Inflation and CMB. V. Mukhanov. Sektion Physik, LMU, München

Size: px
Start display at page:

Download "Inflation and CMB. V. Mukhanov. Sektion Physik, LMU, München"

Transcription

1 Inflaton and CMB V. Mukhanov Sekton Physk, LMU, München

2 Expandng Unverse: Facts Isotropy of Background Radaton COB δε E, Boomerang, Maxma,.... "photo" of the early Unverse, 1 5 n bg scales up to ct 1 28 cm when ts sze was n thousand tmes smaller that now ε Hubble law r r = at () χ v r = & r com r r v r aχcom r rate of expanson

3 Matter Dstrbuton Intal Condtons 43 At The the sze "ntal" l should moment be t compared = 1 sec, wth the sze the of sze the homogeneous, of causally sotropc part of the Unverse was 33 connect ed regon ct 1 cmbgger than l l ct ct a ct & & 28 1 cm a a ct Gravty s attractve force a! ntal rate of expanson current rate of expanson 9 a& & δε ε 5 In 1 causally dsconnected regon s / 1. In radaton domnated Unverse a& / a& 1 3!!! Homogenety, sotropy problem

4 Intal veloctes 43 At "ntal mome nt" ( t 1 se c) E kn E kn pot 2 a&... a& + E !!! For a gven matter dstrbuton error % would lead to falure n creaton of "our-type" Unvers e n"ntal veloctes" Flatness (=ntal veloctes) problem Int al cond tons we re VERY SPE CIAL (non gen erc)!?

5 Root of the problem: Gravty s attractve force Conjecture : Gravt perod of the Unverse evoluton a& 1 a & >> y was REPULSIV Edurng some a& / a& 1? noproblem s? How gravty can become "repulsve"? 4π G a&& = ( ε+3p ε a ) a 3 energy densty pressure acceleraton Only f ε +3p< a&& > "antgravty" INFLATION s the stage of accelerated expanson of the Unverse when the energy domnance condton s broken

6 a& decelerated Fredmann expanson a& a& t INFLATION Necessary condtons for successful nflaton: a & << a & 1 O () 1 E pot a& Ω = + Ω 1 Predcton kn E a& of nflaton! ct Transton from nflaton to Fredmann era should be "smooth" 2 t t

7 Scenaros R 1, α 4 S = 2, α +...RR + f ϕϕ ϕϕ, ( ), α V ϕ +... gd x 16π G 2 2 Hgher dervatve "new", chaotc,... scenaros If 1 "Old", "New" k 1 nflaton ε = & ϕ 2 + V ( ϕ) New, 2 chaotc... Chaotc ( Lnde, 1 p= & ϕ 2 Extended V( ϕ) 2 2 & ϕ V( ϕ) then p ε and ( ε p) ε 83) Natural, Supernatural <<, Hybrd, +3Power 2law < Fast oscllatng,... Whch concrete scenaro was realzed???

8 Quantum fluctuatons and galaxes Man bonus from nflaton- generaton of prmordal spectrum of nhomogene tes (Mukhanov, Chbsov, 81) Inflaton "washes away" all pre-nflatonary nhomogenetes However, n all scales there always reman nevetable quantum fluctuatons Example: Quantum metrc fluctuatons n Mnkowsk space lpl Today n galactc 1 33 h λ λ λ cm scales h < 1 58 Can quantum fluctuatons be amplfed up to -5 "needed" value 1 n expandng Unverse???

9 Perturbatons ( xt, ) = ( t) + ( xt, ) ϕ ϕ δϕ TT k ds = (1 + 2 Φ) dt a ( t)((1 2 Φ ) δk + hk ) dx dx gravtatonal potental gravty waves

10 Quantum metrc fluctuatons are bg enough n the scales close to the Planckan sc -5 (1 ) -33 ale (1 cm) only Purpose : Transfer these fluctuatons 28 to galactc scales (1 cm) r r Consder plane wave pertur baton: δϕ, Φ exp com ( k x) For gven k, λ ( cm) a/ k a( t) and the change com ph com of the ampltude wth tme depends on how bg s λ compared to the curvature scale (sze of Ensten lft) H phys 1 = a/ a&

11 3 p 1 δϕ Φ... and h 2 ε a H 1 h const δϕ p / H 1 ε

12 Scale Galactc scales H a/ a (no nflato) n 1 = & No nflaton-no chance ph to get bg fluctuatons n galactc scales λ a 1 H H 1 = a a & a a& aat &() & t a a

13 ( p ε ) 1/2 δϕ / Φ, 2 3 h Φk k 2 3 k h k Scalar perturbaton Gravty waves H 1 1/2 H ε 1 ε 1/2 2 p 1 3 < dε p k Ha+ Pl k Ha k Ha.92 Φ () k k < = O 1n <.97 1= S ε 1 S p / d ε lnε ε ε n 2 3 k h k = O < 1 () ε ε Pl k Ha 1/2 λ phys 1/2 T p () 1/2 1+ p = O 1 c S 1 k Hak Ha S + ε ε

14 Φ λ ct rec

15 Summary Input from HEP??? Idea and basc propertes of nflaton are esta blshed: Inflaton s the stage of accelerated expanson of the unverse wth graceful ext to Fredmann stage??? Homogenety, sotropy and flatness of the Unverse mechansm for the orgn of perturbat ons plus solutons of numeros "man made" problems ( monopoles,...) Robust predctons: 5 Spatally flat Unverse : Ω total = 1± 1 Near ly scale nvarant spectrum ( n S,96) Perturbatons are Gau ssan Gravty waves??? Energy scale of nflaton predcton of the perturbatons ampltude, concrete n s Transton from nflaton to Fredmann, reheatng mechansm The orgn of small number 1 characterzng perturbat ons -5

16 Comparson wth observatons: Present δt δt 1 ( ϕ) ( ϕ+ θ) = (2l+ 1) CPC l l(cos θ) T T ϕ 4π l 1 θ

17 Ω m 2 2 Ω b n Ω = 1,2±,2 =,99±,4(?) tot H = 71 km/sec Mpc Ω h =,24 ±,1 (4.4% baryons) b S Ω h =,14 ±,2 (27% darkmatter) m Ω m Ω b??? B-polarzaton ( proof pf grav. waves)

18 Comparson wth observatons: Future

19 "What really nterests me s whether God had any choce when he created the World" A. Ensten Inflaton was nevtable!!! (t s unque opportunty to create World startng from generc ntal condtons wth mnmal efforts)

20 Q & A Q : Does nflaton have a serous compet tor? A Q : : No PBB and TD vs. INFLATION Inflaton PBB TD Causalty + + n/a "No-har" + - n/a Graceful ext Perturbatons + -? n/a + -? - Could we get from observatons somethng useful for "M-theor y"? A: Unfortunately not too much...

21 Q : Can we get n nflatonary models Ω A: <1, large devatons from scale nvarence, nongaussan perturbatons? In prncple YES addng extra fne-tuned parameters n the model, BUT prce 7 > 1 compared to 1/3 for standard nflaton perfomance Q : Does nflaton completely solve the problem of ntal condtons? A:??? Q : What was before nflaton???"god? creates??? new worlds constantly" Q : Instanton "The world and tme had both one begnnng. The world was made not n tme, but smulteneously wth tme " Zohar 1,89a Sant Augustne of Hppo, Can prenflatonary stage have observatonally varfable consequences? A: Probably not, but who knows...?

Quantum eld theory in curved spacetime. Introduction on ination. Dennis Sauter. Seminar coordinator. Dr. Javier Rubio

Quantum eld theory in curved spacetime. Introduction on ination. Dennis Sauter. Seminar coordinator. Dr. Javier Rubio Quantum eld theory n curved spacetme Introducton on naton Denns Sauter Semnar coordnator Dr. Javer Rubo CONTENTS Contents 1 Introducton 1 2 Problems n standard cosmology 2 2.1 Horzon problem..........................

More information

6 Initial Conditions from Inflation

6 Initial Conditions from Inflation 6 Intal Condtons from Inflaton Arguably, the most mportant consequence of nflaton s the fact that t ncludes a natural mechansm to produce prmordal seeds for all of the large-scale structures we see around

More information

Bianchi Type V String Cosmological Model with Variable Deceleration Parameter

Bianchi Type V String Cosmological Model with Variable Deceleration Parameter September 013 Volume 4 Issue 8 pp. 79-800 79 Banch Type V Strng Cosmologcal Model wth Varable Deceleraton Parameter Kanka Das * &Tazmn Sultana Department of Mathematcs, Gauhat Unversty, Guwahat-781014,

More information

r i r j 3. (2) Gm j m i r i (r i r j ) r i r j 3. (3)

r i r j 3. (2) Gm j m i r i (r i r j ) r i r j 3. (3) N-body problem There s a lot of nterestng physcs related to the nteractons of a few bodes, but there are also many systems that can be well-approxmated by a large number of bodes that nteract exclusvely

More information

Astro 507 Lecture 28 April 2, 2014

Astro 507 Lecture 28 April 2, 2014 Astro 507 Lecture 28 April 2, 2014 Announcements: PS 5 due now Preflight 6 posted today last PF! 1 Last time: slow-roll inflation scalar field dynamics in an expanding universe slow roll conditions constrain

More information

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold Prespacetme Journal December 06 Volume 7 Issue 6 pp. 095-099 Pund, A. M. & Avachar, G.., Perfect Flud Cosmologcal Model n the Frame Work Lyra s Manfold Perfect Flud Cosmologcal Model n the Frame Work Lyra

More information

BULK VISCOUS BIANCHI TYPE IX STRING DUST COSMOLOGICAL MODEL WITH TIME DEPENDENT TERM SWATI PARIKH Department of Mathematics and Statistics,

BULK VISCOUS BIANCHI TYPE IX STRING DUST COSMOLOGICAL MODEL WITH TIME DEPENDENT TERM SWATI PARIKH Department of Mathematics and Statistics, UL VISCOUS INCHI YPE IX SRING DUS COSMOLOGICL MODEL WIH IME DEPENDEN ERM SWI PRIH Department of Mathematcs and Statstcs, Unversty College of Scence, MLSU, Udapur, 3300, Inda UL YGI Department of Mathematcs

More information

A Comparative Study between Einstein s Theory and Rosen s Bimetric Theory through Perfect Fluid Cosmological Model

A Comparative Study between Einstein s Theory and Rosen s Bimetric Theory through Perfect Fluid Cosmological Model Internatonal Journal of dvanced Research n Physcal Scence (IJRPS) Volume, Issue 5, May 05, PP -9 ISSN 9-787 (Prnt) & ISSN 9-788 (Onlne) www. arcjournals. org omparatve Study between Ensten s Theory and

More information

Locally Rotationally Symmetric Bianchi Type I Massive String Cosmological Models with Bulk Viscosity and Decaying Vacuum Energy Density

Locally Rotationally Symmetric Bianchi Type I Massive String Cosmological Models with Bulk Viscosity and Decaying Vacuum Energy Density Advances n Astrophyscs, Vol., No., August 06 Locally otatonally Symmetrc Banch Type I Massve Strng Cosmologcal Models wth Bulk Vscosty and Decayng Vacuum Energy Densty aj Bal * and Swat Sngh States Professor

More information

Non-gaussianity in axion N-flation models

Non-gaussianity in axion N-flation models Non-gaussanty n axon N-flaton models Soo A Km Kyung Hee Unversty Based on arxv:1005.4410 by SAK, Andrew R. Lddle and Davd Seery (Sussex), and earler papers by SAK and Lddle. COSMO/CosPA 2010 @ Unversty

More information

Lecture 12. Inflation. What causes inflation. Horizon problem Flatness problem Monopole problem. Physical Cosmology 2011/2012

Lecture 12. Inflation. What causes inflation. Horizon problem Flatness problem Monopole problem. Physical Cosmology 2011/2012 Lecture 1 Inflation Horizon problem Flatness problem Monopole problem What causes inflation Physical Cosmology 11/1 Inflation What is inflation good for? Inflation solves 1. horizon problem. flatness problem

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

8. Superfluid to Mott-insulator transition

8. Superfluid to Mott-insulator transition 8. Superflud to Mott-nsulator transton Overvew Optcal lattce potentals Soluton of the Schrödnger equaton for perodc potentals Band structure Bloch oscllaton of bosonc and fermonc atoms n optcal lattces

More information

International Journal of Mathematics Trends and Technology (IJMTT) Volume 48 Number 2 August 2017

International Journal of Mathematics Trends and Technology (IJMTT) Volume 48 Number 2 August 2017 Internatonal Journal of Mathematcs Trends and Technoloy (IJMTT) Volume 8 Number Auust 7 Ansotropc Cosmolocal Model of Cosmc Strn wth Bulk Vscosty n Lyra Geometry.N.Patra P.G. Department of Mathematcs,

More information

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity Int. Journal of Math. Analyss, Vol. 6, 212, no. 22, 195-114 Unqueness of Weak Solutons to the 3D Gnzburg- Landau Model for Superconductvty Jshan Fan Department of Appled Mathematcs Nanjng Forestry Unversty

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Kaluza-Klein Inflationary Universe in General Relativity

Kaluza-Klein Inflationary Universe in General Relativity November 0 Vol. Issue. 88-834 dhav, K. S., Kaluza-Klen Inflatonary Unverse n General Relatvty 88 rtcle Kaluza-Klen Inflatonary Unverse n General Relatvty Kshor. S. dhav * Deartment of Mathematcs, Sant

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

11 TH CONFERENCE on DYNAMICAL SYSTEMS THEORY AND APPLICATIONS. December 5-8, Łódź, Poland

11 TH CONFERENCE on DYNAMICAL SYSTEMS THEORY AND APPLICATIONS. December 5-8, Łódź, Poland TH CONFERENCE on DYNAMICAL SYSTEMS THEORY AND APPLICATIONS December 5-8,. Łódź, Poland Emergent gravty n start of cosmologcal nflaton as by product of dynamcal systems mappngs? Andrew Walcott Becwth Abstract:

More information

Solutions to Exercises in Astrophysical Gas Dynamics

Solutions to Exercises in Astrophysical Gas Dynamics 1 Solutons to Exercses n Astrophyscal Gas Dynamcs 1. (a). Snce u 1, v are vectors then, under an orthogonal transformaton, u = a j u j v = a k u k Therefore, u v = a j a k u j v k = δ jk u j v k = u j

More information

Holographic Dark Energy in LRS Bianchi Type-II Space Time

Holographic Dark Energy in LRS Bianchi Type-II Space Time Internatonal Journal Of Matheatcs And Statstcs Inventon (IJMSI E-ISSN: 767 P-ISSN: - 759 Www.Ijs.Org Volue Issue 09 Septeber. 0 PP-8-6 Holographc Dark Energy n LS Banch Type-II Space Te Gtuan Sara esearch

More information

Ionization fronts in HII regions

Ionization fronts in HII regions Ionzaton fronts n HII regons Intal expanson of HII onzaton front s supersonc, creatng a shock front. Statonary frame: front advances nto neutral materal In frame where shock front s statonary, neutral

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

Perturbation theory for cosmologies with non-linear structure

Perturbation theory for cosmologies with non-linear structure Perturbaton theory for cosmologes wth non-lnear structure Goldberg, S; Gallagher, C; Clfton, T 2017 Amercan Physcal Socety Ths s a pre-copyedted, author-produced verson of an artcle accepted for publcaton

More information

Quantum Gravity and the Naturalness Problem

Quantum Gravity and the Naturalness Problem Quantum Gravty and the Naturalness Problem Hkaru KAWAI (Kyoto unv.) 2012/ 04/ 03 At Osaka Cty Unversty I wll dscuss the low energy effectve acton of quantum gravty and the possblty of solvng the naturalness

More information

Rectilinear motion. Lecture 2: Kinematics of Particles. External motion is known, find force. External forces are known, find motion

Rectilinear motion. Lecture 2: Kinematics of Particles. External motion is known, find force. External forces are known, find motion Lecture : Kneatcs of Partcles Rectlnear oton Straght-Lne oton [.1] Analtcal solutons for poston/veloct [.1] Solvng equatons of oton Analtcal solutons (1 D revew) [.1] Nuercal solutons [.1] Nuercal ntegraton

More information

k t+1 + c t A t k t, t=0

k t+1 + c t A t k t, t=0 Macro II (UC3M, MA/PhD Econ) Professor: Matthas Kredler Fnal Exam 6 May 208 You have 50 mnutes to complete the exam There are 80 ponts n total The exam has 4 pages If somethng n the queston s unclear,

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

Negative Matter, Repulsion Force, Dark Matter and Inflation. Cosmos, Higgs Mechanism

Negative Matter, Repulsion Force, Dark Matter and Inflation. Cosmos, Higgs Mechanism Negatve atter, epulson Force, Dark atter and Inflaton Cosmos, Hggs echansm Y-Fang Chang Department of Physcs, Yunnan Unversty, Kunmng, 659, Chna e-mal: yfangchang3@hotmal.com) Abstract: The Drac negatve

More information

Non-singular quantum cosmology and scale invariant perturbations

Non-singular quantum cosmology and scale invariant perturbations th AMT Toulouse November 6, 2007 Patrick Peter Non-singular quantum cosmology and scale invariant perturbations Institut d Astrophysique de Paris GRεCO AMT - Toulouse - 6th November 2007 based upon Tensor

More information

Turbulent Flow. Turbulent Flow

Turbulent Flow. Turbulent Flow http://www.youtube.com/watch?v=xoll2kedog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Caothc fluctuatons wth a wde range of frequences and

More information

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg PHY 454 - celestal-mechancs - J. Hedberg - 207 Celestal Mechancs. Basc Orbts. Why crcles? 2. Tycho Brahe 3. Kepler 4. 3 laws of orbtng bodes 2. Newtonan Mechancs 3. Newton's Laws. Law of Gravtaton 2. The

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV)

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV) INFLATION - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ 10 15 GeV) -Phenomenologically similar to Universe with a dominant cosmological constant, however inflation needs to end

More information

Lagrangian Field Theory

Lagrangian Field Theory Lagrangan Feld Theory Adam Lott PHY 391 Aprl 6, 017 1 Introducton Ths paper s a summary of Chapter of Mandl and Shaw s Quantum Feld Theory [1]. The frst thng to do s to fx the notaton. For the most part,

More information

Lecture Notes 7: The Unruh Effect

Lecture Notes 7: The Unruh Effect Quantum Feld Theory for Leg Spnners 17/1/11 Lecture Notes 7: The Unruh Effect Lecturer: Prakash Panangaden Scrbe: Shane Mansfeld 1 Defnng the Vacuum Recall from the last lecture that choosng a complex

More information

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry)

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry) Introducton to Densty Functonal Theory Jereme Zaffran nd year-msc. (anochemstry) A- Hartree appromatons Born- Oppenhemer appromaton H H H e The goal of computatonal chemstry H e??? Let s remnd H e T e

More information

14 The Statement of AdS/CFT

14 The Statement of AdS/CFT 14 The Statement of AdS/CFT 14.1 The Dctonary Choose coordnates ds 2 = `2 z 2 (dz2 + dx 2 ) (14.1) on Eucldean AdS d+1,wherex s a coordnate on R d.theboundarysatz =0. We showed above that scatterng problems

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

Continuous Time Markov Chain

Continuous Time Markov Chain Contnuous Tme Markov Chan Hu Jn Department of Electroncs and Communcaton Engneerng Hanyang Unversty ERICA Campus Contents Contnuous tme Markov Chan (CTMC) Propertes of sojourn tme Relatons Transton probablty

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 9 Inflation - part I Having discussed the thermal history of our universe and in particular its evolution at times larger than 10 14 seconds

More information

Unication models of dark matter and dark energy

Unication models of dark matter and dark energy Unication models of dark matter and dark energy Neven ƒaplar March 14, 2012 Neven ƒaplar () Unication models March 14, 2012 1 / 25 Index of topics Some basic cosmology Unication models Chaplygin gas Generalized

More information

Introduction to Baryogenesis and Leptogenesis

Introduction to Baryogenesis and Leptogenesis Introducton to Baryogeness and Leptogeness 1 Introducton prepared by K.S.Lm MPIK Dvson for Partcle and Astropartcle Physcs PhD Student Semnar on Inflaton and Leptogeness 2011 Snce antpartcles were frst

More information

Connecting Quarks to the Cosmos

Connecting Quarks to the Cosmos Connecting Quarks to the Cosmos Institute for Nuclear Theory 29 June to 10 July 2009 Inflationary Cosmology II Michael S. Turner Kavli Institute for Cosmological Physics The University of Chicago Michael

More information

Supplemental Material: Causal Entropic Forces

Supplemental Material: Causal Entropic Forces Supplemental Materal: Causal Entropc Forces A. D. Wssner-Gross 1, 2, and C. E. Freer 3 1 Insttute for Appled Computatonal Scence, Harvard Unversty, Cambrdge, Massachusetts 02138, USA 2 The Meda Laboratory,

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Unification Paradigm

Unification Paradigm Unfcaton Paradgm GUT 34 10 m D=10 Unfcaton of strong, weak and electromagnetc nteractons wthn Grand Unfed Theores s the new step n unfcaton of all forces of Nature Creaton of a unfed theory of everythng

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

Bielefeld - 09/23/09. Observing Alternatives to Inflation. Patri Pe r. Institut d Astrophysique de Paris. Bielefeld - 23 rd september 2009

Bielefeld - 09/23/09. Observing Alternatives to Inflation. Patri Pe r. Institut d Astrophysique de Paris. Bielefeld - 23 rd september 2009 Bielefeld - 09/23/09 Observing Alternatives to Inflation Patri Pe r Institut d Astrophysique de Paris GRεCO Bielefeld - 23 rd september 2009 Problems with standard model: Singularity Horizon Flatness Homogeneity

More information

Cosmology with CMB & LSS:

Cosmology with CMB & LSS: Cosmology with CMB & LSS: the Early universe VSP08 lecture 4 (May 12-16, 2008) Tarun Souradeep I.U.C.A.A, Pune, India Ω +Ω +Ω +Ω + Ω +... = 1 0 0 0 0... 1 m DE K r r The Cosmic Triangle (Ostriker & Steinhardt)

More information

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15 NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound

More information

Galaxy Formation and non Linear collapse Part I

Galaxy Formation and non Linear collapse Part I Galaxy Formaton and non Lnear collapse Part I By Gudo Chncarn Unversty Mlano - Bcocca Cosmology Lectures Ths part follows to a large extent Padmanabhan Cosmology 4-5 1 General Consderatons We have seen

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Lecture 20: Noether s Theorem

Lecture 20: Noether s Theorem Lecture 20: Noether s Theorem In our revew of Newtonan Mechancs, we were remnded that some quanttes (energy, lnear momentum, and angular momentum) are conserved That s, they are constant f no external

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

From inflation to the CMB to today s universe. I - How it all begins

From inflation to the CMB to today s universe. I - How it all begins From inflation to the CMB to today s universe I - How it all begins Raul Abramo Physics Institute - University of São Paulo abramo@fma.if.usp.br redshift Very brief cosmic history 10 9 200 s BBN 1 MeV

More information

Annexes. EC.1. Cycle-base move illustration. EC.2. Problem Instances

Annexes. EC.1. Cycle-base move illustration. EC.2. Problem Instances ec Annexes Ths Annex frst llustrates a cycle-based move n the dynamc-block generaton tabu search. It then dsplays the characterstcs of the nstance sets, followed by detaled results of the parametercalbraton

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

arxiv: v3 [hep-ph] 5 Jan 2015

arxiv: v3 [hep-ph] 5 Jan 2015 Baryogeness from Hawkng Radaton Anson Hook 1 1 School of Natural Scences, Insttute for Advanced Study Prnceton, NJ 0850, USA We show that n the presence of a chemcal potental, black hole evaporaton generates

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

Causal Diamonds. M. Aghili, L. Bombelli, B. Pilgrim

Causal Diamonds. M. Aghili, L. Bombelli, B. Pilgrim Causal Damonds M. Aghl, L. Bombell, B. Plgrm Introducton The correcton to volume of a causal nterval due to curvature of spacetme has been done by Myrhem [] and recently by Gbbons & Solodukhn [] and later

More information

Towards Multi-field Inflation with a Random Potential

Towards Multi-field Inflation with a Random Potential Towards Multi-field Inflation with a Random Potential Jiajun Xu LEPP, Cornell Univeristy Based on H. Tye, JX, Y. Zhang, arxiv:0812.1944 and work in progress 1 Outline Motivation from string theory A scenario

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

) is the unite step-function, which signifies that the second term of the right-hand side of the

) is the unite step-function, which signifies that the second term of the right-hand side of the Casmr nteracton of excted meda n electromagnetc felds Yury Sherkunov Introducton The long-range electrc dpole nteracton between an excted atom and a ground-state atom s consdered n ref. [1,] wth the help

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

Newton s third law is wrong

Newton s third law is wrong Newton s thrd law s wrong I dscovered a new Gravtaton theory whch breaks the wall of Planck scale! Abstract My Nobel Prze - Dscoveres I explaned why Newton s thrd law s wrong! In the last 300 years you

More information

1 Geometry and Dynamics

1 Geometry and Dynamics 1 Geometry and Dynamcs The further out we look nto the unverse, the smpler t seems to get (see fg. 1.1). Averaged over large scales, the clumpy dstrbuton of galaxes becomes more and more sotropc.e. ndependent

More information

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1 A mass s attached to a long, massless rod. The mass s close to one end of the rod. Is t easer to balance the rod on end wth the mass near the top or near the bottom? Hnt: Small α means sluggsh behavor

More information

Quantifying Uncertainty

Quantifying Uncertainty Partcle Flters Quantfyng Uncertanty Sa Ravela M. I. T Last Updated: Sprng 2013 1 Quantfyng Uncertanty Partcle Flters Partcle Flters Appled to Sequental flterng problems Can also be appled to smoothng problems

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

arxiv:gr-qc/ v2 1 Nov 2005

arxiv:gr-qc/ v2 1 Nov 2005 Alternatve Methods of Descrbng Structure Formaton n the Lemaître-Tolman Model Charles Hellaby Department of Mathematcs and Appled Mathematcs, Unversty of Cape Town, Rondebosch 7701, South Afrca Andrzej

More information

Inflation. By The amazing sleeping man, Dan the Man and the Alices

Inflation. By The amazing sleeping man, Dan the Man and the Alices Inflation By The amazing sleeping man, Dan the Man and the Alices AIMS Introduction to basic inflationary cosmology. Solving the rate of expansion equation both analytically and numerically using different

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

6.3.4 Modified Euler s method of integration

6.3.4 Modified Euler s method of integration 6.3.4 Modfed Euler s method of ntegraton Before dscussng the applcaton of Euler s method for solvng the swng equatons, let us frst revew the basc Euler s method of numercal ntegraton. Let the general from

More information

A873: Cosmology Course Notes. VII. Inflation

A873: Cosmology Course Notes. VII. Inflation Readings VII. Inflation Alan Guth s Inflationary Universe paper (Phys Rev D, Vol. 23, p. 347, 1981) is a classic, well worth reading. The basics are well covered by Ryden, Chapter 11. For more physics

More information

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

The Cosmological Principle

The Cosmological Principle Cosmological Models John O Byrne School of Physics University of Sydney Using diagrams and pp slides from Seeds Foundations of Astronomy and the Supernova Cosmology Project http://www-supernova.lbl.gov

More information

primordial avec les perturbations cosmologiques *

primordial avec les perturbations cosmologiques * Tests de l Univers primordial avec les perturbations cosmologiques * Filippo Vernizzi Batz-sur-Mer, 16 octobre, 2008 * Soustitré en anglais What is the initial condition? Standard single field inflation

More information

Computational Physics and Astrophysics

Computational Physics and Astrophysics Cosmological Inflation Kostas Kokkotas University of Tübingen, Germany and Pablo Laguna Georgia Institute of Technology, USA Spring 2012 Our Universe Cosmic Expansion Co-moving coordinates expand at exactly

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

Errors in Nobel Prize for Physics (7) Improper Schrodinger Equation and Dirac Equation

Errors in Nobel Prize for Physics (7) Improper Schrodinger Equation and Dirac Equation Errors n Nobel Prze for Physcs (7) Improper Schrodnger Equaton and Drac Equaton u Yuhua (CNOOC Research Insttute, E-mal:fuyh945@sna.com) Abstract: One of the reasons for 933 Nobel Prze for physcs s for

More information

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai.

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Constraints on Inflationary Correlators From Conformal Invariance Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Based on: 1) I. Mata, S. Raju and SPT, JHEP 1307 (2013) 015 2) A. Ghosh,

More information

CFD VALIDATION OF STRATIFIED TWO-PHASE FLOWS IN A HORIZONTAL CHANNEL

CFD VALIDATION OF STRATIFIED TWO-PHASE FLOWS IN A HORIZONTAL CHANNEL CFD VALIDATION OF STRATIFIED TWO-PHASE FLOWS IN A HORIZONTAL CHANNEL 1. Introducton Chrstophe Vallée and Thomas Höhne In dfferent scenaros of small break Loss of Coolant Accdent (SB-LOCA), stratfed twophase

More information

Grand canonical Monte Carlo simulations of bulk electrolytes and calcium channels

Grand canonical Monte Carlo simulations of bulk electrolytes and calcium channels Grand canoncal Monte Carlo smulatons of bulk electrolytes and calcum channels Thess of Ph.D. dssertaton Prepared by: Attla Malascs M.Sc. n Chemstry Supervsor: Dr. Dezső Boda Unversty of Pannona Insttute

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

CIE4801 Transportation and spatial modelling Trip distribution

CIE4801 Transportation and spatial modelling Trip distribution CIE4801 ransportaton and spatal modellng rp dstrbuton Rob van Nes, ransport & Plannng 17/4/13 Delft Unversty of echnology Challenge the future Content What s t about hree methods Wth specal attenton for

More information

Introduction to Antennas & Arrays

Introduction to Antennas & Arrays Introducton to Antennas & Arrays Antenna transton regon (structure) between guded eaves (.e. coaxal cable) and free space waves. On transmsson, antenna accepts energy from TL and radates t nto space. J.D.

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information