn() is visily pushwn lngug tking s n intrnl lttr, ut nt th nvrs: { n n n 0 } Syn(). By Thrm 4.5, Syn() is ln lgr. Furthrmr th fllwing utmtn H :,,,,,,,,,,,, stisfis Syn(H) = Syn() n H + = H hn y Prpsitin 4.7, Syn() is ls ls unr n +. Nt tht th utmt f th prvius xmpl hv infinit gr. Furthrmr fr ny utmtn f finit gr hving n infinit st f initil r finl vrtis, th pint utmtn is f infinit gr. Hwvr ny rgulr utmtn f infinit gr (in ft ny prfix-rgnizl utmtn) n tin y ǫ-lsur frm rgulr utmtn f finit gr using ε-trnsitins. Fr instn lt us tk nw lttr T (inst f th mpty wr) n lt us nt π th mrphism rsing in th wrs vr T {}: π () = fr ny T n π () = ε, tht w xtn y unin t ny lngug L (T {}) : π (L) = { π (u) u L }, n y pwrst t ny fmily P f lngugs: π (P) = { π (L) L P }. Th fllwing rgulr utmtn K :

27 ,,, is f finit gr n stisfis π (Syn(K)) = Syn() fr th utmtn f Exmpl 4.8. Lt us giv simpl trnsfrmtin f ny grmmr R t grmmr R suh tht R ω is f finit gr n π (Syn(R )) = Syn(R). s Syn(R) = Syn( R ), w rstrit this trnsfrmtin t r-grmmrs. Lt R n r-grmmr. W fin R t n r-grmmr tin frm R y rpling h nn xim rul st H y th rul: st ( [H] {s s, t t} h(h [H]) ) P with s, t nw vrtis n h th vrtx mpping fin fr ny r V H y h(r) = r if r {s, t}, h(s) = s n h(t) = t, n P is th st f vrtis ssil frm s n -ssil frm t. Fr instn th r-grmmr R is trnsfrm int th fllwing r-grmmr R : Fr ny rul f R, th inputs r sprt frm th utputs (y -trnsitins), hn R ω is f finit gr. Furthrmr this trnsfrmtin prsrvs th synhrniz lngugs. Prpsitin 4.9 Fr ny r-grmmr R, Syn(R) = π (Syn(R )). S fr ny R, Syn(R) = π (Syn( R )) n ( R ) ω is f finit gr. ll th nstrutins givn in this ppr r nturl gnrliztins f usul trnsfrmtins n finit utmt t grph grmmrs. In this wy, si lsur prprtis ul lift t su-fmilis f ntxt-fr lngugs. Cnlusin Th synhrniztin f rgulr utmt is fin thrugh vis gnrting ths utmt, nmly funtinl grph grmmrs. It n ls fin using pushwn utmt with ε-trnsitins [NS 07] us Thrm 3.8 ssrts tht th fmily f lngugs synhrniz y rgulr utmtn is inpnnt f th wy th utmtn is gnrt it is grph-rlt ntin. This

28 ppr shws tht th mhnism f funtinl grph grmmrs prvis nturl nstrutins n rgulr utmt gnrlizing usul nstrutins n finit utmt. This ppr is ls n invittin t xtn th ntin f synhrniztin t mr gnrl su-fmilis f utmt. knwlgmnts Mny thnks t rnu Cryl n ntin Myr fr hlping m prpr th finl vrsin f this ppr. Rfrns [M 04] R. lur n P. Mhusun Visily pushwn lngugs, 36 th STOC, CM Prings, L. Bi (E.), 0 (004). [B 79] J. Brstl Trnsutins n ntxt-fr lngugs, E. Tunr, pp. 78, 979. [BB 0] J. Brstl n L. Bssn Bln grmmrs n thir lngugs, Frml n Nturl Cmputing, LNCS 300, W. Brur, H. Ehrig, J. Krhumäki,. Slm (Es.), 3 5 (00). [C 06] D. Cul Synhrniztin f pushwn utmt, 0 th DLT, LNCS 4036, O. Irr,. Dng (Es.), 0-3 (006). [C 07] D. Cul Dtrministi grph grmmrs, Txts in Lgi n ms, mstrm Univrsity Prss, J. Flum, E. räl, T. Wilk (Es.), (007). [C 08] D. Cul Bln lgrs f unmiguus ntxt-fr lngugs, 8 th FSTTCS, Dgstuhl Rsrh Onlin Pulitin Srvr, R. Hrihrn, M. Mukun, V. Viny (Es.) (008). [CH 08] D. Cul n S. Hssn Synhrniztin f grmmrs, 3 r CSR, LNCS 500, E. Hirsh,. Rzrv,. Smnv,. Slissnk (Es.), 0 (008). [H 78] M. Hrrisn Intrutin t frml lngug thry, isn-wsly (978). [M 80] K. Mhlhrn Pling muntin rngs n its pplitin t DCFL rgnitin, 7 th ICLP, LNCS 85, J. Bkkr, J. vn Luwn (Es.), 4 43 (980). [MS 85] D. Mullr n P. Shupp Th thry f ns, pushwn utmt, n sn-rr lgi, Thrtil Cmputr Sin 37, 5 75 (985). [NS 07] D. Nwtk n J. Sr Hight-trministi pushwn utmt, 3 n MFCS, LNCS 4708, L. Kur,. Kur (Es.), 5 34 (007).

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Synchronization of regular automata

Synchronization of regular automata Synhrniztin f regulr utmt Didier Cul IM CNRS Université Pris-Est ul@univ-mlv.fr strt. Funtinl grph grmmrs re finite devies whih generte the lss f regulr utmt. We rell the ntin f synhrniztin y grmmrs, nd

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

TURFGRASS DISEASE RESEARCH REPORT J. M. Vargas, Jr. and R. Detweiler Department of Botany and Plant Pathology Michigan State University

TURFGRASS DISEASE RESEARCH REPORT J. M. Vargas, Jr. and R. Detweiler Department of Botany and Plant Pathology Michigan State University I TURFGRASS DISEASE RESEARCH REPORT 9 J. M. Vrgs, Jr. n R. Dtwilr Dprtmnt f Btny n Plnt Pthlgy Mihign Stt Univrsity. Snw Ml Th 9 snw ml fungii vlutin trils wr nut t th Byn Highln Rsrt, Hrr Springs, Mihign

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Designing A Uniformly Loaded Arch Or Cable

Designing A Uniformly Loaded Arch Or Cable Dsinin A Unirmy Ar Or C T pr wit tis ssn, i n t Nxt uttn r r t t tp ny p. Wn yu r n wit tis ssn, i n t Cntnts uttn r r t t tp ny p t rturn t t ist ssns. Tis is t Mx Eyt Bri in Stuttrt, Grmny, sin y Si

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

MATHEMATICS FOR MANAGEMENT BBMP1103

MATHEMATICS FOR MANAGEMENT BBMP1103 Objctivs: TOPIC : EXPONENTIAL AND LOGARITHM FUNCTIONS. Idntif pnntils nd lgrithmic functins. Idntif th grph f n pnntil nd lgrithmic functins. Clcult qutins using prprtis f pnntils. Clcult qutins using

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

XV Quantum Electrodynamics

XV Quantum Electrodynamics XV Qnt lctrdynics Fynn Rls fr QD An xl: Sry: iht Sts f Fynn Tchnis Fr rfrnc s: Hlzn&Mrtin s 86,8,9 Intrdctin t Prticl Physics ctr XV Cntnts R. Or Srin 005 Fynn rls sin 0 ty dl sin sin htn xtrnl lin in

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

On-Line Construction. of Suffix Trees. Overview. Suffix Trees. Notations. goo. Suffix tries

On-Line Construction. of Suffix Trees. Overview. Suffix Trees. Notations. goo. Suffix tries On-Line Cnstrutin Overview Suffix tries f Suffix Trees E. Ukknen On-line nstrutin f suffix tries in qudrti time Suffix trees On-line nstrutin f suffix trees in liner time Applitins 1 2 Suffix Trees A suffix

More information

CSI35 Chapter 11 Review

CSI35 Chapter 11 Review 1. Which of th grphs r trs? c f c g f c x y f z p q r 1 1. Which of th grphs r trs? c f c g f c x y f z p q r . Answr th qustions out th following tr 1) Which vrtx is th root of c th tr? ) wht is th hight

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times. 2 Pupi / Css Rr W ssum wr hs b r wh i hs b ihr s r us rry s hr ims. Nm: D Bu: fr i bus brhr u firs hf hp hm s uh i iv iv my my mr muh m w ih w Tik r pp push pu sh shu sisr s sm h h hir hr hs im k w vry

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware LG 43 Lctur #6 Mrk Mirtnik, Ph.D. Prfssr Th Univrsity f Dlwr mil: mirtni@c.udl.du Wv Prpgtin nd Plritin TM: Trnsvrs lctrmgntic Wvs A md is prticulr fild cnfigurtin. Fr givn lctrmgntic bundry vlu prblm,

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igts in th bs xnsion

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igits in th bs xnsion

More information

The Z transform techniques

The Z transform techniques h Z trnfor tchniqu h Z trnfor h th rol in dicrt yt tht th Lplc trnfor h in nlyi of continuou yt. h Z trnfor i th principl nlyticl tool for ingl-loop dicrt-ti yt. h Z trnfor h Z trnfor i to dicrt-ti yt

More information

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser Nots on Finit Automt Dprtmnt of Computr Scinc Profssor Goldrg Txtooks: Introduction to th Thory of Computtion y Michl Sipsr Elmnts of th Thory of Computtion y H. Lwis nd C. Ppdimitriou Ths nots contin

More information