Cosmology of moving branes and spinflation

Size: px
Start display at page:

Download "Cosmology of moving branes and spinflation"

Transcription

1 Cosmology of moving branes and spinflation 8 Dark Energy in the Universe Damien Easson University of Tokyo

2 Outline Brane Inflation, Moduli Stabilization and Flux Compactifications Cyclic, Mirage cosmologies (using angular momentum) Spinflation DE, Gregory, Tasinato, Zavala hep-th/ DE, Gregory, Mota,Tasinato, Zavala DE, Gregory in progress

3 Inflationary Paradigm At early times the Universe experienced a short burst of extremely rapid (accelerated) expansion. Inflation solves conceptual and theoretical problems of the SBB model. Basic predictions are all supported by the data.

4 Brane Inflation Dvali, Tye 99 Coulomb attraction D3 D3 (geometric inflation) lightest string = 4D particle, Tachyon You live here! d M 2 T = d 2 M 4 s M 2 s d l s M 2 T 0 Brane/anti-brane separation (in X 6 ) acts like an inflaton...like Higgs in SM, T condenses, ending inflation

5 Observational Predictions In the annihilation the anti-brane destroys a brane and (observable) cosmic strings can be produced. There are also possible signatures in cosmological perturbations (in the CMB)...

6 In ordinary slow roll inflation, perturbations are Gaussian. In brane inflation non-gaussianities are possible and Planck can see them. Garriga, Mukhanov 99, Alishahiha, Silverstein, Tong 04 Significant non-gaussianity detection would be strong evidence of new physics in the inflaton sector.

7 Moduli Fields The metric in the extra dimensions (sizes and shapes of cycles of Calabi-Yau space) depends on continuous parameters called moduli. The parameters of a solution correspond to scalar fields (unconstrained by EOM, i.e. massless) in four dimensions. In a realistic compactification there can be many of these moduli fields.

8 Moduli Problems These scalar fields have nonuniversal couplings to matter: f i (ϕ i )L m (ψ i ) Different types of matter get different accelerations from these forces, violating the equivalence principle. Fifth force experiments constrain such forces to be very weak, but if fields remain massless we do not expect them to interact with matter more weakly than gravity. Need to stabilize moduli using fluxes and branes.

9 S IIB = 1 2κ 2 Concrete Stringy Model d 10 x g s { e 2φ [ R + 4( φ) 2] F (1) F 2 } 2 3! G (3) Ḡ(3) (5) 4 5! + 1 8iκ 2 e φ C (4) G (3) Ḡ(3) + S loc G (3) = F (3) τh (3) τ = C (0) + ie φ

10 S loc = R 4 Σ d p+1 ξt p g + µp R 4 Σ C p+1 In IIB RR potentials are: C (0),C (2),C (4),C (6),C (8) Compactify this on a CY manifold and turn on fluxes and wrap branes to stabilze moduli fields. Giddings, Kachru, Polchinski 2001 Kachru, Kallosh, Linde, Trivedi 2003 Study dynamics of brane probes in this background Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi 2003

11 ... Turn Compactify on the FLUX!! on CY ds 2 = e A(y) g µν dx µ dx ν + e A(y) g mn dy m dy n ds 2 = g µν dx µ dx ν + g mn dy m dy n Warping!

12 Brane Cosmologies 6 G(3) = ig(3) Σ4 6d Calabi Yau with fluxes D3 inflaton warped throat region (looks like point) Brane World process process N D3 (large hierarchy) IR UV N D7 Moving brane acts as inflaton aρ W = W + Ae 0 Moving branes experience expansion/ contraction as they move in the throat mirage cosmology Need nonperturbative effects to stabilize Kähler moduli

13 Klebanov Strassler 3 A Based on deformed conifold:! (wa )2 = z! A 1 F3 = 2πM! 2πα A! 1 H3 = 2πK! 2πα B!! z= Ω W = G3 Ω A A 2πK/gs M z=e e 70 h 50 h B A Η can bounce! 20 A large hierarchy warp factor h S S2 B Η 6 8 V ol(t (1,1) 16π 3 )= 27

14 Brane Dynamics & Mirage Cosmology DAE, Gregory, Tasinato, Zavala 07 The probe brane evolves according to the DBI action: [ S DBI = m d 4 x h 1 ( ] 1 hv 2 1 Induced mirage cosmology Kehagias, Kiritsis 99 ds 2 = h 1/2 ( (1 hv 2 ) dt 2 + dx i dx i) = dτ 2 + a 2 (τ)dx i dx i

15 Bounces are possible. The 4D effective theory on the brane is a scalar-tensor gravity that can violate the NEC. Represents a string theory resolution of a spacelike singularity.

16 Turning on angular momentum What if the brane spins as it moves in the throat? Conserved angular momentum: l r = g rs θ s 1 hv 2 v 2 = g ηη η 2 + l 2 (η) 1+hl 2 (η) l 2 (η) =g rs l r l s

17 Mirage cyclic cosmology ds 2 10 = h 1/2 (η) dx µ dx µ + h 1/2 (η)ds 2 6 h(η) ɛ 8/3 η dx x coth x 1 sinh 2 x (sinh (2 x) 2 x) 1/3 Introducing angular momentum generates a centrifugal barrier for the brane. Bound states near tip cyclic Universes. H 2

18 The mirage pictures has serious drawbacks, but it does provide an example of a time-dependent bounce and cyclic toy cosmologies in string theory. Try using spinning moving branes as inflatons instead. (We live somewhere off the inflaton brane) DE, Gregory, Mota, Tasinato, Zavala 07

19 Backreaction Easiest first step is to couple DBI to Einstein Hilbert action. Silverstein, Tong 2003 There are no NEC violating sources, making cyclic cosmologies impossible. Can have bounces in the radial field due to angular momentum or passing through a nonsingular tip (KS). Brane position: φ = T 3 r

20 DBI(nflation) in the Throat S = M 2 Pl 2 P (X, φ m )= g 1 s A moving brane sources inflation. d 4 x gr + d 4 x gp(x, φ m ) [ h 1 ] 1+hg mn g µν µ φ m ν φ n qh 1 + V (φ m ) For D3 moduli space is the internal space: γ 1 1 hv 2 {η, ψ, θ 1, θ 2, φ 1, φ 2 } v 2 = g mn ϕ m ϕ n Brane speed limit! E = 1 h P = 1 h [γ q]+v [ q γ 1 ] V

21 Ḣ = 3β 2h Position in throat given by field: φ ( h 2 g φφ φ2 = h 1 ) 2 ( H 2 β V +2qH H 2 ( 1 q + h q + h ) β V + q 2 1 H 2 β V ) 1+h l(φ)2 ( a 6 ) H 2 β V bounces due to angular momentum still possible but not with sufficient efoldings of inflation. ε = spinflatons prolong inflation 3β 2H 2 { [ q + f ( 3H 2 β V )] φ 2 + l2 (φ) a 6 [ q + f ( 3H 2 β )] 1 } V

22 Inflationary V (φ) =m 2 φ 2 trajectories (using full KS) 1 ah Inflating inflaton couples to SM fields t Number of e-foldings can increase slightly reheating L = 1 2 g2 φ 2 χ 2 h ψψφ Brodie, DE 03 Mukohyama 07

23 Non-Gaussianities For a brane moving through a warped background: S = DBI dt d x h 1 (φ) 1 h(φ) µ φ µ φ In standard slow roll inflation In DBI f NL γ 2 n s 1 << 1 (gaussian ground state of QHO) γ 1 1 hv 2

24 Brane inflation is a multi field model with non-standard kinetic terms. {η, ψ, θ 1, θ 2, φ 1, φ 2 } s "! # In general, adiabatic and isocurvature modes travel at different speeds (due to gammas) DE, Gregory, Mota, Tasinato, Zavala 07 Arroja, Mizuno, Koyama 08...but DBI is special Langois, Renauz-Petel, Steer, Tanaka 08

25 Conclusions Considering brane dynamics with angular momentum and cycling behavior gives rich, new phenomenology. Models can make general observational predictions (e.g. cosmic strings, non-gaussianity, gravitational waves). Much more work needs to be done to build explicit stringy models.

Spinflation. Ivonne Zavala IPPP, Durham

Spinflation. Ivonne Zavala IPPP, Durham Spinflation Ivonne Zavala IPPP, Durham Based on: JHEP04(2007)026 and arxiv:0709.2666 In collaboration with: R.Gregory, G. Tasinato, D.Easson and D. Mota Motivation Inflation: very successful scenario in

More information

ASPECTS OF D-BRANE INFLATION IN STRING COSMOLOGY

ASPECTS OF D-BRANE INFLATION IN STRING COSMOLOGY Summer Institute 2011 @ Fujiyoshida August 5, 2011 ASPECTS OF D-BRANE INFLATION IN STRING COSMOLOGY Takeshi Kobayashi (RESCEU, Tokyo U.) TODAY S PLAN Cosmic Inflation and String Theory D-Brane Inflation

More information

Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky.

Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky. Inflation from High Energy Physics and non-gaussianities Hassan Firouzjahi IPM, Tehran Celebrating DBI in the Sky 31 Farvardin 1391 Outline Motivation for Inflation from High Energy Physics Review of String

More information

Brane inflation in string cosmology. Shinji Mukohyama (University of Tokyo) based on collaboration with S.Kinoshita, T.Kobayashi, L.

Brane inflation in string cosmology. Shinji Mukohyama (University of Tokyo) based on collaboration with S.Kinoshita, T.Kobayashi, L. Brane inflation in string cosmology Shinji Mukohyama (University of Tokyo) based on collaboration with S.Kinoshita, T.Kobayashi, L.Kofman Three mysteries: Inflation, Dark Energy & Dark Matter String Theory?

More information

Brane Inflation: Observational Signatures and Non-Gaussianities. Gary Shiu. University of Wisconsin

Brane Inflation: Observational Signatures and Non-Gaussianities. Gary Shiu. University of Wisconsin Brane Inflation: Observational Signatures and Non-Gaussianities Gary Shiu University of Wisconsin Collaborators Reheating in D-brane inflation: D.Chialva, GS, B. Underwood Non-Gaussianities in CMB: X.Chen,

More information

Inflation in String Theory. mobile D3-brane

Inflation in String Theory. mobile D3-brane Inflation in String Theory mobile D3-brane Outline String Inflation as an EFT Moduli Stabilization Examples of String Inflation Inflating with Branes Inflating with Axions (Inflating with Volume Moduli)

More information

Prospects for Inflation from String Theory

Prospects for Inflation from String Theory Prospects for Inflation from String Theory Hassan Firouzjahi IPM IPM School on Early Universe Cosmology, Tehran, Dec 7-11, 2009 Outline Motivation for Inflation from String Theory A quick Review on String

More information

Cosmology and astrophysics of extra dimensions

Cosmology and astrophysics of extra dimensions Cosmology and astrophysics of extra dimensions Astrophysical tests of fundamental physics Porto, 27-29 March 2007 P. Binétruy, APC Paris Why extra dimensions? Often appear in the context of unifying gravitation

More information

String Phenomenology. Gary Shiu University of Wisconsin. Symposium

String Phenomenology. Gary Shiu University of Wisconsin. Symposium String Phenomenology Gary Shiu University of Wisconsin YITP@40 Symposium YITP s Theory Space QCD/Collider Physics Strings/SUGRA YITP Statistical Mechanics Neutrinos Standard Model & Beyond + a lot more...

More information

String Inflation. C.P. PONT Avignon 2008

String Inflation. C.P. PONT Avignon 2008 String Inflation @ C.P. Burgess with N. Barnaby, J.Blanco-Pillado, J.Cline, K. das Gupta, C.Escoda, H. Firouzjahi, M.Gomez-Reino, R.Kallosh, A.Linde,and F.Quevedo Outline String inflation Why build models

More information

Stringy Origins of Cosmic Structure

Stringy Origins of Cosmic Structure The D-brane Vector Curvaton Department of Mathematics University of Durham String Phenomenology 2012 Outline Motivation 1 Motivation 2 3 4 Fields in Type IIB early universe models Figure: Open string inflation

More information

CMB Features of Brane Inflation

CMB Features of Brane Inflation CMB Features of Brane Inflation Jiajun Xu Cornell University With R. Bean, X. Chen, G. Hailu, S. Shandera and S.H. Tye hep-th/0702107, arxiv:0710.1812, arxiv:0802.0491 Cosmo 08 Brane Inflation (Dvali &

More information

Inflation and Cosmic Strings in Heterotic M-theory

Inflation and Cosmic Strings in Heterotic M-theory Inflation and Cosmic Strings in Heterotic M-theory Melanie Becker Texas A&M July 31st, 2006 Talk at the Fourth Simons Workshop in Mathematics and Physics Stony Brook University, July 24 - August 25, 2006

More information

Cosmological Signatures of Brane Inflation

Cosmological Signatures of Brane Inflation March 22, 2008 Milestones in the Evolution of the Universe http://map.gsfc.nasa.gov/m mm.html Information about the Inflationary period The amplitude of the large-scale temperature fluctuations: δ H =

More information

Warped Models in String Theory

Warped Models in String Theory Warped Models in String Theory SISSA/ISAS Trieste (Italy) Rutgers 14 November 2006 (Work in collaboration with B.S.Acharya and F.Benini) Appearing soon Introduction 5D Models 5D warped models in a slice

More information

Inflation from flux cascades

Inflation from flux cascades Inflation from flux cascades Marjorie Schillo University of Wisconsin, Madison 13/4/17 Based on arxiv:1611.07037 with Fridrik Freyr Gautason and Thomas Van Riet Inflation in string theory The CMB provides

More information

Aspects of Inflationary Theory. Andrei Linde

Aspects of Inflationary Theory. Andrei Linde Aspects of Inflationary Theory Andrei Linde New Inflation 1981-1982 V Chaotic Inflation 1983 Eternal Inflation Hybrid Inflation 1991, 1994 Predictions of Inflation: 1) The universe should be homogeneous,

More information

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München An up-date on Brane Inflation Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München Leopoldina Conference, München, 9. October 2008 An up-date on Brane Inflation Dieter Lüst, LMU (Arnold

More information

Cosmology with Warped String Compactification. Shinji Mukohyama University of Tokyo

Cosmology with Warped String Compactification. Shinji Mukohyama University of Tokyo Cosmology with Warped String Compactification Shinji Mukohyama University of Tokyo There are Frontiers in Physics: at Short and Long Scales 10-10 m There is a story going 10-15 m 10-18 m into smaller and

More information

On the Slow Roll Expansion for Brane Inflation

On the Slow Roll Expansion for Brane Inflation Preprint typeset in JHEP style - HYPER VERSION arxiv:hep-th/0702118v3 29 Apr 2007 On the Slow Roll Expansion for Brane Inflation Micha l Spaliński So ltan Institute for Nuclear Studies ul. Hoża 69, 00-681

More information

Primordial perturbations from inflation. David Langlois (APC, Paris)

Primordial perturbations from inflation. David Langlois (APC, Paris) Primordial perturbations from inflation David Langlois (APC, Paris) Cosmological evolution Homogeneous and isotropic Universe Einstein s equations Friedmann equations The Universe in the Past The energy

More information

Duality Cascade in the Sky

Duality Cascade in the Sky Duality Cascade in the Sky (R.Bean, X.Chen, G.Hailu, S.H.Tye and JX, to appear) Jiajun Xu Cornell University 02/01/2008 Our Current Understanding of the Early Universe - Homogeneous and isotropic δh 2

More information

Non-Gaussianities in String Inflation. Gary Shiu

Non-Gaussianities in String Inflation. Gary Shiu Non-Gaussianities in String Inflation Gary Shiu University of Wisconsin, Madison Frontiers in String Theory Workshop Banff, February 13, 2006 Collaborators: X.G. Chen, M.X. Huang, S. Kachru Introduction

More information

String-Theory: Open-closed String Moduli Spaces

String-Theory: Open-closed String Moduli Spaces String-Theory: Open-closed String Moduli Spaces Heidelberg, 13.10.2014 History of the Universe particular: Epoch of cosmic inflation in the early Universe Inflation and Inflaton φ, potential V (φ) Possible

More information

Inflation in DBI models with constant γ

Inflation in DBI models with constant γ Preprint typeset in JHEP style - HYPER VERSION arxiv:0711.4326v1 [astro-ph] 27 Nov 2007 Inflation in DBI models with constant Micha l Spaliński So ltan Institute for Nuclear Studies ul. Hoża 69, 00-681

More information

Observing Brane Inflation

Observing Brane Inflation Preprint typeset in JHEP style. - HYPER VERSION Observing Brane Inflation arxiv:hep-th/0601099v1 16 Jan 2006 Sarah E. Shandera and S.-H. Henry Tye Laboratory for Elementary Particle Physics Cornell University

More information

Brane world scenarios

Brane world scenarios PRAMANA cfl Indian Academy of Sciences Vol. 60, No. 2 journal of February 2003 physics pp. 183 188 Brane world scenarios DILEEP P JATKAR Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad

More information

D3-D7 on warped throat

D3-D7 on warped throat D3-D7 on warped throat Anatoly Dymarsky Stanford University From Strings to Things, INT, May 2008 Applications of warped throat geometries Gauge/Gravity duality of N = 1 theories I. Klebanov and M. Strassler

More information

A Consistency Relation for Power Law Inflation in DBI Models

A Consistency Relation for Power Law Inflation in DBI Models Preprint typeset in JHEP style - HYPER VERSION arxiv:hep-th/0703248v2 15 Jun 2007 A Consistency Relation for Power Law Inflation in DBI Models Micha l Spaliński So ltan Institute for Nuclear Studies ul.

More information

Brane Backreaction: antidote to no-gos

Brane Backreaction: antidote to no-gos Brane Backreaction: antidote to no-gos Getting de Sitter (and flat) space unexpectedly w Leo van Nierop Outline New tool: high codim back-reaction RS models on steroids Outline New tool: high codim back-reaction

More information

Good things from Brane Backreaction

Good things from Brane Backreaction Good things from Brane Backreaction Codimension-2 Backreaction as a counterexample to almost everything w Leo van Nierop Outline New tool: high codim back-reaction RS models on steroids Outline New tool:

More information

Updates on Warped Brane Inflation

Updates on Warped Brane Inflation Updates on Warped Brane Inflation Heng-Yu Chen Department of Physics UW-Madison March 31, 2009/ Department of Physics, Purdue University Based on 0807.1927, 0807.2428,0812.4649,0901.0267 [hep-th] with

More information

Lecture 4 on String Cosmology: Brane Inflation and Cosmic Superstrings

Lecture 4 on String Cosmology: Brane Inflation and Cosmic Superstrings Lecture 4 on String Cosmology: Brane Inflation and Cosmic Superstrings Henry Tye Cornell University and HKUST IAS-CERN School 20 January 2012 Brane world Brane world in Type IIB r -30 10 m " W + G µ! Inflationary

More information

Brane decay in curved space-time

Brane decay in curved space-time Brane decay in curved space-time Dan Israël, IAP, Univ. Pierre et Marie Curie From D. I. & E. Rabinovici, JHEP 0701 (2007) D. I., JHEP 0704 (2007) D. Israël, Brane decay in curved space-time 1 Outline

More information

The multi-field facets of inflation. David Langlois (APC, Paris)

The multi-field facets of inflation. David Langlois (APC, Paris) The multi-field facets of inflation David Langlois (APC, Paris) Introduction After 25 years of existence, inflation has been so far very successful to account for observational data. The nature of the

More information

Detecting Cosmic Superstrings

Detecting Cosmic Superstrings Detecting Cosmic Superstrings Mark G. Jackson Fermilab MGJ, N. Jones and J. Polchinski, hep-th th/0405229 MGJ and G. Shiu, hep-th th/0506nnn Rutgers University, 5/17/05 Breaking U(1) in Cosmology A field

More information

On Power Law Inflation in DBI Models

On Power Law Inflation in DBI Models Preprint typeset in JHEP style - HYPER VERSION arxiv:hep-th/0702196v2 26 Apr 2007 On Power Law Inflation in DBI Models Micha l Spaliński So ltan Institute for Nuclear Studies ul. Hoża 69, 00-681 Warszawa,

More information

Inflationary cosmology. Andrei Linde

Inflationary cosmology. Andrei Linde Inflationary cosmology Andrei Linde Problems of the Big Bang theory: What was before the Big Bang? Why is our universe so homogeneous? Why is it isotropic? Why its parts started expanding simultaneously?

More information

Inflation in heterotic supergravity models with torsion

Inflation in heterotic supergravity models with torsion Inflation in heterotic supergravity models with torsion Stephen Angus IBS-CTPU, Daejeon in collaboration with Cyril Matti (City Univ., London) and Eirik Eik Svanes (LPTHE, Paris) (work in progress) String

More information

Primordial Gravitational Waves in String Theory

Primordial Gravitational Waves in String Theory Primordial Gravitational Waves in String Theory Susha Parameswaran University of Liverpool String Phenomenology 2016 20th June 2016 Based on: Phys.Lett. B759 (2016) 402-409, Karta Kooner, S.L.P. and Ivonne

More information

Cosmology with Extra Dimensions

Cosmology with Extra Dimensions Cosmology with Extra Dimensions Johannes Martin University of Bonn May 13th 2005 Outline Motivation and Introduction 1 Motivation and Introduction Motivation From 10D to 4D: Dimensional Reduction Common

More information

Strings and the Cosmos

Strings and the Cosmos Strings and the Cosmos Yeuk-Kwan Edna Cheung Perimeter Institute for Theoretical Physics University of Science and Technology, China May 27th, 2005 String Theory as a Grand Unifying Theory 60 s: theory

More information

III. Stabilization of moduli in string theory II

III. Stabilization of moduli in string theory II III. Stabilization of moduli in string theory II A detailed arguments will be given why stabilization of certain moduli is a prerequisite for string cosmology. New ideas about stabilization of moduli via

More information

Yet Another Alternative to Compactification by Heterotic Five-branes

Yet Another Alternative to Compactification by Heterotic Five-branes The University of Tokyo, Hongo: October 26, 2009 Yet Another Alternative to Compactification by Heterotic Five-branes arxiv: 0905.285 [hep-th] Tetsuji KIMURA (KEK) Shun ya Mizoguchi (KEK, SOKENDAI) Introduction

More information

Heterotic Torsional Backgrounds, from Supergravity to CFT

Heterotic Torsional Backgrounds, from Supergravity to CFT Heterotic Torsional Backgrounds, from Supergravity to CFT IAP, Université Pierre et Marie Curie Eurostrings@Madrid, June 2010 L.Carlevaro, D.I. and M. Petropoulos, arxiv:0812.3391 L.Carlevaro and D.I.,

More information

Inflationary cosmology

Inflationary cosmology Inflationary cosmology T H E O U N I V E R S I T Y H Andrew Liddle February 2013 Image: NASA/WMAP Science Team F E D I N U B R G Inflation is... A prolonged period of accelerated expansion in the very

More information

Signatures of Axion Monodromy Inflation

Signatures of Axion Monodromy Inflation Signatures of Axion Monodromy Inflation Gang Xu Cornell University based on arxiv:0907.2916 with Flauger, McAllister, Pajer and Westphal McGill University December 2009 Gang Xu Signatures of Axion Monodromy

More information

arxiv:hep-th/ v2 28 Mar 2000

arxiv:hep-th/ v2 28 Mar 2000 PUPT-1923 arxiv:hep-th/0003236v2 28 Mar 2000 A Note on Warped String Compactification Chang S. Chan 1, Percy L. Paul 2 and Herman Verlinde 1 1 Joseph Henry Laboratories, Princeton University, Princeton

More information

Phenomenology of Axion Inflation

Phenomenology of Axion Inflation Phenomenology of Axion Inflation based on Flauger & E.P. 1002.0833 Flauger, McAllister, E.P., Westphal & Xu 0907.2916 Barnaby, EP & Peloso to appear Enrico Pajer Princeton University Minneapolis Oct 2011

More information

Inflation in DBI models with constant γ

Inflation in DBI models with constant γ Preprint typeset in JHEP style - HYPER VERSION arxiv:0711.4326v3 [astro-ph] 11 Mar 2008 Inflation in DBI models with constant γ Micha l Spaliński So ltan Institute for Nuclear Studies ul. Hoża 69, 00-681

More information

Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli

Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli Per Berglund University of New Hampshire Based on arxiv: 1012:xxxx with Balasubramanian and hep-th/040854 Balasubramanian,

More information

BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS

BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS 1 BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS Based on : - W.Buchmuller, E.D., L.Heurtier and C.Wieck, arxiv:1407.0253 [hep-th], JHEP 1409 (2014) 053. - W.Buchmuller, E.D., L.Heurtier, A.Westphal,

More information

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation Guido D Amico Center for Cosmology and Particle Physics New York University Unwinding Inflation New Lights in Cosmology from the CMB ICTP Trieste, Summer 2013 with Roberto Gobbetti, Matthew Kleban, Marjorie

More information

Flux Compactification and SUSY Phenomenology

Flux Compactification and SUSY Phenomenology Flux Compactification and SUSY Phenomenology Komaba07 On occasion of Prof. Yoneya s 60 th birthday Masahiro Yamaguchi Tohoku University Talk Plan Introduction : Flux compactification and KKLT set-up Naturalness

More information

String Phenomenology ???

String Phenomenology ??? String Phenomenology Andre Lukas Oxford, Theoretical Physics d=11 SUGRA IIB M IIA??? I E x E 8 8 SO(32) Outline A (very) basic introduction to string theory String theory and the real world? Recent work

More information

arxiv: v1 [hep-th] 11 Sep 2008

arxiv: v1 [hep-th] 11 Sep 2008 The Hubble parameters in the D-brane models arxiv:009.1997v1 [hep-th] 11 Sep 200 Pawel Gusin University of Silesia, Institute of Physics, ul. Uniwersytecka 4, PL-40007 Katowice, Poland, e-mail: pgusin@us.edu.pl

More information

Warped Brane-worlds in 6D Flux Compactification

Warped Brane-worlds in 6D Flux Compactification Warped Brane-worlds in D Flux Compactification Lefteris Papantonopoulos National Technical University of Athens Plan of the Talk Brane-worlds Why -Dimensions? Codimension-1 branes Codimension- branes D

More information

String Theory Compactifications with Background Fluxes

String Theory Compactifications with Background Fluxes String Theory Compactifications with Background Fluxes Mariana Graña Service de Physique Th Journées Physique et Math ématique IHES -- Novembre 2005 Motivation One of the most important unanswered question

More information

Orientiholes Γ 2 Γ 1. Frederik Denef, Mboyo Esole and Megha Padi, arxiv:

Orientiholes Γ 2 Γ 1. Frederik Denef, Mboyo Esole and Megha Padi, arxiv: Orientiholes Γ 2 Γ 1 Γ 0 Γ 1 Γ 2 Frederik Denef, Mboyo Esole and Megha Padi, arxiv:0901.2540 Outline Motivation and basic idea Review of N = 2 black hole bound states Type IIA orientiholes Motivation and

More information

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories CHAPTER 4 INFLATIONARY MODEL BUILDING Essentially, all models are wrong, but some are useful. George E. P. Box, 1987 As we learnt in the previous chapter, inflation is not a model, but rather a paradigm

More information

Candidates for Inflation in Type IIB/F-theory Flux Compactifications

Candidates for Inflation in Type IIB/F-theory Flux Compactifications Candidates for Inflation in Type IIB/F-theory Flux Compactifications Irene Valenzuela IFT UAM/CSIC Madrid Geometry and Physics of F-Theory, Munich 2015 Garcia-Etxebarria,Grimm,Valenzuela [hep-th/1412.5537]

More information

F- 理論におけるフラックスコンパクト化. Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) Sangyo U.

F- 理論におけるフラックスコンパクト化. Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) Sangyo U. F- 理論におけるフラックスコンパクト化 Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) 2018/1/29@Kyoto Sangyo U. Outline Introduction Flux compactification in type

More information

arxiv:hep-th/ v2 3 Jan 2010

arxiv:hep-th/ v2 3 Jan 2010 Preprint typeset in JHEP style - HYPER VERSION Observing Brane Inflation arxiv:hep-th/0601099v2 3 Jan 2010 Sarah E. Shandera and S.-H. Henry Tye Laboratory for Elementary Particle Physics Cornell University

More information

Liam McAllister Cornell

Liam McAllister Cornell Liam McAllister Cornell COSMO 2013, Cambridge September 5, 2013 What can experimental cosmology teach us about fundamental physics? Inflationary scenarios, and alternatives to inflation, are sensitive

More information

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai.

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Constraints on Inflationary Correlators From Conformal Invariance Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Based on: 1) I. Mata, S. Raju and SPT, JHEP 1307 (2013) 015 2) A. Ghosh,

More information

Inflationary Trajectories

Inflationary Trajectories Inflationary Trajectories Pascal M. Vaudrevange 19.09.2007 Scanning Inflaton Goals: Reconstruction of Primordial Power Spectra Reconstruction of Inflaton Potential Inflation driven by a scalar field -

More information

brane world cosmology An introduction to Andreas Müller Theory group LSW Advanced seminar LSW Heidelberg 03/03/2004

brane world cosmology An introduction to Andreas Müller Theory group LSW Advanced seminar LSW Heidelberg 03/03/2004 An introduction to brane world cosmology Andreas Müller Theory group LSW http://www.lsw.uni-heidelberg.de/users/amueller Advanced seminar LSW Heidelberg 03/03/2004 Overview principles bulk and brane extradimensions

More information

String cosmology and the index of the Dirac operator

String cosmology and the index of the Dirac operator String cosmology and the index of the Dirac operator Renata Kallosh Stanford STRINGS 2005 Toronto, July 12 Outline String Cosmology, Flux Compactification,, Stabilization of Moduli, Metastable de Sitter

More information

Origins and observations of primordial non-gaussianity. Kazuya Koyama

Origins and observations of primordial non-gaussianity. Kazuya Koyama Origins and observations of primordial non-gaussianity Kazuya Koyama University of Portsmouth Primordial curvature perturbations Komatsu et.al. 008 Proved by CMB anisotropies nearly scale invariant ns

More information

Tachyon scalar field in DBI and RSII cosmological context

Tachyon scalar field in DBI and RSII cosmological context Tachyon scalar field in DBI and RSII cosmological context Neven Bilic, Goran S. Djordjevic, Milan Milosevic and Dragoljub D. Dimitrijevic RBI, Zagreb, Croatia and FSM, University of Nis, Serbia 9th MATHEMATICAL

More information

Classical Dynamics of Inflation

Classical Dynamics of Inflation Preprint typeset in JHEP style - HYPER VERSION Classical Dynamics of Inflation Daniel Baumann School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 http://www.sns.ias.edu/ dbaumann/

More information

Scalar Speed Limits and Cosmology: Acceleration from D-cceleration

Scalar Speed Limits and Cosmology: Acceleration from D-cceleration October 27, 2003 hep-th/0310221 MIT-CTP-3426 SLAC-PUB-10211 SU-ITP-3/29 NSF-KITP-03-87 Scalar Speed Limits and Cosmology: Acceleration from D-cceleration Eva Silverstein 1 and David Tong 2 1 SLAC and Department

More information

Cosmology from Brane Backreaction

Cosmology from Brane Backreaction Cosmology from Brane Backreaction Higher codimension branes and their bulk interactions w Leo van Nierop Outline Motivation Extra-dimensional cosmology Setup A 6D example Calculation Maximally symmetric

More information

Wrapped brane gas as a candidate for Dark Matter

Wrapped brane gas as a candidate for Dark Matter Wrapped brane gas as a candidate for Dark Matter Masakazu Sano Hokkaido University arxiv:0907.2495 in collaboration with Hisao Suzuki KEK Mini Workshop on String Theory, 09 Nov, 2009 1 Introduction Table

More information

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth Misao Sasaki YITP, Kyoto University 9 June, 009 ICG, Portsmouth contents 1. Inflation and curvature perturbations δn formalism. Origin of non-gaussianity subhorizon or superhorizon scales 3. Non-Gaussianity

More information

EKPYROTIC SCENARIO IN STRING THEORY. Kunihito Uzawa Kwansei Gakuin University

EKPYROTIC SCENARIO IN STRING THEORY. Kunihito Uzawa Kwansei Gakuin University EKPYROTIC SCENARIO IN STRING THEORY Kunihito Uzawa Kwansei Gakuin University [1] Introduction The Ekpyrosis inspired by string theory and brane world model suggests alternative solutions to the early universe

More information

Instabilities during Einstein-Aether Inflation

Instabilities during Einstein-Aether Inflation Instabilities during Einstein-Aether Inflation Adam R Solomon DAMTP, University of Cambridge, UK Based on work to appear soon: AS & John D Barrow arxiv:1309.xxxx September 3 rd, 2013 Why consider Lorentz

More information

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth Large Primordial Non- Gaussianity from early Universe Kazuya Koyama University of Portsmouth Primordial curvature perturbations Proved by CMB anisotropies nearly scale invariant n s = 0.960 ± 0.013 nearly

More information

Classification of dynamical intersecting brane solutions

Classification of dynamical intersecting brane solutions Classification of dynamical intersecting brane solutions Kunihito Uzawa Osaka City University (H. Kodama, K. Uzawa; JHEP 0602:2006 [arxiv: hep-th/0512104] ) (P. Binetruy, M. Sasaki, K. Uzawa, arxiv:0712.3615,

More information

Flux Compactification of Type IIB Supergravity

Flux Compactification of Type IIB Supergravity Flux Compactification of Type IIB Supergravity based Klaus Behrndt, LMU Munich Based work done with: M. Cvetic and P. Gao 1) Introduction 2) Fluxes in type IIA supergravity 4) Fluxes in type IIB supergravity

More information

Interpolating geometries, fivebranes and the Klebanov-Strassler theory

Interpolating geometries, fivebranes and the Klebanov-Strassler theory Interpolating geometries, fivebranes and the Klebanov-Strassler theory Dario Martelli King s College, London Based on: [Maldacena,DM] JHEP 1001:104,2010, [Gaillard,DM,Núñez,Papadimitriou] to appear Universitá

More information

Cordes et Branes: des outils pour la cosmologie primordiale. Strings & branes: tools for primordial cosmology. Dan Israël, iap

Cordes et Branes: des outils pour la cosmologie primordiale. Strings & branes: tools for primordial cosmology. Dan Israël, iap Cordes et Branes: des outils pour la cosmologie primordiale Strings & branes: tools for primordial cosmology Dan Israël, iap D. Israël, Strings & branes 1 Preamble Despite its exotic aspects, string theory

More information

Soft Terms from Bent Branes

Soft Terms from Bent Branes Soft Terms from Bent Branes Paul McGuirk Cornell University SUSY in Strings - INI - 10/3/14 Based on: 1212.2210 PM 1110.5075 PM 0911.0019 PM, G. Shiu, Y Sumitomo Punchline Breaking supersymmetry can cause

More information

Inflation Daniel Baumann

Inflation Daniel Baumann Inflation Daniel Baumann University of Amsterdam Florence, Sept 2017 Cosmological structures formed by the gravitational collapse of primordial density perturbations. gravity 380,000 yrs 13.8 billion yrs

More information

Dilaton and IR-Driven Inflation

Dilaton and IR-Driven Inflation Dilaton and IR-Driven Inflation Chong-Sun Chu National Center for Theoretical Science NCTS and National Tsing-Hua University, Taiwan Third KIAS-NCTS Joint Workshop High 1 Feb 1, 2016 1506.02848 in collaboration

More information

New Ekpyrotic Cosmology and Non-Gaussianity

New Ekpyrotic Cosmology and Non-Gaussianity New Ekpyrotic Cosmology and Non-Gaussianity Justin Khoury (Perimeter) with Evgeny Buchbinder (PI) Burt Ovrut (UPenn) hep-th/0702154, hep-th/0706.3903, hep-th/0710.5172 Related work: Lehners, McFadden,

More information

Phenomenological Aspects of Local String Models

Phenomenological Aspects of Local String Models Phenomenological Aspects of Local String Models F. Quevedo, Cambridge/ICTP. PASCOS-2011, Cambridge. M. Dolan, S. Krippendorf, FQ; arxiv:1106.6039 S. Krippendorf, M. Dolan, A. Maharana, FQ; arxiv:1002.1790

More information

Inflationary predictions in scalar-tensor DBI inflation

Inflationary predictions in scalar-tensor DBI inflation Prepared for submission to JCAP arxiv:1111.037v [astro-ph.co] 31 May 01 Inflationary predictions in scalar-tensor DBI inflation Joel M. Weller, a,c Carsten van de Bruck b and David F. Mota c a Institute

More information

Inflation and String Theory

Inflation and String Theory Inflation and String Theory Juan Maldacena Strings 2015, Bangalore Based on: Arkani Hamed and JM, JM and Pimentel Inflation is the leading candidate for a theory that produces the primordial fluctuations.

More information

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity 2012cüWâfÔn»Æï? Domain Wall Brane in Eddington Inspired Born-Infeld Gravity µ4œ Ç =²ŒÆnØÔnïÄ Email: yangke09@lzu.edu.cn I# Ÿ 2012.05.10 Outline Introduction to Brane World Introduction to Eddington Inspired

More information

Yet Another Alternative to Compactification

Yet Another Alternative to Compactification Okayama Institute for Quantum Physics: June 26, 2009 Yet Another Alternative to Compactification Heterotic five-branes explain why three generations in Nature arxiv: 0905.2185 [hep-th] Tetsuji KIMURA (KEK)

More information

String Moduli Stabilization and Large Field Inflation

String Moduli Stabilization and Large Field Inflation Kyoto, 12.12.2016 p.1/32 String Moduli Stabilization and Large Field Inflation Ralph Blumenhagen Max-Planck-Institut für Physik, München based on joint work with A.Font, M.Fuchs, D. Herschmann, E. Plauschinn,

More information

How to get a superconductor out of a black hole

How to get a superconductor out of a black hole How to get a superconductor out of a black hole Christopher Herzog Princeton October 2009 Quantum Phase Transition: a phase transition between different quantum phases (phases of matter at T = 0). Quantum

More information

Lecture 3. The inflation-building toolkit

Lecture 3. The inflation-building toolkit Lecture 3 The inflation-building toolkit Types of inflationary research Fundamental physics modelling of inflation. Building inflation models within the context of M-theory/braneworld/ supergravity/etc

More information

Scale-invariance from spontaneously broken conformal invariance

Scale-invariance from spontaneously broken conformal invariance Scale-invariance from spontaneously broken conformal invariance Austin Joyce Center for Particle Cosmology University of Pennsylvania Hinterbichler, Khoury arxiv:1106.1428 Hinterbichler, AJ, Khoury arxiv:1202.6056

More information

The Influence of DE on the Expansion Rate of the Universe and its Effects on DM Relic Abundance

The Influence of DE on the Expansion Rate of the Universe and its Effects on DM Relic Abundance The Influence of DE on the Expansion Rate of the Universe and its Effects on DM Relic Abundance Esteban Jimenez Texas A&M University XI International Conference on Interconnections Between Particle Physics

More information

Scalar field dark matter and the Higgs field

Scalar field dark matter and the Higgs field Scalar field dark matter and the Higgs field Catarina M. Cosme in collaboration with João Rosa and Orfeu Bertolami Phys. Lett., B759:1-8, 2016 COSMO-17, Paris Diderot University, 29 August 2017 Outline

More information

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012 Non-Gaussianity in the CMB Kendrick Smith (Princeton) Whistler, April 2012 Why primordial non-gaussianity? Our best observational windows on the unknown physics of inflation are: The gravity wave amplitude

More information

Cosmic Strings. Joel Meyers

Cosmic Strings. Joel Meyers Cosmic Strings Joel Meyers Outline History and Motivations Topological Defects Formation of Cosmic String Networks Cosmic Strings from String Theory Observation and Implications Conclusion History In the

More information

Cosmic Bubble Collisions

Cosmic Bubble Collisions Outline Background Expanding Universe: Einstein s Eqn with FRW metric Inflationary Cosmology: model with scalar field QFTà Bubble nucleationà Bubble collisions Bubble Collisions in Single Field Theory

More information