Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth

Size: px
Start display at page:

Download "Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth"

Transcription

1 Large Primordial Non- Gaussianity from early Universe Kazuya Koyama University of Portsmouth

2 Primordial curvature perturbations Proved by CMB anisotropies nearly scale invariant n s = ± nearly adiabatic nearly Gaussian α < 0.16, S / ζ α 3 ζ( x) = ζ g( x) + f ζ ( x) 5 local g 9 < local < 111 Generation mechanisms inflation curvaton collapsing universe (Ekpyrotic, cyclic) f Komatsu et.al al. 008

3 Generation of curvature perturbations Delta N formalism curvature perturbations on superhorizon scales = fluctuations in local e-folding number t = ζ = Ntx (, i ) N() t i i Ntx (, ) dtht ' (', x) t i Starobinsky ;85, Stewart&Sasaki Sasaki 95 B ζ =Ψ δρ 3( ρ + P) ζ in = 0

4 How to generate delta N entropy perturbations Sasaki. 008 adiabatic perturbations single field inflation multi-field inflation, new Ekpyrotic isocurvature curvaton, modulated reheating, multibrid inflation

5 Suppose delta N is caused by some field fluctuations at horizon crossing Lyth&Rodriguez 05 i N 1 N ζ(, tx) = δϕi + δϕiδϕj +... IJ, ϕi ϕi ϕj Bispectrum B ( k, k, k ) ζ 1 3 N N N r r r r r r ζ( k ) ζ( k ) ζ( k ) = π δ ( k + k + k ) B ( k, k, k ) ( ) ( ) D 1 3 ζ 1 3 P ( k ) P ( k ) perm. N N N B ( k, k, k ), I, J, IJ = ζ 1 ζ + +, I, J, K IJK 1 3 N, IN, I Local type ( classical ) (local in real space =non-local in k-space) Equilateral type ( quantum ) (local in k-space)

6 Observational constraints local type maximum signal for k 3 ζ( x) = ζ g( x) + f ζ g( x) 5 WMAP5 9 < f 111 local local < k, k 3 1 k r 1 k r k r 3 Equilateral type maximum signal for k1 k k3 k r 3 WMAP5 < < equil 151 f 53 k r 1 k r

7 Theoretical predictions Standard inflation Non-standard scenario Single field Multi field f local, equil f local depending on the trajectory K-inflation, DBI inflation = O( εη, ) 1 equil f = 1/ c 1 = O(1) Rigopoulos, Shellard, van Tent 06 Wands and Vernizzi 06 Yokoyama, Suyama and Tanaka 07 Features in potential Ghost inflation DBI inflation equil s RS curvaton s f = (1 / c ) / (1 + T ) > 1 ( ) local f ρ ρ (5 / 4) / curvaton decay new Ekpyrotic (simplest model) f local > ( n 1) s 1 isocurvature perturbations (axion CDM) f local 10 α 5 3

8 Three examples for non-standard scenarios (multi-field) K-inflation, DBI inflation Arroja, Mizuno, Koyama JCAP (simplest) new ekpyrotic model Koyama, Mizuno, Vernizzi, Wands JCAP (axion) CDM isocurvature model Hikage, Koyama, Matsubara, Takahashi, Yamaguchi (hopefully) to appear soon

9 K-inflation Non-canonical kinetic term Amendariz-Picon et.al 99 μ S = d x gp( X, φ), X = μφ φ 4 1 Field perturbations (leading order in slow-roll) c = P, X s P, X + XP, XX 1 H PT Pζ, r = = 16c csε M pl Pζ sound speed s ε Garriga&Mukhanov 99

10 k r 3 LoVerde et.al al. 07 Bispectrum k r 1 k r P Bk (, k, k) Fk (, k, k), 1 3 ζ = kkk 1 3 DBI inflation 1 PX ( ) = ( 1 f( φ) X 1 ) V( φ) f ( φ) cf local-type Fk (, k, k) Aishahiha et.al al cs local 3 local F ( k1, k, k3) = f ( k1 + k + k3) 10 1 k r 1 k r k r 3

11 Observational constraints (too) large non-gaussianity eff 35 1 f 108 cs Lyth bound r 1 M p = for equilateral configurations Δφ = ΔN = 16c ε < 10 s 6r 7 1 n 4ε 0.04 ± s f > eff 300 D3 anti-d3 inflaton Huston et.al 07, Kobayashi et.al 08 φ < φ UV

12 Multi-field model S = d x gp X X = 4 IJ IJ 1 I μ J (, φ), μφ φ b P( X ) = P% ( X% ), X% = X + X X X Adiabatic and entropy decomposition adiabatic sound speed c entropy sound speed ( ) I J IJ J I P%, X% ad = P% + X, X 0P % %, XX % % c en = 1+ bx δσ 0 Arroja, Mizuno, Koyama 08 Renaux-Petel Petel, Steer, Langlois Tanaka 08 δ s X% entropy = X 0 0 adiabatic

13 Multi-field k-inflation Langlois&Renaux Renaux-Petel 08 IJ PX ( ) = PX ( ) c = en 1 Multi-field DBI inflation 1 ( ) ( det( ( ) ) 1 ) IJ I J PX = gμν fφ GIJ μφ νφ V( φ) f ( φ) c = c en ad Renaux-Petel Petel, Steer, Langlois Tanaka 08 Final curvature perturbation ζ = + ζ T S * RS * H H ζ = δσ, S = δ s & σ s&

14 Transfer from entropy mode Tensor to scalar ratio T RS Renaux-Petel Petel, Steer, Langlois Tanaka 08 r = 16ε c Bispectrum k-dependence is the same as single field case! 3 eff ζ eff ζ f = f, 108 cs 1+ T ζ RS ζ large transfer from entropy mode eases constraints Trispectrum s 1 1+ T RS Mizuno, Koyama, Arroja 09 different k-dependence from single field case? 1+ T RS 1+ T 3 RS

15 New ekpyrotic models Collapsing universe H a k 1 t bounce t Ekpyrotic collapse Khoury et.al al. 01 n at () = ( t), n 1

16 Old ekpyrotic model V = c V0e ϕ Khoury et.al al. 01 at / () = ( t) c spectrum index for ζ is n = 3 the bounce may be able to creat a scale invariant spectrum but it depends on physics at singularity New ekpyrotic model s at Lyth 03 / () = ( t) c B V = Ve V e cϕ 1 / c () ( ), at c ϕ = t = + c c c 1 Lehners et.al, Buchbinder et.al al. 07 at / () = ( t) c at / () = ( t) c B 1

17 Multi-field scaling solution is unstable entropy perturbation which has a scale invariant spectrum is converted to adiabatic perturbations Koyama, Mizuno & Wands 07 δ s B B δ s B B δ s ζ c H π 0 = δ s δϕ1 B: B: ζ δϕ = c c + c 1 HT π

18 Delta-N formalism log H B δ s δ s δ N B B B dn 1 d N δ N = δs+ δs ds ds N = log a

19 Predictions 1 1 ns 1= > c1 c r = f = c > ( n 1) 1 3 local 1 1 s Generalizations changing potentials Buchbinder et.al 07 conversion to adiabatic perturbations in kinetic domination Koyama, Mizuno, Vernizzi & Wands 07 Lehners &Steinhardt 08

20 Non-Gaussianity from isocurvature perturbations (CDM) Isocurvature perturbations are subdominant PS α = < ( ns = 1) P + P S ζ < ( ns = 1.5) <0.001 ( n = ) Non-Gaussianity can be large S Boubekeur& Lyth 06, Kawasaki et.al 08, Langlois et.al 08

21 Axion CDM Massive scalar fields without mean δρ CDM m σ Linde&Mukhanov 97, Peebles 98, Kawasaki et.al al 08 Entropy perturbations S = δρcdm 3δρr η ρ 4ρ CDM r η g g S S 3 3/ O(1) Dominant ng may come from isocurvature perturbations S f α α ζ ζ eff /

22 Bispectrum of CMB from the isocurvature perturbation S N = I l1 l l 3 l 1 l l 3 b l1 l l 3 C l1 C l C l3 Δ l1 l l 3 Noise: WMAP 5-year Equilateral triangle Adiabatic (f =10) S S = N N eff f adi iso α = / The isocurvature perturbations can generate large non-gaussianity (f ~40)

23 WMAP5 constraints -Minkowski functional Hikage, Koyama, Matsubara, Takahashi, Yamaguchi 08 Minkowski functional measures the topology of CMB map (=weighted some of bispectrum) no detection of non-g from isocurvature perturbations and get constraints α < ( n = 1) α < 0.04 ( n = 1.5) α < ( n = ) η η η comparable to constraints from power spectrum

24 Theoretical predictions Standard inflation Non-standard scenario Single field Multi field f local, equil f local depending on the trajectory K-inflation, DBI inflation = O( εη, ) 1 equil f = 1/ c 1 = O(1) Features in potential Ghost inflation DBI inflation curvaton s f = (1 / c ) / (1 + T ) > 1 ( ) local f ρ ρ (5 / 4) / curvaton decay new Ekpyrotic (simplest model) f equil s RS local > ( n 1) s 1 isocurvature perturbations (axion CDM) f local 10 α 5 3

25 Conclusions Power spectrum from pre-wmap to post-wmap bispectrum WMAP 8year Planck Do everything you can now!

26 Axion CDM Classical mean of axion a = faθa quantum fluctuations δ a = H /π inf if f θ < H π a a inf / δρa ρ a δ a =, a* = a* Hinf π δρa Ω S = r, r = ρ Ω r a a cdm 0.8 Fa a* GeV 10 GeV Ωcdmh =

Origins and observations of primordial non-gaussianity. Kazuya Koyama

Origins and observations of primordial non-gaussianity. Kazuya Koyama Origins and observations of primordial non-gaussianity Kazuya Koyama University of Portsmouth Primordial curvature perturbations Komatsu et.al. 008 Proved by CMB anisotropies nearly scale invariant ns

More information

The multi-field facets of inflation. David Langlois (APC, Paris)

The multi-field facets of inflation. David Langlois (APC, Paris) The multi-field facets of inflation David Langlois (APC, Paris) Introduction After 25 years of existence, inflation has been so far very successful to account for observational data. The nature of the

More information

Primordial perturbations from inflation. David Langlois (APC, Paris)

Primordial perturbations from inflation. David Langlois (APC, Paris) Primordial perturbations from inflation David Langlois (APC, Paris) Cosmological evolution Homogeneous and isotropic Universe Einstein s equations Friedmann equations The Universe in the Past The energy

More information

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth Misao Sasaki YITP, Kyoto University 9 June, 009 ICG, Portsmouth contents 1. Inflation and curvature perturbations δn formalism. Origin of non-gaussianity subhorizon or superhorizon scales 3. Non-Gaussianity

More information

Completing the curvaton model Rose Lerner (Helsinki University) with K. Enqvist and O. Taanila [arxiv: ]

Completing the curvaton model Rose Lerner (Helsinki University) with K. Enqvist and O. Taanila [arxiv: ] Completing the curvaton model Rose Lerner (Helsinki University) with K. Enqvist and O. Taanila [arxiv:1105.0498] Origin of? super-horizon Origin of (almost) scale-invariant? perturbations Outline What

More information

Curvaton model for origin of structure! after Planck

Curvaton model for origin of structure! after Planck Implications of Planck for Fundamental Physics Manchester, 8 th May 013 Curvaton model for origin of structure! after Planck David Wands Institute of Cosmology and Gravitation, University of Portsmouth

More information

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知 Beyond N-formalism Resceu, University of Tokyo Yuichi Takamizu 29th Aug, 2010 @ 高知 Collaborator: Shinji Mukohyama (IPMU,U of Tokyo), Misao Sasaki & Yoshiharu Tanaka (YITP,Kyoto U) Ref: JCAP06 019 (2010)

More information

New Ekpyrotic Cosmology and Non-Gaussianity

New Ekpyrotic Cosmology and Non-Gaussianity New Ekpyrotic Cosmology and Non-Gaussianity Justin Khoury (Perimeter) with Evgeny Buchbinder (PI) Burt Ovrut (UPenn) hep-th/0702154, hep-th/0706.3903, hep-th/0710.5172 Related work: Lehners, McFadden,

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

primordial avec les perturbations cosmologiques *

primordial avec les perturbations cosmologiques * Tests de l Univers primordial avec les perturbations cosmologiques * Filippo Vernizzi Batz-sur-Mer, 16 octobre, 2008 * Soustitré en anglais What is the initial condition? Standard single field inflation

More information

Primordial non Gaussianity from modulated trapping. David Langlois (APC)

Primordial non Gaussianity from modulated trapping. David Langlois (APC) Primordial non Gaussianity from modulated trapping David Langlois (APC) Outline 1. Par&cle produc&on during infla&on 2. Consequences for the power spectrum 3. Modulaton and primordial perturba&ons 4. Non

More information

Inflationary density perturbations

Inflationary density perturbations Cosener s House 7 th June 003 Inflationary density perturbations David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! some motivation! Primordial Density Perturbation (and

More information

The self-interacting (subdominant) curvaton

The self-interacting (subdominant) curvaton Corfu.9.010 The self-interacting (subdominant) curvaton Kari Enqvist Helsinki University and Helsinki Institute of Physics in collaboration with C. Byrnes (Bielefeld), S. Nurmi (Heidelberg), A. Mazumdar

More information

Implications of the Planck Results for Inflationary and Cyclic Models

Implications of the Planck Results for Inflationary and Cyclic Models Implications of the Planck Results for Inflationary and Cyclic Models Jean-Luc Lehners Max-Planck-Institute for Gravitational Physics Albert-Einstein-Institute Potsdam, Germany New Data from Planck Cosmic

More information

Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian?

Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian? Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian? Eiichiro Komatsu The University of Texas at Austin Colloquium at the University of Oklahoma, February 21, 2008 1 Messages

More information

Non-linear perturbations from cosmological inflation

Non-linear perturbations from cosmological inflation JGRG0, YITP, Kyoto 5 th September 00 Non-linear perturbations from cosmological inflation David Wands Institute of Cosmology and Gravitation University of Portsmouth summary: non-linear perturbations offer

More information

Soft limits in multi-field inflation

Soft limits in multi-field inflation Soft limits in multi-field inflation David J. Mulryne Queen Mary University of London based on arxiv:1507.08629 and forthcoming work with Zac Kenton Soft limits in multi-field inflation David J. Mulryne

More information

Hemispherical CMB power asymmetry: observation vs. models

Hemispherical CMB power asymmetry: observation vs. models Helsinki May 2014 Hemispherical CMB power asymmetry: observation vs. models EnqFest May 2014 Helsinki John McDonald, Dept. of Physics, University of Lancaster Outline 1. Observed Hemispherical Asymmetry

More information

Review Article Review of Local Non-Gaussianity from Multifield Inflation

Review Article Review of Local Non-Gaussianity from Multifield Inflation Advances in Astronomy Volume 010 Article ID 7455 18 pages doi:10.1155/010/7455 Review Article Review of Local Non-Gaussianity from Multifield Inflation Christian T. Byrnes 1 and Ki-Young Choi 1 Fakultät

More information

Supergravity and inflationary cosmology Ana Achúcarro

Supergravity and inflationary cosmology Ana Achúcarro Supergravity and inflationary cosmology Ana Achúcarro Supergravity and inflationary cosmology Slow roll inflation with fast turns: Features of heavy physics in the CMB with J-O. Gong, S. Hardeman, G. Palma,

More information

arxiv: v2 [hep-th] 6 Nov 2013

arxiv: v2 [hep-th] 6 Nov 2013 Ekpyrotic Perturbations With Small Non-Gaussian Corrections Angelika Fertig, 1 Jean-Luc Lehners, 1 and Enno Mallwitz 1 1 Max Planck Institute for Gravitational Physics Albert Einstein Institute), 14476

More information

Non-Gaussianity from Curvatons Revisited

Non-Gaussianity from Curvatons Revisited RESCEU/DENET Summer School @ Kumamoto July 28, 2011 Non-Gaussianity from Curvatons Revisited Takeshi Kobayashi (RESCEU, Tokyo U.) based on: arxiv:1107.6011 with Masahiro Kawasaki, Fuminobu Takahashi The

More information

Towards Multi-field Inflation with a Random Potential

Towards Multi-field Inflation with a Random Potential Towards Multi-field Inflation with a Random Potential Jiajun Xu LEPP, Cornell Univeristy Based on H. Tye, JX, Y. Zhang, arxiv:0812.1944 and work in progress 1 Outline Motivation from string theory A scenario

More information

arxiv: v3 [hep-th] 24 Apr 2008

arxiv: v3 [hep-th] 24 Apr 2008 Non-Gaussianities in New Epyrotic Cosmology Evgeny I. Buchbinder 1, Justin Khoury 1, Burt A. Ovrut 2 1 Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5, Canada 2 Department

More information

Observational signatures of holographic models of inflation

Observational signatures of holographic models of inflation Observational signatures of holographic models of inflation Paul McFadden Universiteit van Amsterdam First String Meeting 5/11/10 This talk I. Cosmological observables & non-gaussianity II. Holographic

More information

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology Yi-Fu Cai June 18, 2013 in Hefei CYF, Chang, Chen, Easson & Qiu, 1304.6938 Two Standard Models Cosmology CMB: Cobe (1989), WMAP (2001),

More information

A STATUS REPORT ON SINGLE-FIELD INFLATION. Raquel H. Ribeiro. DAMTP, University of Cambridge. Lorentz Center, Leiden

A STATUS REPORT ON SINGLE-FIELD INFLATION. Raquel H. Ribeiro. DAMTP, University of Cambridge. Lorentz Center, Leiden A STATUS REPORT ON SINGLE-FIELD INFLATION Raquel H. Ribeiro DAMTP, University of Cambridge R.Ribeiro@damtp.cam.ac.uk Lorentz Center, Leiden July 19, 2012 1 Message to take home Non-gaussianities are a

More information

Evading non-gaussianity consistency in single field inflation

Evading non-gaussianity consistency in single field inflation Lorentz Center 7 Aug, 013 Evading non-gaussianity consistency in single field inflation Misao Sasaki Yukawa Institute for Theoretical Physic (YITP) Kyoto University M.H. Namjoo, H. Firouzjahi& MS, EPL101

More information

Hunting for Primordial Non-Gaussianity. Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008

Hunting for Primordial Non-Gaussianity. Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008 Hunting for Primordial Non-Gaussianity fnl Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008 1 What is fnl? For a pedagogical introduction to fnl, see Komatsu, astro-ph/0206039

More information

arxiv: v2 [hep-th] 16 Oct 2009

arxiv: v2 [hep-th] 16 Oct 2009 Combined local and equilateral non-gaussianities from multifield DBI inflation Sébastien Renaux-Petel APC (UMR 7164, CNRS, Université Paris 7), 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13,

More information

Symmetries! of the! primordial perturbations!

Symmetries! of the! primordial perturbations! Paolo Creminelli, ICTP Trieste! Symmetries! of the! primordial perturbations! PC, 1108.0874 (PRD)! with J. Noreña and M. Simonović, 1203.4595! ( with G. D'Amico, M. Musso and J. Noreña, 1106.1462 (JCAP)!

More information

Inflationary Massive Gravity

Inflationary Massive Gravity New perspectives on cosmology APCTP, 15 Feb., 017 Inflationary Massive Gravity Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University C. Lin & MS, PLB 75, 84 (016) [arxiv:1504.01373 ]

More information

Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum

Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum 4th workshop on observational cosmology @ Yukawa Institute 18/11/2015 Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum Shuntaro Mizuno (Waseda) With Shuichiro Yokoyama (Rikkyo) Phys.

More information

Alternatives To Inflation. Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute

Alternatives To Inflation. Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute Alternatives To Inflation Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute PLANCK data A simple universe: approximately homogeneous, isotropic, flat With, in addition, nearly scale-invariant,

More information

Conservation and evolution of the curvature perturbation

Conservation and evolution of the curvature perturbation Conservation and evolution of the curvature perturbation University of Wisconsin-Madison 1150 University Avenue, Madison WI 53706-1390 USA Cosmo 08 University of Wisconsin-Madison, USA 28th August, 2008

More information

arxiv: v3 [astro-ph] 17 Apr 2009

arxiv: v3 [astro-ph] 17 Apr 2009 The non-adiabatic pressure in general scalar field systems Adam J. Christopherson a,, Karim A. Malik a a Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, Mile End Road,

More information

SEARCHING FOR LOCAL CUBIC- ORDER NON-GAUSSIANITY WITH GALAXY CLUSTERING

SEARCHING FOR LOCAL CUBIC- ORDER NON-GAUSSIANITY WITH GALAXY CLUSTERING SEARCHING FOR LOCAL CUBIC- ORDER NON-GAUSSIANITY WITH GALAXY CLUSTERING Vincent Desjacques ITP Zurich with: Nico Hamaus (Zurich), Uros Seljak (Berkeley/Zurich) Horiba 2010 cosmology conference, Tokyo,

More information

arxiv: v2 [astro-ph.co] 28 Feb 2015

arxiv: v2 [astro-ph.co] 28 Feb 2015 A short note on the curvature perturbation at second order arxiv:149.516v2 astro-ph.co 28 Feb 215 Adam J. Christopherson 12 Ellie Nalson 3 and arim A. Malik 3 1 Department of Physics University of Florida

More information

Preheating : Density Perturbations from the Shock-in-Time Connecting Inflation to the Hot Big Bang

Preheating : Density Perturbations from the Shock-in-Time Connecting Inflation to the Hot Big Bang Preheating : Density Perturbations from the Shock-in-Time Connecting Inflation to the Hot Big Bang Jonathan Braden University College London LCDM, January 29, 2015 w/ J. Richard Bond, Andrei Frolov, and

More information

WMAP 5-Year Results: Measurement of fnl

WMAP 5-Year Results: Measurement of fnl WMAP 5-Year Results: Measurement of fnl Eiichiro Komatsu (Department of Astronomy, UT Austin) Non-Gaussianity From Inflation, Cambridge, September 8, 2008 1 Why is Non-Gaussianity Important? Because a

More information

Current status of inflationary cosmology. Gunma National college of Technology,Japan

Current status of inflationary cosmology. Gunma National college of Technology,Japan Current status of inflationary cosmology Shinji Tsujikawa Gunma National college of Technology,Japan Bright side of the world Recent observations have determined basic cosmological parameters in high precisions.

More information

Misao Sasaki. KIAS-YITP joint workshop 22 September, 2017

Misao Sasaki. KIAS-YITP joint workshop 22 September, 2017 Misao Sasaki KIAS-YITP joint workshop September, 017 Introduction Inflation: the origin of Big Bang Brout, Englert & Gunzig 77, Starobinsky 79, Guth 81, Sato 81, Linde 8, Inflation is a quasi-exponential

More information

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012 Non-Gaussianity in the CMB Kendrick Smith (Princeton) Whistler, April 2012 Why primordial non-gaussianity? Our best observational windows on the unknown physics of inflation are: The gravity wave amplitude

More information

Scalar fields and vacuum fluctuations II

Scalar fields and vacuum fluctuations II Scalar fields and vacuum fluctuations II Julian Merten ITA July 12, 2007 Julian Merten (ITA) Scalar fields and vacuum fluctuations II July 12, 2007 1 / 22 Outline 1 What we did so far 2 Primordial curvature

More information

Cosmological Signatures of Brane Inflation

Cosmological Signatures of Brane Inflation March 22, 2008 Milestones in the Evolution of the Universe http://map.gsfc.nasa.gov/m mm.html Information about the Inflationary period The amplitude of the large-scale temperature fluctuations: δ H =

More information

Inflationary Cosmology and Alternatives

Inflationary Cosmology and Alternatives Inflationary Cosmology and Alternatives V.A. Rubakov Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Department of paricle Physics abd Cosmology Physics Faculty Moscow State

More information

arxiv: v2 [astro-ph.co] 11 Sep 2011

arxiv: v2 [astro-ph.co] 11 Sep 2011 Orthogonal non-gaussianities from irac-born-infeld Galileon inflation Sébastien Renaux-Petel Centre for Theoretical Cosmology, epartment of Applied Mathematics and Theoretical Physics, University of Cambridge,

More information

Phenomenology of Axion Inflation

Phenomenology of Axion Inflation Phenomenology of Axion Inflation based on Flauger & E.P. 1002.0833 Flauger, McAllister, E.P., Westphal & Xu 0907.2916 Barnaby, EP & Peloso to appear Enrico Pajer Princeton University Minneapolis Oct 2011

More information

Non-Gaussianity in Island Cosmology

Non-Gaussianity in Island Cosmology Non-Gaussianity in Island Cosmology Yun-Song Piao College of Physical Sciences, Graduate School of Chinese Academy of Sciences, Beijing 100049, China In this paper we fully calculate the non-gaussianity

More information

What have we learnt about the early universe?

What have we learnt about the early universe? What have we learnt about the early universe? V(φ) φ Hiranya Peiris STFC Advanced Fellow University of Cambridge Roadmap Lecture 1: The physics of the cosmic microwave background. Lecture 2: What have

More information

Measuring Primordial Non-Gaussianity using CMB T & E data. Amit Yadav University of illinois at Urbana-Champaign

Measuring Primordial Non-Gaussianity using CMB T & E data. Amit Yadav University of illinois at Urbana-Champaign Measuring Primordial Non-Gaussianity using CMB T & E data Amit Yadav University of illinois at Urbana-Champaign GLCW8, Ohio, June 1, 2007 Outline Motivation for measuring non-gaussianity Do we expect primordial

More information

Single versus multi field inflation post Planck Christian Byrnes University of Sussex, Brighton, UK. Kosmologietag, Bielefeld.

Single versus multi field inflation post Planck Christian Byrnes University of Sussex, Brighton, UK. Kosmologietag, Bielefeld. Single versus multi field inflation post Planck Christian Byrnes University of Sussex, Brighton, UK Kosmologietag, Bielefeld. 7th May 15+5 min What have we learnt from the precision era? Planck completes

More information

arxiv: v3 [astro-ph.co] 23 Apr 2014

arxiv: v3 [astro-ph.co] 23 Apr 2014 ICRR-Report-674-2013-23 IPMU14-0066 arxiv:1403.5823v3 [astro-ph.co] 23 Apr 2014 Compensation for large tensor modes with iso-curvature perturbations in CMB anisotropies Masahiro Kawasaki a,b and Shuichiro

More information

A modal bispectrum estimator for the CMB bispectrum

A modal bispectrum estimator for the CMB bispectrum A modal bispectrum estimator for the CMB bispectrum Michele Liguori Institut d Astrophysique de Paris (IAP) Fergusson, Liguori and Shellard (2010) Outline Summary of the technique 1. Polynomial modes 2.

More information

Cosmology of moving branes and spinflation

Cosmology of moving branes and spinflation Cosmology of moving branes and spinflation 8 Dark Energy in the Universe Damien Easson University of Tokyo Outline Brane Inflation, Moduli Stabilization and Flux Compactifications Cyclic, Mirage cosmologies

More information

The Theory of Inflationary Perturbations

The Theory of Inflationary Perturbations The Theory of Inflationary Perturbations Jérôme Martin Institut d Astrophysique de Paris (IAP) Indian Institute of Technology, Chennai 03/02/2012 1 Introduction Outline A brief description of inflation

More information

The New Relationship between Inflation & Gravitational Waves

The New Relationship between Inflation & Gravitational Waves The New Relationship between Inflation & Gravitational Waves Tomohiro Fujita (Stanford) Based on arxiv:1608.04216 w/ Dimastrogiovanni(CWRU) & Fasiello(Stanford) In prep w/ Komatsu&Agrawal(MPA); Shiraishi(KIPMU)&Thone(Cambridge);

More information

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second Lecture 3 With Big Bang nucleosynthesis theory and observations we are confident of the theory of the early Universe at temperatures up to T 1 MeV, age t 1 second With the LHC, we hope to be able to go

More information

Non-singular quantum cosmology and scale invariant perturbations

Non-singular quantum cosmology and scale invariant perturbations th AMT Toulouse November 6, 2007 Patrick Peter Non-singular quantum cosmology and scale invariant perturbations Institut d Astrophysique de Paris GRεCO AMT - Toulouse - 6th November 2007 based upon Tensor

More information

General formula for the running of fnl

General formula for the running of fnl General formula for the running of fnl Christian Byrnes University of Sussex, Brighton CB & Gong; 1210.1851 CB, Kari Enqvist, Nurmi & Tomo Takahashi; 1108.2708 CB, Enqvist, Takahashi; 1007.5148 CB, Mischa

More information

ASPECTS OF D-BRANE INFLATION IN STRING COSMOLOGY

ASPECTS OF D-BRANE INFLATION IN STRING COSMOLOGY Summer Institute 2011 @ Fujiyoshida August 5, 2011 ASPECTS OF D-BRANE INFLATION IN STRING COSMOLOGY Takeshi Kobayashi (RESCEU, Tokyo U.) TODAY S PLAN Cosmic Inflation and String Theory D-Brane Inflation

More information

Inflation Daniel Baumann

Inflation Daniel Baumann Inflation Daniel Baumann University of Amsterdam Florence, Sept 2017 Cosmological structures formed by the gravitational collapse of primordial density perturbations. gravity 380,000 yrs 13.8 billion yrs

More information

What s left of non-gaussianity (i) after Planck? (ii) after BICEP2?

What s left of non-gaussianity (i) after Planck? (ii) after BICEP2? PONT 04, Avignon 4th April 04 What s left of non-gaussianity (i) after Planc? (ii) after BICEP? David Wands Institute of Cosmology and Gravitation University of Portsmouth Conclusions from Planc+BICEP

More information

Variation in the cosmic baryon fraction and the CMB

Variation in the cosmic baryon fraction and the CMB Variation in the cosmic baryon fraction and the CMB with D. Hanson, G. Holder, O. Doré, and M. Kamionkowski Daniel Grin (KICP/Chicago) Presentation for CAP workshop 09/24/2013 arxiv: 1107.1716 (DG, OD,

More information

Stringy Origins of Cosmic Structure

Stringy Origins of Cosmic Structure The D-brane Vector Curvaton Department of Mathematics University of Durham String Phenomenology 2012 Outline Motivation 1 Motivation 2 3 4 Fields in Type IIB early universe models Figure: Open string inflation

More information

Dark Energy and the Return of the Phoenix Universe

Dark Energy and the Return of the Phoenix Universe Dark Energy and the Return of the Phoenix Universe Jean-Luc Lehners 1 and Paul J. Steinhardt 1, 1 Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544 USA Joseph Henry Laboratories,

More information

Black hole formation by the waterfall field of hybrid inflation

Black hole formation by the waterfall field of hybrid inflation Porto 2011 p.1/12 Black hole formation by the waterfall field of hybrid inflation David H. Lyth Particle Theory and Cosmology Group Physics Department Lancaster University What happens Porto 2011 p.2/12

More information

Open Inflation in the String Landscape

Open Inflation in the String Landscape Chuo University 6 December, 011 Open Inflation in the String Landscape Misao Sasaki (YITP, Kyoto University) D. Yamauchi, A. Linde, A. Naruko, T. Tanaka & MS, PRD 84, 043513 (011) [arxiv:1105.674 [hep-th]]

More information

Aspects of Inflationary Theory. Andrei Linde

Aspects of Inflationary Theory. Andrei Linde Aspects of Inflationary Theory Andrei Linde New Inflation 1981-1982 V Chaotic Inflation 1983 Eternal Inflation Hybrid Inflation 1991, 1994 Predictions of Inflation: 1) The universe should be homogeneous,

More information

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation Guido D Amico Center for Cosmology and Particle Physics New York University Unwinding Inflation New Lights in Cosmology from the CMB ICTP Trieste, Summer 2013 with Roberto Gobbetti, Matthew Kleban, Marjorie

More information

Patrick Peter. Institut d Astrophysique de Paris Institut Lagrange de Paris. Evidences for inflation constraints on alternatives

Patrick Peter. Institut d Astrophysique de Paris Institut Lagrange de Paris. Evidences for inflation constraints on alternatives Patrick Peter Institut d Astrophysique de Paris Institut Lagrange de Paris Evidences for inflation constraints on alternatives Thanks to Jérôme Martin For his help Planck 2015 almost scale invariant quantum

More information

Cosmic Variance from Mode Coupling

Cosmic Variance from Mode Coupling Cosmic Variance from Mode Coupling Sarah Shandera Penn State University L Nelson, Shandera, 1212.4550 (PRL); LoVerde, Nelson, Shandera, 1303.3549 (JCAP); Bramante, Kumar, Nelson, Shandera, 1307.5083; Work

More information

Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky.

Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky. Inflation from High Energy Physics and non-gaussianities Hassan Firouzjahi IPM, Tehran Celebrating DBI in the Sky 31 Farvardin 1391 Outline Motivation for Inflation from High Energy Physics Review of String

More information

Inflationary Cosmology: Progress and Problems

Inflationary Cosmology: Progress and Problems 1 / 95 ary Cosmology: Progress and Robert McGill University, Canada and Institute for Theoretical Studies, ETH Zuerich, Switzerland NAO Colloquium, Sept. 23, 2015 2 / 95 Outline 1 2 Review of ary Cosmology

More information

April 10, Degeneracies between canonical and. non-canonical inflation. Rhiannon Gwyn, AEI Potsdam. Introduction. Non-canonical.

April 10, Degeneracies between canonical and. non-canonical inflation. Rhiannon Gwyn, AEI Potsdam. Introduction. Non-canonical. Degeneracies April 10, 2013 [1211.0070] Gwyn, Rummel and Westphal, Resonant non-gaussianity with equilateral properties, [1212.4135] Gwyn, Rummel and Westphal, Relations canonical and, Outline 1 2 3 4

More information

arxiv: v1 [astro-ph.co] 25 Nov 2014

arxiv: v1 [astro-ph.co] 25 Nov 2014 Lecture notes on non-gaussianity Christian T. Byrnes a1 arxiv:1411.7002v1 [astro-ph.co] 25 Nov 2014 1 Department of Physics and Astronomy, Pevensey II Building, University of Sussex, BN1 9RH, UK We discuss

More information

MASAHIDE YAMAGUCHI. Quantum generation of density perturbations in the early Universe. (Tokyo Institute of Technology)

MASAHIDE YAMAGUCHI. Quantum generation of density perturbations in the early Universe. (Tokyo Institute of Technology) Quantum generation of density perturbations in the early Universe MASAHIDE YAMAGUCHI (Tokyo Institute of Technology) 03/07/16@Symposium: New Generation Quantum Theory -Particle Physics, Cosmology, and

More information

Axiverse Cosmology and the Energy Scale of Inflation

Axiverse Cosmology and the Energy Scale of Inflation Axiverse Cosmology and the Energy Scale of Inflation David J. E. Marsh Wits, 25 th March 2013 arxiv:1303.3008 Collaborators Pedro G. Ferreira (Oxford) Daniel Grin (IAS) Renée Hlozek (Princeton) ULA = ultralight

More information

Curvature perturbations and non-gaussianity from waterfall phase transition. Hassan Firouzjahi. In collaborations with

Curvature perturbations and non-gaussianity from waterfall phase transition. Hassan Firouzjahi. In collaborations with Curvature perturbations and non-gaussianity from waterfall phase transition Hassan Firouzjahi IPM, Tehran In collaborations with Ali Akbar Abolhasani, Misao Sasaki Mohammad Hossein Namjoo, Shahram Khosravi

More information

Signatures of Axion Monodromy Inflation

Signatures of Axion Monodromy Inflation Signatures of Axion Monodromy Inflation Gang Xu Cornell University based on arxiv:0907.2916 with Flauger, McAllister, Pajer and Westphal McGill University December 2009 Gang Xu Signatures of Axion Monodromy

More information

Classical Dynamics of Inflation

Classical Dynamics of Inflation Preprint typeset in JHEP style - HYPER VERSION Classical Dynamics of Inflation Daniel Baumann School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 http://www.sns.ias.edu/ dbaumann/

More information

Dissipative and Stochastic Effects During Inflation 1

Dissipative and Stochastic Effects During Inflation 1 Dissipative and Stochastic Effects During Inflation 1 Rudnei O. Ramos Rio de Janeiro State University Department of Theoretical Physics McGill University Montreal, Canada September 8th, 2017 1 Collaborators:

More information

PPP11 Tamkang University 13,14 May, Misao Sasaki. Yukawa Institute for Theoretical Physics Kyoto University

PPP11 Tamkang University 13,14 May, Misao Sasaki. Yukawa Institute for Theoretical Physics Kyoto University PPP11 Tamkang University 13,14 May, 015 Misao Sasaki Yukawa Institute for Theoretical Physics Kyoto University General Relativity 1 8 G G R g R T ; T 0 4 c Einstein (1915) GR applied to homogeneous & isotropic

More information

April 25, Degeneracies between canonical and. non-canonical inflation. Rhiannon Gwyn, AEI Potsdam. Introduction. Non-canonical.

April 25, Degeneracies between canonical and. non-canonical inflation. Rhiannon Gwyn, AEI Potsdam. Introduction. Non-canonical. Degeneracies April 25, 2013 [1211.0070] Gwyn, Rummel and Westphal, Resonant non-gaussianity with equilateral properties, [1212.4135] Gwyn, Rummel and Westphal, Relations canonical and, Motivation 1 Want

More information

Archaeology of Our Universe YIFU CAI ( 蔡一夫 )

Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) 2013-11-05 Thermal History Primordial era 13.8 billion years by WMAP/NASA Large Scale Structure (LSS) by 2MASS Cosmic Microwave Background (CMB) by ESA/Planck

More information

Inflationary particle production and non-gaussianity

Inflationary particle production and non-gaussianity December 30th (2018) Inflationary particle production and non-gaussianity Yi-Peng Wu RESearch Center for the Early Universe (RESCEU) The University of Tokyo based on: arxiv[the last day of 2018?] see also

More information

Cosmological Imprints of Dark Matter Produced During Inflation

Cosmological Imprints of Dark Matter Produced During Inflation Cosmological Imprints of Dark Matter Produced During Inflation Daniel J. H. Chung 10/15/2014 Isocurvature Sample High-energy theory motivated: Multi-field inflation: Axenides, Brandenberger, Turner 83;

More information

Looking Beyond the Cosmological Horizon

Looking Beyond the Cosmological Horizon Looking Beyond the Cosmological Horizon 175 µk 175 µk Observable Universe Adrienne Erickcek in collaboration with Sean Carroll and Marc Kamionkowski A Hemispherical Power Asymmetry from Inflation Phys.

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

Dark Radiation and Inflationary Freedom

Dark Radiation and Inflationary Freedom Dark Radiation and Inflationary Freedom Based on [SG et al., JCAP 1504 (2015) 023] [Di Valentino et al., PRD 91 (2015) 123505] Stefano Gariazzo University of Torino, INFN of Torino http://personalpages.to.infn.it/~gariazzo/

More information

Review of Small Field Models of Inflation

Review of Small Field Models of Inflation Review of Small Field Models of Inflation Ram Brustein אוניברסיטת ב ן -גוריון I. Ben-Dayan 0907.2384 + in progress I. Ben-Dayan, S. de Alwis 0802.3160 Small field models of inflation - Designing small

More information

Non-Gaussianities in String Inflation. Gary Shiu

Non-Gaussianities in String Inflation. Gary Shiu Non-Gaussianities in String Inflation Gary Shiu University of Wisconsin, Madison Frontiers in String Theory Workshop Banff, February 13, 2006 Collaborators: X.G. Chen, M.X. Huang, S. Kachru Introduction

More information

An Estimator for statistical anisotropy from the CMB. CMB bispectrum

An Estimator for statistical anisotropy from the CMB. CMB bispectrum An Estimator for statistical anisotropy from the CMB bispectrum 09/29/2012 1 2 3 4 5 6 ...based on: N. Bartolo, E. D., M. Liguori, S. Matarrese, A. Riotto JCAP 1201:029 N. Bartolo, E. D., S. Matarrese,

More information

Jun ichi Yokoyama (RESCEU&IPMU, Tokyo)

Jun ichi Yokoyama (RESCEU&IPMU, Tokyo) Jun ichi Yokoyama (RESCEU&IPMU, Tokyo) These lectures are primarily intended for Those who have never studied inflation as well as for Those who have studied inflation but are working on bouncing cosmology

More information

Three-form Cosmology

Three-form Cosmology Three-form Cosmology Nelson Nunes Centro de Astronomia e Astrofísica Universidade de Lisboa Koivisto & Nunes, PLB, arxiv:97.3883 Koivisto & Nunes, PRD, arxiv:98.92 Mulryne, Noller & Nunes, JCAP, arxiv:29.256

More information

Horava-Lifshitz. Based on: work with ( ), ( ) arxiv: , JCAP 0911:015 (2009) arxiv:

Horava-Lifshitz. Based on: work with ( ), ( ) arxiv: , JCAP 0911:015 (2009) arxiv: @ 2010 2 18 Horava-Lifshitz Based on: work with ( ), ( ) arxiv:0908.1005, JCAP 0911:015 (2009) arxiv:1002.3101 Motivation A quantum gravity candidate Recently Horava proposed a power-counting renormalizable

More information

Bielefeld - 09/23/09. Observing Alternatives to Inflation. Patri Pe r. Institut d Astrophysique de Paris. Bielefeld - 23 rd september 2009

Bielefeld - 09/23/09. Observing Alternatives to Inflation. Patri Pe r. Institut d Astrophysique de Paris. Bielefeld - 23 rd september 2009 Bielefeld - 09/23/09 Observing Alternatives to Inflation Patri Pe r Institut d Astrophysique de Paris GRεCO Bielefeld - 23 rd september 2009 Problems with standard model: Singularity Horizon Flatness Homogeneity

More information

CMB bispectrum. Takashi Hiramatsu. Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao Sasaki (YITP)

CMB bispectrum. Takashi Hiramatsu. Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao Sasaki (YITP) Workshop, 03 Aug 2016 @ Hirosaki Univ. CMB bispectrum Takashi Hiramatsu Yukawa Institute for Theoretical Physics (YITP) Kyoto University Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao

More information

Cosmology and the origin of structure

Cosmology and the origin of structure 1 Cosmology and the origin of structure ocy I: The universe observed ocy II: Perturbations ocy III: Inflation Primordial perturbations CB: a snapshot of the universe 38, AB correlations on scales 38, light

More information

Inflazione nell'universo primordiale: modelli e predizioni osservabili

Inflazione nell'universo primordiale: modelli e predizioni osservabili Inflazione nell'universo primordiale: modelli e predizioni osservabili Sabino Matarrese Dipartimento di Fisica Galileo Galilei, Università degli Studi di Padova, ITALY email: sabino.matarrese@pd.infn.it

More information