primordial avec les perturbations cosmologiques *

Size: px
Start display at page:

Download "primordial avec les perturbations cosmologiques *"

Transcription

1 Tests de l Univers primordial avec les perturbations cosmologiques * Filippo Vernizzi Batz-sur-Mer, 16 octobre, 2008 * Soustitré en anglais

2 What is the initial condition?

3 Standard single field inflation Vacuum energy of an overdamped homogeneous scalar field && a & φ + 3 & φ + V' φ = a ( ) 0 V ( ) φ φ Slow-roll: Expansion rate >> spacetime variation:

4 Cosmic acceleration H 1 t time a() t

5 Cosmic acceleration H 1 t time a( t)

6 Hubble exit H 1 t time a( t)

7 End of inflation H 1 t time a( t)

8 In the limit h = 0 we are left with nothing!

9 Scalar field fluctuations Perturbations: Amplification of vacuum quantum fluctuations by an external classical field, the expansion of the Universe: Field fluctuations imprint curvature perturbations (time delay in the expansion):

10 Cosmic acceleration H 1 t time a() t

11 Cosmic acceleration H 1 t time a( t)

12 Hubble exit H 1 t time a( t)

13 End of inflation H 1 t time a( t)

14 Standard evolution: deceleration H 1 t time a( t)

15 Hubble re-entry entry H 1 a( t) t time

16 Hubble re-entry entry H 1 t time

17 Cosmic Microwave Background Radiation distribution or curvature perts distribution when the Universe was 1090 times smaller than today T ~ δt ζ ~ 10 5 WMAP5

18 Power spectrum C l Scale-invariant spectrum Hydrodynamical oscillations of the plasma Nolta et al. 08

19 Deviation from n S =0 The power spectrum slowly varies during inflation: we expect a deviation from an exact scale invariant spectrum

20 Blue spectrum n S >0

21 Red spectrum n S <0

22 Gravity waves Scalar fluctuations (curvature): Tensor fluctuations (free gravity): Inflation produces also gravity waves Some models predict the observable amount (r > 0.01), some much less At the moment r < 0.2 (95% CL) The strongest smoking-gun of inflation: polarization

23 Testing inflationary models Scalar fluctuations (curvature): Tensor fluctuations (free gravity): Ratio tensor to scalar flucs Komatsu et al. 08 Tilt

24 Wait a minute Who tells us that the inflaton is a scalar field with standard action? Who tells us that the inflaton is responsible of the perturbations? Komatsu et al. 08 These constraints can be very misleading!

25 Non-Gaussianities Potential source of information in the mode coupling in this map: Happy families are all alike; every unhappy family is unhappy in its own way. Tolstoy, Pisma Zh.Eksp.Teor.Fiz.Ann.Karen WMAP5

26 What do we measure? Information in the amplitude and shape: Local non-gaussianity (squeezed state): r r 2 G NL G ( x) = ζ ( x) f ζ ( x) ζ + r k r 2 k r 1 k r 3 or equilateral one: k r 1 k r k r 2 3 Babich, Creminelli, Zaldarriaga 04

27 How much non-gaussian? Experimentally: CMB still gives the best constraints so far (but LSS will be important in the future) Current constraints: local 9 < f < 111 ( l max NL = equil 151 < f < 253 ( l max NL = 500) 700) Komatsu et al. 08

28 We look for a correlator: How do we compute it? Not a scattering amplitude: Vacuum of the interacting theory It is an equal time correlator Maldacena 02; Weinberg 05 ( in-in or Schwinger-Keldysh formalism) We measure quantum correlation functions in the sky!

29 Standard slow-roll inflation Slow-roll implies weak coupling: η H ~ V''' V' 4 H V''' H ~ O ε, η 10 ( 2 2 ) 5 V'''' ( 3 3 ) ( 5 10 ) 2 ~ O ε,η The inflaton is an extremely weakly coupled field! Mixing with gravity leads to stronger signal, but still small Expanding gravity + scalar field action at 3 rd -order: Maldacena 02 ζ k r 2 ζ k r 3 ζ k r 1

30 Ruling out slow-roll inflation Assuming: perturbations generated by single scalar inflaton with canonical kinetic term rolling down a smooth potential (slow-rolling) its fluctuations initially in the vacuum Detection of NG could rule out the largest class of inflationary models Major breakthrough in cosmology Classes of models generating sizeable Modified actions equilateral Multi-field models local

31 Beyond slow-roll Modified kinetic term: k-inflation Amendariz-Picon, Damour, Mukhanov 99 Expand it around an inflationary background t : r π ( t, x ) t = const φ = const H & ( ) δφ π = = & φ ζ H Speed of sound: m H& 2 2 P cs = 2 2 mph& 2X P,XX P,XXX = 0

32 Beyond slow-roll 2 1 c s Standard action equil f NL ~ 0 2 <<1 c s DBI inflation f equil 1 NL ~ 2 cs Silverstein, Tong 04 2 c s > % CL Speed of sound enters in another observable: c s Way of constraining operators of the inflaton

33 Non-Gaussianity detected? A detection of NG was claimed recently (note: only 95% CL) local 27 < f NL < 147 & Wandelt '07 [WMAP 3yr, l max Yadav = 750] but it was not confirmed by new data local 9 < f NL < 111 et al '08 [WMAP 5yr, l max Komatsu = 500] In this case we need a second field! Consistency relation applies to any single field models: Maldacena 02 k r 2 2 k r 1 The effect of the large scale mode is to rescale the background: ζ r k 1 x r x r 3 a k r 3 0 r ζ ( x1 ) ( t) a( t) = a ( t) e 0

34 More than one field Inhomogeneous reheating Inflaton decay rate depends on a light field: beginning of radiation era end of inflation Γ = m reheating φ g 2 ( σ ) Bernardeau, Uzan, 02 Kofman 04 Dvali, Gruzinov, Zaldarriaga 03 FV 04 modulated perturbations no perturbations ζ = δσ b + σ δσ σ local 1 f NL ~ b Local relation, same point x: peaked in the squeezed configuration k r 2 k r 1 k r 3

35 Intrinsic non-linearities When perturbations re-enter the Hubble radius, nonlinearities develop at the level of 2 nd -order perturbations: Planck CMBPOL LSS f NL ~ 5 f NL ~ 2 local ~ 1 f NL Using the same nonlinear machinery of inflation we can also study the post-inflationary Universe: Creminelli, D Amico, Norena, FV 08 What is the 3-point function of the CMB in absence of primordial non-gaussianies? Pitrou, Uzan, Bernardeau 08 Creminelli, D Amico, Norena, FV, in progress

36 Observations confirm inflation: Conclusions Tilt (deviation from scale-invariant spectrum): hint of inflation Gravity waves (still far-away): strongest confirmation of inflation but faraway Non-Gaussianities (alternative to standard methods): solid smoking-gun of new physics

37 Conclusions Non-Gaussianities: powerful tool to discriminate between models If observed of local form, then single field inflation is ruled-out If observed of equil. form, then standard slow-roll inflation is ruled-out If nothing is observed, we hope to see 2 nd -order effects f NL ~ 100 Experimental constraints Non-minimal models local f NL vs. f equil NL ~ 1 Second order effects on observables ~ O( ε ) Single-field slow-roll inflation

The multi-field facets of inflation. David Langlois (APC, Paris)

The multi-field facets of inflation. David Langlois (APC, Paris) The multi-field facets of inflation David Langlois (APC, Paris) Introduction After 25 years of existence, inflation has been so far very successful to account for observational data. The nature of the

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

The Theory of Inflationary Perturbations

The Theory of Inflationary Perturbations The Theory of Inflationary Perturbations Jérôme Martin Institut d Astrophysique de Paris (IAP) Indian Institute of Technology, Chennai 03/02/2012 1 Introduction Outline A brief description of inflation

More information

Primordial perturbations from inflation. David Langlois (APC, Paris)

Primordial perturbations from inflation. David Langlois (APC, Paris) Primordial perturbations from inflation David Langlois (APC, Paris) Cosmological evolution Homogeneous and isotropic Universe Einstein s equations Friedmann equations The Universe in the Past The energy

More information

Symmetries! of the! primordial perturbations!

Symmetries! of the! primordial perturbations! Paolo Creminelli, ICTP Trieste! Symmetries! of the! primordial perturbations! PC, 1108.0874 (PRD)! with J. Noreña and M. Simonović, 1203.4595! ( with G. D'Amico, M. Musso and J. Noreña, 1106.1462 (JCAP)!

More information

Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian?

Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian? Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian? Eiichiro Komatsu The University of Texas at Austin Colloquium at the University of Oklahoma, February 21, 2008 1 Messages

More information

Origins and observations of primordial non-gaussianity. Kazuya Koyama

Origins and observations of primordial non-gaussianity. Kazuya Koyama Origins and observations of primordial non-gaussianity Kazuya Koyama University of Portsmouth Primordial curvature perturbations Komatsu et.al. 008 Proved by CMB anisotropies nearly scale invariant ns

More information

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012 Non-Gaussianity in the CMB Kendrick Smith (Princeton) Whistler, April 2012 Why primordial non-gaussianity? Our best observational windows on the unknown physics of inflation are: The gravity wave amplitude

More information

Non-Gaussianities in String Inflation. Gary Shiu

Non-Gaussianities in String Inflation. Gary Shiu Non-Gaussianities in String Inflation Gary Shiu University of Wisconsin, Madison Frontiers in String Theory Workshop Banff, February 13, 2006 Collaborators: X.G. Chen, M.X. Huang, S. Kachru Introduction

More information

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth Large Primordial Non- Gaussianity from early Universe Kazuya Koyama University of Portsmouth Primordial curvature perturbations Proved by CMB anisotropies nearly scale invariant n s = 0.960 ± 0.013 nearly

More information

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation Guido D Amico Center for Cosmology and Particle Physics New York University Unwinding Inflation New Lights in Cosmology from the CMB ICTP Trieste, Summer 2013 with Roberto Gobbetti, Matthew Kleban, Marjorie

More information

Hunting for Primordial Non-Gaussianity. Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008

Hunting for Primordial Non-Gaussianity. Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008 Hunting for Primordial Non-Gaussianity fnl Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008 1 What is fnl? For a pedagogical introduction to fnl, see Komatsu, astro-ph/0206039

More information

WMAP 5-Year Results: Measurement of fnl

WMAP 5-Year Results: Measurement of fnl WMAP 5-Year Results: Measurement of fnl Eiichiro Komatsu (Department of Astronomy, UT Austin) Non-Gaussianity From Inflation, Cambridge, September 8, 2008 1 Why is Non-Gaussianity Important? Because a

More information

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth Misao Sasaki YITP, Kyoto University 9 June, 009 ICG, Portsmouth contents 1. Inflation and curvature perturbations δn formalism. Origin of non-gaussianity subhorizon or superhorizon scales 3. Non-Gaussianity

More information

Observing Quantum Gravity in the Sky

Observing Quantum Gravity in the Sky Observing Quantum Gravity in the Sky Mark G. Jackson Instituut-Lorentz for Theoretical Physics Collaborators: D. Baumann, M. Liguori, P. D. Meerburg, E. Pajer, J. Polchinski, J. P. v.d. Schaar, K. Schalm,

More information

Priming the BICEP. Wayne Hu Chicago, March BB

Priming the BICEP. Wayne Hu Chicago, March BB Priming the BICEP 0.05 0.04 0.03 0.02 0.01 0 0.01 BB 0 50 100 150 200 250 300 Wayne Hu Chicago, March 2014 A BICEP Primer How do gravitational waves affect the CMB temperature and polarization spectrum?

More information

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology Yi-Fu Cai June 18, 2013 in Hefei CYF, Chang, Chen, Easson & Qiu, 1304.6938 Two Standard Models Cosmology CMB: Cobe (1989), WMAP (2001),

More information

Inflation and the Primordial Perturbation Spectrum

Inflation and the Primordial Perturbation Spectrum PORTILLO 1 Inflation and the Primordial Perturbation Spectrum Stephen K N PORTILLO Introduction The theory of cosmic inflation is the leading hypothesis for the origin of structure in the universe. It

More information

Observational signatures of holographic models of inflation

Observational signatures of holographic models of inflation Observational signatures of holographic models of inflation Paul McFadden Universiteit van Amsterdam First String Meeting 5/11/10 This talk I. Cosmological observables & non-gaussianity II. Holographic

More information

A modal bispectrum estimator for the CMB bispectrum

A modal bispectrum estimator for the CMB bispectrum A modal bispectrum estimator for the CMB bispectrum Michele Liguori Institut d Astrophysique de Paris (IAP) Fergusson, Liguori and Shellard (2010) Outline Summary of the technique 1. Polynomial modes 2.

More information

Non-linear perturbations from cosmological inflation

Non-linear perturbations from cosmological inflation JGRG0, YITP, Kyoto 5 th September 00 Non-linear perturbations from cosmological inflation David Wands Institute of Cosmology and Gravitation University of Portsmouth summary: non-linear perturbations offer

More information

Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky.

Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky. Inflation from High Energy Physics and non-gaussianities Hassan Firouzjahi IPM, Tehran Celebrating DBI in the Sky 31 Farvardin 1391 Outline Motivation for Inflation from High Energy Physics Review of String

More information

Second Order CMB Perturbations

Second Order CMB Perturbations Second Order CMB Perturbations Looking At Times Before Recombination September 2012 Evolution of the Universe Second Order CMB Perturbations 1/ 23 Observations before recombination Use weakly coupled particles

More information

Connecting Quarks to the Cosmos

Connecting Quarks to the Cosmos Connecting Quarks to the Cosmos Institute for Nuclear Theory 29 June to 10 July 2009 Inflationary Cosmology II Michael S. Turner Kavli Institute for Cosmological Physics The University of Chicago Michael

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

Curvaton model for origin of structure! after Planck

Curvaton model for origin of structure! after Planck Implications of Planck for Fundamental Physics Manchester, 8 th May 013 Curvaton model for origin of structure! after Planck David Wands Institute of Cosmology and Gravitation, University of Portsmouth

More information

CMB bispectrum. Takashi Hiramatsu. Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao Sasaki (YITP)

CMB bispectrum. Takashi Hiramatsu. Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao Sasaki (YITP) Workshop, 03 Aug 2016 @ Hirosaki Univ. CMB bispectrum Takashi Hiramatsu Yukawa Institute for Theoretical Physics (YITP) Kyoto University Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao

More information

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 El Universo en Expansion Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 5 billion years (you are here) Space is Homogeneous and Isotropic General Relativity An Expanding Universe

More information

Inflation Daniel Baumann

Inflation Daniel Baumann Inflation Daniel Baumann University of Amsterdam Florence, Sept 2017 Cosmological structures formed by the gravitational collapse of primordial density perturbations. gravity 380,000 yrs 13.8 billion yrs

More information

Archaeology of Our Universe YIFU CAI ( 蔡一夫 )

Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) 2013-11-05 Thermal History Primordial era 13.8 billion years by WMAP/NASA Large Scale Structure (LSS) by 2MASS Cosmic Microwave Background (CMB) by ESA/Planck

More information

Cosmology and the origin of structure

Cosmology and the origin of structure 1 Cosmology and the origin of structure ocy I: The universe observed ocy II: Perturbations ocy III: Inflation Primordial perturbations CB: a snapshot of the universe 38, AB correlations on scales 38, light

More information

Measuring Primordial Non-Gaussianity using CMB T & E data. Amit Yadav University of illinois at Urbana-Champaign

Measuring Primordial Non-Gaussianity using CMB T & E data. Amit Yadav University of illinois at Urbana-Champaign Measuring Primordial Non-Gaussianity using CMB T & E data Amit Yadav University of illinois at Urbana-Champaign GLCW8, Ohio, June 1, 2007 Outline Motivation for measuring non-gaussianity Do we expect primordial

More information

From inflation to the CMB to today s universe. I - How it all begins

From inflation to the CMB to today s universe. I - How it all begins From inflation to the CMB to today s universe I - How it all begins Raul Abramo Physics Institute - University of São Paulo abramo@fma.if.usp.br redshift Very brief cosmic history 10 9 200 s BBN 1 MeV

More information

Primordial non Gaussianity from modulated trapping. David Langlois (APC)

Primordial non Gaussianity from modulated trapping. David Langlois (APC) Primordial non Gaussianity from modulated trapping David Langlois (APC) Outline 1. Par&cle produc&on during infla&on 2. Consequences for the power spectrum 3. Modulaton and primordial perturba&ons 4. Non

More information

Inflationary density perturbations

Inflationary density perturbations Cosener s House 7 th June 003 Inflationary density perturbations David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! some motivation! Primordial Density Perturbation (and

More information

Astro 507 Lecture 28 April 2, 2014

Astro 507 Lecture 28 April 2, 2014 Astro 507 Lecture 28 April 2, 2014 Announcements: PS 5 due now Preflight 6 posted today last PF! 1 Last time: slow-roll inflation scalar field dynamics in an expanding universe slow roll conditions constrain

More information

New Ekpyrotic Cosmology and Non-Gaussianity

New Ekpyrotic Cosmology and Non-Gaussianity New Ekpyrotic Cosmology and Non-Gaussianity Justin Khoury (Perimeter) with Evgeny Buchbinder (PI) Burt Ovrut (UPenn) hep-th/0702154, hep-th/0706.3903, hep-th/0710.5172 Related work: Lehners, McFadden,

More information

The primordial CMB 4-point function

The primordial CMB 4-point function The primordial CMB 4-point function Kendrick Smith (Perimeter) Minnesota, January 2015 Main references: Smith, Senatore & Zaldarriaga (to appear in a few days) Planck 2014 NG paper (to appear last week

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second Lecture 3 With Big Bang nucleosynthesis theory and observations we are confident of the theory of the early Universe at temperatures up to T 1 MeV, age t 1 second With the LHC, we hope to be able to go

More information

Inflation. By The amazing sleeping man, Dan the Man and the Alices

Inflation. By The amazing sleeping man, Dan the Man and the Alices Inflation By The amazing sleeping man, Dan the Man and the Alices AIMS Introduction to basic inflationary cosmology. Solving the rate of expansion equation both analytically and numerically using different

More information

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知 Beyond N-formalism Resceu, University of Tokyo Yuichi Takamizu 29th Aug, 2010 @ 高知 Collaborator: Shinji Mukohyama (IPMU,U of Tokyo), Misao Sasaki & Yoshiharu Tanaka (YITP,Kyoto U) Ref: JCAP06 019 (2010)

More information

Theoretical implications of detecting gravitational waves

Theoretical implications of detecting gravitational waves Theoretical implications of detecting gravitational waves Ghazal Geshnizjani Department of Applied Mathematics University of Waterloo ggeshniz@uwaterloo.ca In collaboration with: William H. Kinney arxiv:1410.4968

More information

Scale symmetry a link from quantum gravity to cosmology

Scale symmetry a link from quantum gravity to cosmology Scale symmetry a link from quantum gravity to cosmology scale symmetry fluctuations induce running couplings violation of scale symmetry well known in QCD or standard model Fixed Points Quantum scale symmetry

More information

arxiv: v3 [hep-th] 24 Apr 2008

arxiv: v3 [hep-th] 24 Apr 2008 Non-Gaussianities in New Epyrotic Cosmology Evgeny I. Buchbinder 1, Justin Khoury 1, Burt A. Ovrut 2 1 Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5, Canada 2 Department

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai.

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Constraints on Inflationary Correlators From Conformal Invariance Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Based on: 1) I. Mata, S. Raju and SPT, JHEP 1307 (2013) 015 2) A. Ghosh,

More information

Primordial gravitational waves detected? Atsushi Taruya

Primordial gravitational waves detected? Atsushi Taruya 21 May 2014 Lunch seminar @YITP Primordial gravitational waves detected? Atsushi Taruya Contents Searching for primordial gravitational waves from cosmic microwave background polarizations Gravitational-wave

More information

Non-Gaussianities from Inflation. Leonardo Senatore, Kendrick Smith & MZ

Non-Gaussianities from Inflation. Leonardo Senatore, Kendrick Smith & MZ Non-Gaussianities from Inflation Leonardo Senatore, Kendrick Smith & MZ Lecture Plan: Lecture 1: Non-Gaussianities: Introduction and different take on inflation and inflation modeling. Lecture II: Non-Gaussianities:

More information

Single versus multi field inflation post Planck Christian Byrnes University of Sussex, Brighton, UK. Kosmologietag, Bielefeld.

Single versus multi field inflation post Planck Christian Byrnes University of Sussex, Brighton, UK. Kosmologietag, Bielefeld. Single versus multi field inflation post Planck Christian Byrnes University of Sussex, Brighton, UK Kosmologietag, Bielefeld. 7th May 15+5 min What have we learnt from the precision era? Planck completes

More information

MASAHIDE YAMAGUCHI. Quantum generation of density perturbations in the early Universe. (Tokyo Institute of Technology)

MASAHIDE YAMAGUCHI. Quantum generation of density perturbations in the early Universe. (Tokyo Institute of Technology) Quantum generation of density perturbations in the early Universe MASAHIDE YAMAGUCHI (Tokyo Institute of Technology) 03/07/16@Symposium: New Generation Quantum Theory -Particle Physics, Cosmology, and

More information

Anisotropic signatures in cosmic structures from primordial tensor perturbations

Anisotropic signatures in cosmic structures from primordial tensor perturbations Anisotropic signatures in cosmic structures from primordial tensor perturbations Emanuela Dimastrogiovanni FTPI, Univ. of Minnesota Cosmo 2014, Chicago based on:!! ED, M. Fasiello, D. Jeong, M. Kamionkowski!

More information

A STATUS REPORT ON SINGLE-FIELD INFLATION. Raquel H. Ribeiro. DAMTP, University of Cambridge. Lorentz Center, Leiden

A STATUS REPORT ON SINGLE-FIELD INFLATION. Raquel H. Ribeiro. DAMTP, University of Cambridge. Lorentz Center, Leiden A STATUS REPORT ON SINGLE-FIELD INFLATION Raquel H. Ribeiro DAMTP, University of Cambridge R.Ribeiro@damtp.cam.ac.uk Lorentz Center, Leiden July 19, 2012 1 Message to take home Non-gaussianities are a

More information

Inflationary Massive Gravity

Inflationary Massive Gravity New perspectives on cosmology APCTP, 15 Feb., 017 Inflationary Massive Gravity Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University C. Lin & MS, PLB 75, 84 (016) [arxiv:1504.01373 ]

More information

Supergravity and inflationary cosmology Ana Achúcarro

Supergravity and inflationary cosmology Ana Achúcarro Supergravity and inflationary cosmology Ana Achúcarro Supergravity and inflationary cosmology Slow roll inflation with fast turns: Features of heavy physics in the CMB with J-O. Gong, S. Hardeman, G. Palma,

More information

Inflation and the SLAC Theory Group I was a one-year visitor from a postdoc position at Cornell. My research problem (working with Henry Tye

Inflation and the SLAC Theory Group I was a one-year visitor from a postdoc position at Cornell. My research problem (working with Henry Tye Inflation and the SLAC Theory Group 1979 1980 I was a one-year visitor from a postdoc position at Cornell. My research problem (working with Henry Tye back at Cornell): Why were so few magnetic monopoles

More information

Inflationary Cosmology and Alternatives

Inflationary Cosmology and Alternatives Inflationary Cosmology and Alternatives V.A. Rubakov Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Department of paricle Physics abd Cosmology Physics Faculty Moscow State

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 14 Dec. 2, 2015 Today The Inflationary Universe Origin of Density Perturbations Gravitational Waves Origin and Evolution of

More information

Implications of the Planck Results for Inflationary and Cyclic Models

Implications of the Planck Results for Inflationary and Cyclic Models Implications of the Planck Results for Inflationary and Cyclic Models Jean-Luc Lehners Max-Planck-Institute for Gravitational Physics Albert-Einstein-Institute Potsdam, Germany New Data from Planck Cosmic

More information

Statistical anisotropy in the inflationary universe

Statistical anisotropy in the inflationary universe Statistical anisotropy in the inflationary universe Yuri Shtanov Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine Grassmannian Conference, Szczecin (2009) Outline Primordial spectrum after inflation

More information

Anisotropy in the CMB

Anisotropy in the CMB Anisotropy in the CMB Antony Lewis Institute of Astronomy & Kavli Institute for Cosmology, Cambridge http://cosmologist.info/ Hanson & Lewis: 0908.0963 Evolution of the universe Opaque Transparent Hu &

More information

Brane Inflation: Observational Signatures and Non-Gaussianities. Gary Shiu. University of Wisconsin

Brane Inflation: Observational Signatures and Non-Gaussianities. Gary Shiu. University of Wisconsin Brane Inflation: Observational Signatures and Non-Gaussianities Gary Shiu University of Wisconsin Collaborators Reheating in D-brane inflation: D.Chialva, GS, B. Underwood Non-Gaussianities in CMB: X.Chen,

More information

Naturally inflating on steep potentials through electromagnetic dissipation

Naturally inflating on steep potentials through electromagnetic dissipation Naturally inflating on steep potentials through electromagnetic dissipation Lorenzo Sorbo UMass Amherst IPhT IPMU, 05/02/14 M. Anber, LS, PRD 2010, PRD 2012 V(φ) INFLATION very early Universe filled by

More information

Physics 133: Extragalactic Astronomy and Cosmology. Week 8

Physics 133: Extragalactic Astronomy and Cosmology. Week 8 Physics 133: Extragalactic Astronomy and Cosmology Week 8 Outline for Week 8 Primordial Nucleosynthesis Successes of the standard Big Bang model Olbers paradox/age of the Universe Hubble s law CMB Chemical/Physical

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 9 Inflation - part I Having discussed the thermal history of our universe and in particular its evolution at times larger than 10 14 seconds

More information

WMAP 5-Year Results: Implications for Inflation. Eiichiro Komatsu (Department of Astronomy, UT Austin) PPC 2008, May 19, 2008

WMAP 5-Year Results: Implications for Inflation. Eiichiro Komatsu (Department of Astronomy, UT Austin) PPC 2008, May 19, 2008 WMAP 5-Year Results: Implications for Inflation Eiichiro Komatsu (Department of Astronomy, UT Austin) PPC 2008, May 19, 2008 1 WMAP 5-Year Papers Hinshaw et al., Data Processing, Sky Maps, and Basic Results

More information

Inflation and String Theory

Inflation and String Theory Inflation and String Theory Juan Maldacena Strings 2015, Bangalore Based on: Arkani Hamed and JM, JM and Pimentel Inflation is the leading candidate for a theory that produces the primordial fluctuations.

More information

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE Francisco Torrentí - IFT/UAM Valencia Students Seminars - December 2014 Contents 1. The Friedmann equations 2. Inflation 2.1. The problems of hot Big

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 8, sections 8.4 and 8.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

ASPECTS OF D-BRANE INFLATION IN STRING COSMOLOGY

ASPECTS OF D-BRANE INFLATION IN STRING COSMOLOGY Summer Institute 2011 @ Fujiyoshida August 5, 2011 ASPECTS OF D-BRANE INFLATION IN STRING COSMOLOGY Takeshi Kobayashi (RESCEU, Tokyo U.) TODAY S PLAN Cosmic Inflation and String Theory D-Brane Inflation

More information

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2 S E.H. +S.F. = d 4 x [ 1 g 2 M PlR 2 + MPlḢg 2 00 MPl(3H 2 2 + Ḣ)+ + 1 2! M 2(t) 4 (g 00 + 1) 2 + 1 3! M 3(t) 4 (g 00 + 1) 3 + M 1 (t) 3 2 (g 00 + 1)δK µ µ M 2 (t) 2 δk µ µ 2 M 3 (t) 2 2 2 ] δk µ νδk ν

More information

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV)

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV) INFLATION - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ 10 15 GeV) -Phenomenologically similar to Universe with a dominant cosmological constant, however inflation needs to end

More information

German physicist stops Universe

German physicist stops Universe Big bang or freeze? NATURE NEWS Cosmologist claims Universe may not be expanding Particles' changing masses could explain why distant galaxies appear to be rushing away. Jon Cartwright 16 July 2013 German

More information

Primordial nongaussianities I: cosmic microwave background. Uros Seljak, UC Berkeley Rio de Janeiro, August 2014

Primordial nongaussianities I: cosmic microwave background. Uros Seljak, UC Berkeley Rio de Janeiro, August 2014 Primordial nongaussianities I: cosmic microwave bacground Uros Selja, UC Bereley Rio de Janeiro, August 2014 Outline Primordial nongaussianity Introduction and basic physics CMB temperature power spectrum

More information

Cosmology with CMB & LSS:

Cosmology with CMB & LSS: Cosmology with CMB & LSS: the Early universe VSP08 lecture 4 (May 12-16, 2008) Tarun Souradeep I.U.C.A.A, Pune, India Ω +Ω +Ω +Ω + Ω +... = 1 0 0 0 0... 1 m DE K r r The Cosmic Triangle (Ostriker & Steinhardt)

More information

(Gaussian) Random Fields

(Gaussian) Random Fields 23/01/2017 (Gaussian) Random Fields Echo of the Big Bang: Cosmic Microwave Background Planck (2013) Earliest view of the Universe: 379000 yrs. after Big Bang, 13.8 Gyr ago. 1 CMB Temperature Perturbations

More information

New Insights in Hybrid Inflation

New Insights in Hybrid Inflation Dr. Sébastien Clesse TU Munich, T70 group: Theoretical Physics of the Early Universe Excellence Cluster Universe Based on S.C., B. Garbrecht, Y. Zhu, Non-gaussianities and curvature perturbations in hybrid

More information

Patrick Peter. Institut d Astrophysique de Paris Institut Lagrange de Paris. Evidences for inflation constraints on alternatives

Patrick Peter. Institut d Astrophysique de Paris Institut Lagrange de Paris. Evidences for inflation constraints on alternatives Patrick Peter Institut d Astrophysique de Paris Institut Lagrange de Paris Evidences for inflation constraints on alternatives Thanks to Jérôme Martin For his help Planck 2015 almost scale invariant quantum

More information

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The history of modern cosmology 1917 Static via cosmological constant? (Einstein) 1917 Expansion (Slipher) 1952 Big Bang criticism (Hoyle)

More information

School Observational Cosmology Angra Terceira Açores 3 rd June Juan García-Bellido Física Teórica UAM Madrid, Spain

School Observational Cosmology Angra Terceira Açores 3 rd June Juan García-Bellido Física Teórica UAM Madrid, Spain School Observational Cosmology Angra Terceira Açores 3 rd June 2014 Juan García-Bellido Física Teórica UAM Madrid, Spain Outline Lecture 1 Shortcomings of the Hot Big Bang The Inflationary Paradigm Homogeneous

More information

Week 6: Inflation and the Cosmic Microwave Background

Week 6: Inflation and the Cosmic Microwave Background Week 6: Inflation and the Cosmic Microwave Background January 9, 2012 1 Motivation The standard hot big-bang model with an (flat) FRW spacetime accounts correctly for the observed expansion, the CMB, BBN,

More information

The Inflationary Origin of the Cold Spot

The Inflationary Origin of the Cold Spot The Inflationary Origin of the Cold Spot (based on arxiv: 1310.XXXX) Juan C. Bueno Sánchez Cambridge, 4/09/2013 The CMB Cold Spot Simplest S mplest single-field s ngle f eld inflationary nflat onary models

More information

Testing the string theory landscape in cosmology

Testing the string theory landscape in cosmology 別府 01..1 1 Testing the string theory landscape in cosmology 佐々木節 1. Cosmology Today Big Bang theory has been firmly established wavelength[mm] COBE/FIRAS CMB spectrum at T=.75K 00 sigma error-bars frequency[ghz]

More information

Effects of the field-space metric on Spiral Inflation

Effects of the field-space metric on Spiral Inflation Effects of the field-space metric on Spiral Inflation Josh Erlich College of William & Mary digitaldante.columbia.edu Miami 2015 December 20, 2015 The Cosmic Microwave Background Planck collaboration Composition

More information

Holographic Model of Cosmic (P)reheating

Holographic Model of Cosmic (P)reheating Holographic Model of Cosmic (P)reheating Yi-Fu Cai 蔡一夫 University of Science & Technology of China New perspectives on Cosmology, APCTP, Feb 13 th 2017 In collaboration with S. Lin, J. Liu & J. Sun, Based

More information

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum Physics 463, Spring 07 Lecture 3 Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum last time: how fluctuations are generated and how the smooth Universe grows

More information

Stringy Origins of Cosmic Structure

Stringy Origins of Cosmic Structure The D-brane Vector Curvaton Department of Mathematics University of Durham String Phenomenology 2012 Outline Motivation 1 Motivation 2 3 4 Fields in Type IIB early universe models Figure: Open string inflation

More information

Licia Verde. Introduction to cosmology. Lecture 4. Inflation

Licia Verde. Introduction to cosmology. Lecture 4. Inflation Licia Verde Introduction to cosmology Lecture 4 Inflation Dividing line We see them like temperature On scales larger than a degree, fluctuations were outside the Hubble horizon at decoupling Potential

More information

Bouncing Cosmologies with Dark Matter and Dark Energy

Bouncing Cosmologies with Dark Matter and Dark Energy Article Bouncing Cosmologies with Dark Matter and Dark Energy Yi-Fu Cai 1, *, Antonino Marcianò 2, Dong-Gang Wang 1,3,4 and Edward Wilson-Ewing 5 1 CAS Key Laboratory for Research in Galaxies and Cosmology,

More information

Constraints on the Inflation Model

Constraints on the Inflation Model Constraints on the Inflation Model from CMB and LSS data Micol Benetti Meeting on Fundamental Cosmology 18 June 2015 Santander Primordial perturbations According to the inflationary paradigm, the Standard

More information

Inflation. Jo van den Brand, Chris Van Den Broeck, Tjonnie Li Nikhef: April 23, 2010

Inflation. Jo van den Brand, Chris Van Den Broeck, Tjonnie Li Nikhef: April 23, 2010 Inflation Jo van den Brand, Chris Van Den Broeck, Tjonnie Li Nikhef: April 23, 2010 Limitations of standard cosmology Horizon problem, flatness problem, missing exotic particles Horizon: largest distance

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Need for an exponential

More information

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model)

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model) Big Bang (model) What can be seen / measured? basically only light _ (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)

More information

Observational signatures in LQC?

Observational signatures in LQC? Observational signatures in LQC? Ivan Agullo Penn State International Loop Quantum Gravity Seminar, March 29 2011 Talk based on: I.A., A. Ashtekar, W. Nelson: IN PROGRESS! CONTENT OF THE TALK 1. Inflation

More information

Looking Beyond the Cosmological Horizon

Looking Beyond the Cosmological Horizon Looking Beyond the Cosmological Horizon 175 µk 175 µk Observable Universe Adrienne Erickcek in collaboration with Sean Carroll and Marc Kamionkowski A Hemispherical Power Asymmetry from Inflation Phys.

More information

State of the Universe Address

State of the Universe Address State of the Universe Address Prof. Scott Watson ( Syracuse University ) This talk is available online at: https://gswatson.expressions.syr.edu This research was supported in part by: Theoretical Cosmology

More information

Gravitational Waves and the Scale of Inflation

Gravitational Waves and the Scale of Inflation Gravitational Waves and the Scale of Inflation Mehrdad Mirbabayi with L. Senatore, E. Silverstein, M. Zaldarriaga Institute for Advanced Study COSMO2014, Chicago Aug 29, 2014 Mehrdad Mirbabayi (IAS) GW

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

The Quantum to Classical Transition in Inflationary Cosmology

The Quantum to Classical Transition in Inflationary Cosmology The Quantum to Classical Transition in Inflationary Cosmology C. D. McCoy Department of Philosophy University of California San Diego Foundations of Physics Munich, 31 July 2013 Questions to Address 1.

More information