Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI
|
|
- Tyrone Jennings
- 4 years ago
- Views:
Transcription
1 Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI
2 Next lecture, DTI For this lecture, think in terms of a single voxel
3 We re still looking only at a single voxel experiment This Last Lecture: Multiple Single diffusion encoding directions to to estimate a a diffusion coefficient tensor DD
4 G x B(x) x B(x) x time time x
5 Phases of diffusing spins 90 TEê2 180 TEê2 echo d d»g» e D = + ( )= 0 G(t)x(t) dt
6 Diffusion phase in a Bipolar Pulse 100 x(t 1 ) x(t 1 ) r x(t 2 ) G(t) G x '(x, t) = G {z} q G x [ x(t 2 ) x(t 1 )] {z } r = q r t
7 The Estimation Problem for Gaussian Diffusion measured signal Z S(') S(b) = =S(0) dx P e(x, bd t) + e i'(x,t) non-diffusion weighted signal (b=0) Gaussian b = q 2 noise object of our desire! pulse sequence parameters G(t) G x q = G = 3 G x t
8 The signal from 1D Gaussian Diffusion s(b i )=s 0 e b id + i s 1.0 where s 0 s(b = 0) b
9 Consider only two measurements and write data in vector form s(b1 ) s(b 2 ) exp( b1 D) = s 0 exp( b 2 D) = s 0 exp apple b1 D b 2 D This clearly generalizes to n measurements
10
11 Recall: gradients add like vectors k x = k x x + k y y = G x tx + G y ty G y (t) t y G x (t) x t spatial modulation of the phase
12 Directional Diffusion Encoding 90 TEê2 180 TEê2 echo d d»gx» e D z y»gy» z y x x G (x,y)
13 Ideal b-matrix G i G j 2 q b ij = Gq ii q i = G i G j j ( where /3) = /3 q i q j
14 Ideal b-matrix G i G j b ij = q i q j where q i = G i = /3
15 The b-matrix b ij ( )= 0 q i (t)q j (t)dt i=(x,y,z) where q = g(t) dt For constant diffusion gradients b ij ( ) =q i q j
16 The NMR signal for 1D Gaussian diffusion s(q, )=s(0) P ( r, )e iq r d r P ( r, ) = 1 4 D e r 2 /(4D ) s(q, )=s(0)e bd
17 The NMR signal for 3D Gaussian diffusion s(q, ) = Z P ( r, )e iq r d r P ( r, ) = 1 p (4 )3 D e rt D 1 r/4 s(q, ) =s(0)e bd
18 b and D qx 2 q x q y q x q z b = q y q x qy 2 q y q z q z q x q z q y qz 2 known D xx D xy D xz D = D yx D yy D yz D zx D zy D zz desired
19 The NMR signal 3D Gaussian diffusion s(q, )=s(0)e bd s(b) = s(0) exp 3 3 b ij D ij i j bd = q 2 D bd = q t D q
20 A single diffusion-weighting direction G x y z G y x G z
21 1 i j bd b ij D ij = q 2 xd xx + q x q y D xy + q x q z D xz + q y q x D yx + q 2 yd yy + q y q z D yz + q z q x D yx + q z q y D zy + q 2 zd zz
22 Rearranging the directions bd = q t D q q = qû q q q q û qû bd = q 2 u t D u
23 The NMR signal bd = q 2 u t D u D s(q, )=s(0)e bd = e q2 D s(q, )=e b D where b = q 2
24 Measuring the Diffusion Tensor S(b, r ) = S(0)e bd + y r = 3 D= Dx 0 0 Dy cos sin x t 2 2 D = r Dr = Dx cos + Dy sin projection of an ellipsoid! not like projection of a vector
25 Measuring the Diffusion Tensor b=1000 b=0 1.0 y x -1 fiber axis S(b, ) = S(0)e bd( ) + D( ) = Dx cos2 + Dy sin2
26 The Shape of Diffusion fiber signal S b ( ) D app ( ) = 1 b log Sb S 0
27 What is the meaning of D? D u t D u It is the projection of D along û D û D
28 Diffusion Tensor is Symmetric D xx D xy D xz D yx D yy D yz D zx D zy D zz = D xx D xy D xz D xy D yy D yz D xz D yz D zz D = D t matrix form D ij = D ji component form
29 1 i j bd b ij D ij = q 2 xd xx + q x q y D xy + q x q z D xz + q y q x D yx + q 2 yd yy + q y q z D yz + q z q x D yx + q z q y D zy + q 2 zd zz 1 i j b ij D ij = q 2 xd xx +2q x q y D xy +2q x q z D xz + q 2 yd yy +2q y q z D yz + q 2 zd zz
30 A computational simplification s(b) =s(0)e bd a trick: write log s(0) s(0) = e s(b) =s(0)e bd = e log s(0) e bd = e bd+log s(0)
31 Estimating the Diffusion Tensor d = D xx D yy D zz D xy D xz D yz log s(0) There are 7 unknowns
32 Estimating the Diffusion Tensor B =(q 2 x,q 2 y,q 2 z, 2q x q y, 2q x q z, 2q y q z, 1)
33 Estimating the Diffusion Tensor log s(b) y = (q 2 x,q 2 y,q 2 z, 2q x q y, 2q x q z, 2q y q z, 1) B t D xx D yy D zz D xy D xz D yz log s(0) D But there are 7 unknowns, so we need 7 equations to solve for them
34 Estimating the Diffusion Tensor y = log s(b 1 ) log s(b 2 ). log s(b n ) We make 7 measurements, each with a different direction
35 The B-matrix B t = tensor dimensions ˆq 1,x 2 ˆq 1,y 2 ˆq 2 1,z ˆq 1,xˆq 1,y ˆq 1,xˆq 1,z ˆq 1,y ˆq 1,z 1 ˆq 2,x 2 ˆq 2,y 2 ˆq 2,z 2 ˆq 2,xˆq 1,y ˆq 2,xˆq 2,z ˆq 2,y ˆq 2,z ˆq n,x 2 ˆq n,y 2 ˆq n,z 2 ˆq n,xˆq 1,y ˆq n,xˆq n,z ˆq n,y ˆq n,z 1 gradient directions q j,k = g k = /3 j th direction
36 Angular measurements
37 Estimating the Diffusion Tensor log s(b 1 ) ˆq 1,x 2 ˆq 1,y 2 ˆq 2 1,z ˆq 1,xˆq 1,y ˆq 1,xˆq 1,z ˆq 1,y ˆq 1,z 1 log s(b 2 ).. = ˆq 2,x 2 ˆq 2,y 2 ˆq 2,z 2 ˆq 2,xˆq 1,y ˆq 2,xˆq 2,z ˆq 2,y ˆq 2,z log s(b n ) ˆq n,x 2 ˆq n,y 2 ˆq n,z 2 ˆq n,xˆq 1,y ˆq n,xˆq n,z ˆq n,y ˆq n,z 1 D xx D yy D zz D xy D xz D yz log s(0) y B t d
38 Least Squares The matrix equation y = Bd has dimensions [n 1] = [n m][m 1]
39 Estimating the Diffusion Tensor Solving for the diffusion tensor is reduced to finding the solution to the matrix equation y = Bd diffusion tensor elements data b-matrix
40 Estimating the Diffusion Tensor Matrix equation y = B t d data b-matrix diffusion tensor elements Matrix solution d = B + y pseudo-inverse
41 Least Squares The least-squares solution to the matrix equation y = Ax is? ˆx = A 1 y? NO!
42 Least Squares The least-squares solution to the matrix equation y = Ax is ˆx = A + y (note that ˆx = A 1 y) where A + (A t A) 1 A t This is called the pseudo-inverse of A
43 Estimating the Diffusion Tensor In practice D calculated with 3dDWItoDT (AFNI) eigensystem calculated by: [evals,evecs] = eig(d)
A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any
Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»
A. H. Hall, 33, 35 &37, Lendoi
7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9
LOWELL WEEKLY JOURNAL
Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q
Two Posts to Fill On School Board
Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83
OWELL WEEKLY JOURNAL
Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --
II&Ij <Md Tmlaiiiiiit, aad once in Ihe y a w Teataa m i, the vmb thatalmta oot Uiaapirit world. into as abode or wotld by them- CooTBOtioa
382 4 7 q X
Closed-Form Solution Of Absolute Orientation Using Unit Quaternions
Closed-Form Solution Of Absolute Orientation Using Unit Berthold K. P. Horn Department of Computer and Information Sciences November 11, 2004 Outline 1 Introduction 2 3 The Problem Given: two sets of corresponding
' Liberty and Umou Ono and Inseparablo "
3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <
MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso
MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Preliminary Math Concept of Stress Stress Components Equilibrium
LOWELL WEEKLY JOURNAL
Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G
M E 320 Professor John M. Cimbala Lecture 10
M E 320 Professor John M. Cimbala Lecture 10 Today, we will: Finish our example problem rates of motion and deformation of fluid particles Discuss the Reynolds Transport Theorem (RTT) Show how the RTT
Ordinary Least Squares and its applications
Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1
g(t) = f(x 1 (t),..., x n (t)).
Reading: [Simon] p. 313-333, 833-836. 0.1 The Chain Rule Partial derivatives describe how a function changes in directions parallel to the coordinate axes. Now we shall demonstrate how the partial derivatives
County Council Named for Kent
\ Y Y 8 9 69 6» > 69 ««] 6 : 8 «V z 9 8 x 9 8 8 8?? 9 V q» :: q;; 8 x () «; 8 x ( z x 9 7 ; x >«\ 8 8 ; 7 z x [ q z «z : > ; ; ; ( 76 x ; x z «7 8 z ; 89 9 z > q _ x 9 : ; 6? ; ( 9 [ ) 89 _ ;»» «; x V
and A L T O S O L O LOWELL, MICHIGAN, THURSDAY, OCTCBER Mrs. Thomas' Young Men Good Bye 66 Long Illness Have Sport in
5 7 8 x z!! Y! [! 2 &>3 x «882 z 89 q!!! 2 Y 66 Y $ Y 99 6 x x 93 x 7 8 9 x 5$ 4 Y q Q 22 5 3 Z 2 5 > 2 52 2 $ 8» Z >!? «z???? q > + 66 + + ) ( x 4 ~ Y Y»» x ( «/ ] x ! «z x( ) x Y 8! < 6 x x 8 \ 4\
PEAT SEISMOLOGY Lecture 2: Continuum mechanics
PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a
GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS
GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS I Main Topics A Why deal with tensors? B Order of scalars, vectors, and tensors C Linear transformation of scalars and vectors (and tensors) II Why
Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n.
- - - 0 x ] - ) ) -? - Q - - z 0 x 8 - #? ) 80 0 0 Q ) - 8-8 - ) x ) - ) -] ) Q x?- x - - / - - x - - - x / /- Q ] 8 Q x / / - 0-0 0 x 8 ] ) / - - /- - / /? x ) x x Q ) 8 x q q q )- 8-0 0? - Q - - x?-
Q SON,' (ESTABLISHED 1879L
( < 5(? Q 5 9 7 00 9 0 < 6 z 97 ( # ) $ x 6 < ( ) ( ( 6( ( ) ( $ z 0 z z 0 ) { ( % 69% ( ) x 7 97 z ) 7 ) ( ) 6 0 0 97 )( 0 x 7 97 5 6 ( ) 0 6 ) 5 ) 0 ) 9%5 z» 0 97 «6 6» 96? 0 96 5 0 ( ) ( ) 0 x 6 0
Diffusion Tensor Imaging (DTI): An overview of key concepts
Diffusion Tensor Imaging (DTI): An overview of key concepts (Supplemental material for presentation) Prepared by: Nadia Barakat BMB 601 Chris Conklin Thursday, April 8 th 2010 Diffusion Concept [1,2]:
LOWELL WEEKLY JOURNAL.
Y 5 ; ) : Y 3 7 22 2 F $ 7 2 F Q 3 q q 6 2 3 6 2 5 25 2 2 3 $2 25: 75 5 $6 Y q 7 Y Y # \ x Y : { Y Y Y : ( \ _ Y ( ( Y F [ F F ; x Y : ( : G ( ; ( ~ x F G Y ; \ Q ) ( F \ Q / F F \ Y () ( \ G Y ( ) \F
Tensor Visualization. CSC 7443: Scientific Information Visualization
Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its
Orientation Distribution Function for Diffusion MRI
Orientation Distribution Function for Diffusion MRI Evgeniya Balmashnova 28 October 2009 Diffusion Tensor Imaging Diffusion MRI Diffusion MRI P(r, t) = 1 (4πDt) 3/2 e 1 4t r 2 D 1 t Diffusion time D Diffusion
Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient
Rigid body dynamics Rigid body simulation Once we consider an object with spatial extent, particle system simulation is no longer sufficient Rigid body simulation Unconstrained system no contact Constrained
" W I T H M: A. L I G E T O ' W ^ P L D IST O ISTE -A-IsTD G H! A-I^IT Y IPO PL A.LI-i. :
: D D! Y : V Y JY 4 96 J z z Y &! 0 6 4 J 6 4 0 D q & J D J» Y j D J & D & Y = x D D DZ Z # D D D D D D V X D DD X D \ J D V & Q D D Y D V D D? q ; J j j \V ; q» 0 0 j \\ j! ; \?) j: ; : x DD D J J j ;
Rigid body dynamics. Basilio Bona. DAUIN - Politecnico di Torino. October 2013
Rigid body dynamics Basilio Bona DAUIN - Politecnico di Torino October 2013 Basilio Bona (DAUIN - Politecnico di Torino) Rigid body dynamics October 2013 1 / 16 Multiple point-mass bodies Each mass is
Chapter 2 Governing Equations
Chapter Governing Equations Abstract In this chapter fundamental governing equations for propagation of a harmonic disturbance on the surface of an elastic half-space is presented. The elastic media is
Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example:
Polynomials Monomials: 10, 5x, 3x 2, x 3, 4x 2 y 6, or 5xyz 2. A monomial is a product of quantities some of which are unknown. Polynomials: 10 + 5x 3x 2 + x 3, or 4x 2 y 6 + 5xyz 2. A polynomial is a
LOWELL. MICHIGAN, OCTOBER morning for Owen J. Howard, M last Friday in Blodpett hospital.
G GG Y G 9 Y- Y 77 8 Q / x -! -} 77 - - # - - - - 0 G? x? x - - V - x - -? : : - q -8 : : - 8 - q x V - - - )?- X - - 87 X - ::! x - - -- - - x -- - - - )0 0 0 7 - - 0 q - V -
MATH 19520/51 Class 5
MATH 19520/51 Class 5 Minh-Tam Trinh University of Chicago 2017-10-04 1 Definition of partial derivatives. 2 Geometry of partial derivatives. 3 Higher derivatives. 4 Definition of a partial differential
..«W- tn^zmxmmrrx/- NEW STORE. Popular Goods at Popular D. E. SPRING, Mas just opened a large fdo.k of DRY GOODS & GROCERIES,
B y «X }() z zxx/ X y y y y )3 y «y
oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our
x V - --- < x x 35 V? 3?/ -V 3 - ) - - [ Z8 - & Z - - - - - x 0-35 - 3 75 3 33 09 33 5 \ - - 300 0 ( -? 9 { - - - -- - < - V 3 < < - - Z 7 - z 3 - [ } & _ 3 < 3 ( 5 7< ( % --- /? - / 4-4 - & - % 4 V 2
Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.
» ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z
Integration - Past Edexcel Exam Questions
Integration - Past Edexcel Exam Questions 1. (a) Given that y = 5x 2 + 7x + 3, find i. - ii. - (b) ( 1 + 3 ) x 1 x dx. [4] 2. Question 2b - January 2005 2. The gradient of the curve C is given by The point
L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank
G k y $5 y / >/ k «««# ) /% < # «/» Y»««««?# «< >«>» y k»» «k F 5 8 Y Y F G k F >«y y
Homework 1/Solutions. Graded Exercises
MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both
FMIA. Fluid Mechanics and Its Applications 113 Series Editor: A. Thess. Moukalled Mangani Darwish. F. Moukalled L. Mangani M.
FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in
P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.
? ( # [ ( 8? [ > 3 Q [ ««> » 9 Q { «33 Q> 8 \ \ 3 3 3> Q»«9 Q ««« 3 8 3 8 X \ [ 3 ( ( Z ( Z 3( 9 9 > < < > >? 8 98 ««3 ( 98 < # # Q 3 98? 98 > > 3 8 9 9 ««««> 3 «>
LOWELL WEEKLY JOURNAL
G $ G 2 G ««2 ««q ) q «\ { q «««/ 6 «««««q «] «q 6 ««Z q «««Q \ Q «q «X ««G X G ««? G Q / Q Q X ««/«X X «««Q X\ «q «X \ / X G XX «««X «x «X «x X G X 29 2 ««Q G G «) 22 G XXX GG G G G G G X «x G Q «) «G
A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding
- G Y Y 8 9 XXX G - Y - Q 5 8 G Y G Y - - * Y G G G G 9 - G - - : - G - - ) G G- Y G G q G G : Q G Y G 5) Y : z 6 86 ) ; - ) z; G ) 875 ; ) ; G -- ) ; Y; ) G 8 879 99 G 9 65 q 99 7 G : - G G Y ; - G 8
Compatible Systems and Charpit s Method
MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 28 Lecture 5 Compatible Systems Charpit s Method In this lecture, we shall study compatible systems of first-order PDEs the Charpit s method for solving
CH.3. COMPATIBILITY EQUATIONS. Multimedia Course on Continuum Mechanics
CH.3. COMPATIBILITY EQUATIONS Multimedia Course on Continuum Mechanics Overview Introduction Lecture 1 Compatibility Conditions Lecture Compatibility Equations of a Potential Vector Field Lecture 3 Compatibility
12. Stresses and Strains
12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)
Lecture 4: Least Squares (LS) Estimation
ME 233, UC Berkeley, Spring 2014 Xu Chen Lecture 4: Least Squares (LS) Estimation Background and general solution Solution in the Gaussian case Properties Example Big picture general least squares estimation:
Linear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems.
Linear Algebra Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems May 1, 2018 () Linear Algebra May 1, 2018 1 / 8 Table of contents 1
LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort
- 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [
Review Questions for Test 3 Hints and Answers
eview Questions for Test 3 Hints and Answers A. Some eview Questions on Vector Fields and Operations. A. (a) The sketch is left to the reader, but the vector field appears to swirl in a clockwise direction,
Local Chapter. Mr raised the que stion of what is ad't. deliver the s, nnun. You are cor- c Mr 1 n d. "P**"' iropiie.
D D D? M G D Y M 2 99 M «4 \ & M? x q M M GM M \ M! 94 - G? \ M M q > G -? Y - M - - - z - > M Z >? - M» > M M - > G! /? - «\- - < x - M-! z - M M M \- - x 7 x GG q M _ ~ > M > # > > M - -
Numerical Modelling in Geosciences. Lecture 6 Deformation
Numerical Modelling in Geosciences Lecture 6 Deformation Tensor Second-rank tensor stress ), strain ), strain rate ) Invariants quantities independent of the coordinate system): - First invariant trace:!!
DIFFUSION MAGNETIC RESONANCE IMAGING
DIFFUSION MAGNETIC RESONANCE IMAGING from spectroscopy to imaging apparent diffusion coefficient ADC-Map anisotropy diffusion tensor (imaging) DIFFUSION NMR - FROM SPECTROSCOPY TO IMAGING Combining Diffusion
LOWELL, MICHIGAN, NOVEMBER 27, Enroute to Dominican Republic
LDG L G L Y Y LLL G 7 94 D z G L D! G G! L $ q D L! x 9 94 G L L L L L q G! 94 D 94 L L z # D = 4 L ( 4 Q ( > G D > L 94 9 D G z ] z ) q 49 4 L [ ( D x ] LY z! q x x < G 7 ( L! x! / / > ( [ x L G q x!
First Order ODEs, Part I
Craig J. Sutton craig.j.sutton@dartmouth.edu Department of Mathematics Dartmouth College Math 23 Differential Equations Winter 2013 Outline 1 2 in General 3 The Definition & Technique Example Test for
Chem8028(1314) - Spin Dynamics: Spin Interactions
Chem8028(1314) - Spin Dynamics: Spin Interactions Malcolm Levitt see also IK m106 1 Nuclear spin interactions (diamagnetic materials) 2 Chemical Shift 3 Direct dipole-dipole coupling 4 J-coupling 5 Nuclear
NMR Advanced methodologies to investigate water diffusion in materials and biological systems
NMR Advanced methodologies to investigate water diffusion in materials and biological systems PhD Candidate _Silvia De Santis PhD Supervisors _dott. Silvia Capuani _prof. Bruno Maraviglia Outlook Introduction:
Part 8: Rigid Body Dynamics
Document that contains homework problems. Comment out the solutions when printing off for students. Part 8: Rigid Body Dynamics Problem 1. Inertia review Find the moment of inertia for a thin uniform rod
REVIEW OF DIFFERENTIAL CALCULUS
REVIEW OF DIFFERENTIAL CALCULUS DONU ARAPURA 1. Limits and continuity To simplify the statements, we will often stick to two variables, but everything holds with any number of variables. Let f(x, y) be
TAM3B DIFFERENTIAL EQUATIONS Unit : I to V
TAM3B DIFFERENTIAL EQUATIONS Unit : I to V Unit I -Syllabus Homogeneous Functions and examples Homogeneous Differential Equations Exact Equations First Order Linear Differential Equations Reduction of
AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT
FLÁIO SILESTRE DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT LECTURE NOTES LAGRANGIAN MECHANICS APPLIED TO RIGID-BODY DYNAMICS IMAGE CREDITS: BOEING FLÁIO SILESTRE Introduction Lagrangian Mechanics shall be
Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.
Rotational Motion Chapter 4 P. J. Grandinetti Chem. 4300 Sep. 1, 2017 P. J. Grandinetti (Chem. 4300) Rotational Motion Sep. 1, 2017 1 / 76 Angular Momentum The angular momentum of a particle with respect
Without fully opening the exam, check that you have pages 1 through 12.
Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 12. Show all your work on the standard
Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics
3.33pt Chain Rule MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Spring 2019 Single Variable Chain Rule Suppose y = g(x) and z = f (y) then dz dx = d (f (g(x))) dx = f (g(x))g (x)
COMP 175 COMPUTER GRAPHICS. Lecture 04: Transform 1. COMP 175: Computer Graphics February 9, Erik Anderson 04 Transform 1
Lecture 04: Transform COMP 75: Computer Graphics February 9, 206 /59 Admin Sign up via email/piazza for your in-person grading Anderson@cs.tufts.edu 2/59 Geometric Transform Apply transforms to a hierarchy
Chapter 9: Differential Analysis
9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control
No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.
Name: Section: Recitation Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices can be used on this exam. Clear
MA102: Multivariable Calculus
MA102: Multivariable Calculus Rupam Barman and Shreemayee Bora Department of Mathematics IIT Guwahati Differentiability of f : U R n R m Definition: Let U R n be open. Then f : U R n R m is differentiable
General Relativity ASTR 2110 Sarazin. Einstein s Equation
General Relativity ASTR 2110 Sarazin Einstein s Equation Curvature of Spacetime 1. Principle of Equvalence: gravity acceleration locally 2. Acceleration curved path in spacetime In gravitational field,
LOWELL WEEKI.Y JOURINAL
/ $ 8) 2 {!»!» X ( (!!!?! () ~ x 8» x /»!! $?» 8! ) ( ) 8 X x /! / x 9 ( 2 2! z»!!»! ) / x»! ( (»»!» [ ~!! 8 X / Q X x» ( (!»! Q ) X x X!! (? ( ()» 9 X»/ Q ( (X )!» / )! X» x / 6!»! }? ( q ( ) / X! 8 x»
CIS 4930/6930: Principles of Cyber-Physical Systems
CIS 4930/6930: Principles of Cyber-Physical Systems Chapter 2: Continuous Dynamics Hao Zheng Department of Computer Science and Engineering University of South Florida H. Zheng (CSE USF) CIS 4930/6930:
Diff. Eq. App.( ) Midterm 1 Solutions
Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations
Chapter 9: Differential Analysis of Fluid Flow
of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known
16.2. Line Integrals
16. Line Integrals Review of line integrals: Work integral Rules: Fdr F d r = Mdx Ndy Pdz FT r'( t) ds r t since d '(s) and hence d ds '( ) r T r r ds T = Fr '( t) dt since r r'( ) dr d dt t dt dt does
Review for Exam 1. (a) Find an equation of the line through the point ( 2, 4, 10) and parallel to the vector
Calculus 3 Lia Vas Review for Exam 1 1. Surfaces. Describe the following surfaces. (a) x + y = 9 (b) x + y + z = 4 (c) z = 1 (d) x + 3y + z = 6 (e) z = x + y (f) z = x + y. Review of Vectors. (a) Let a
Basic Equations of Elasticity
A Basic Equations of Elasticity A.1 STRESS The state of stress at any point in a loaded bo is defined completely in terms of the nine components of stress: σ xx,σ yy,σ zz,σ xy,σ yx,σ yz,σ zy,σ zx,andσ
CHAPTER 7 DIV, GRAD, AND CURL
CHAPTER 7 DIV, GRAD, AND CURL 1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: (1 ϕ = ( ϕ, ϕ,, ϕ x 1 x 2 x n
MANY BILLS OF CONCERN TO PUBLIC
- 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -
MATH 31BH Homework 5 Solutions
MATH 3BH Homework 5 Solutions February 4, 204 Problem.8.2 (a) Let x t f y = x 2 + y 2 + 2z 2 and g(t) = t 2. z t 3 Then by the chain rule a a a D(g f) b = Dg f b Df b c c c = [Dg(a 2 + b 2 + 2c 2 )] [
Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29
Practice problems for Exam.. Given a = and b =. Find the area of the parallelogram with adjacent sides a and b. A = a b a ı j k b = = ı j + k = ı + 4 j 3 k Thus, A = 9. a b = () + (4) + ( 3)
MATH The Chain Rule Fall 2016 A vector function of a vector variable is a function F: R n R m. In practice, if x 1, x n is the input,
MATH 20550 The Chain Rule Fall 2016 A vector function of a vector variable is a function F: R n R m. In practice, if x 1, x n is the input, F(x 1,, x n ) F 1 (x 1,, x n ),, F m (x 1,, x n ) where each
The Product Operator Formalism
2 The Product Operator Formalism 1. INTRODUCTION In this section we will see that the density matrix at equilibrium can be expressed in terms of the spin angular momentum component I z of each nucleus.
Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations
Course BA1: Hilary Term 007 Section 8: Quaternions and Rotations David R. Wilkins Copyright c David R. Wilkins 005 Contents 8 Quaternions and Rotations 1 8.1 Quaternions............................ 1 8.
In this section, mathematical description of the motion of fluid elements moving in a flow field is
Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small
Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt
Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain
Unit IV State of stress in Three Dimensions
Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength
a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?
? 9 > 25? < ( x x 52 ) < x ( ) ( { 2 2 8 { 28 ] ( 297 «2 ) «2 2 97 () > Q ««5 > «? 2797 x 7 82 2797 Q z Q (
Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015
Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction
NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.
CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Principles of Measurement 6.3. The Pulse-Echo
Electromagnetism II Lecture 7
Electromagnetism II Lecture 7 Instructor: Andrei Sirenko sirenko@njit.edu Spring 13 Thursdays 1 pm 4 pm Spring 13, NJIT 1 Previous Lecture: Conservation Laws Previous Lecture: EM waves Normal incidence
Lecture 13 - Wednesday April 29th
Lecture 13 - Wednesday April 29th jacques@ucsdedu Key words: Systems of equations, Implicit differentiation Know how to do implicit differentiation, how to use implicit and inverse function theorems 131
MA 201: Partial Differential Equations Lecture - 2
MA 201: Partial Differential Equations Lecture - 2 Linear First-Order PDEs For a PDE f(x,y,z,p,q) = 0, a solution of the type F(x,y,z,a,b) = 0 (1) which contains two arbitrary constants a and b is said
Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell
Heat Transfer Heat transfer rate by conduction is related to the temperature gradient by Fourier s law. For the one-dimensional heat transfer problem in Fig. 1.8, in which temperature varies in the y-
Lagrange Multipliers
Optimization with Constraints As long as algebra and geometry have been separated, their progress have been slow and their uses limited; but when these two sciences have been united, they have lent each
Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8
Name: SOLUTIONS Date: /9/7 M55 alculus III Tutorial Worksheet 8. ompute R da where R is the region bounded by x + xy + y 8 using the change of variables given by x u + v and y v. Solution: We know R is
Maxima and Minima. (a, b) of R if
Maxima and Minima Definition Let R be any region on the xy-plane, a function f (x, y) attains its absolute or global, maximum value M on R at the point (a, b) of R if (i) f (x, y) M for all points (x,
Lecture 8. Stress Strain in Multi-dimension
Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]
Rotational & Rigid-Body Mechanics. Lectures 3+4
Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions
Useful Formulae ( )
Appendix A Useful Formulae (985-989-993-) 34 Jeremić et al. A.. CHAPTER SUMMARY AND HIGHLIGHTS page: 35 of 536 A. Chapter Summary and Highlights A. Stress and Strain This section reviews small deformation
Numerical Implementation of Transformation Optics
ECE 5322 21 st Century Electromagnetics Instructor: Office: Phone: E Mail: Dr. Raymond C. Rumpf A 337 (915) 747 6958 rcrumpf@utep.edu Lecture #16b Numerical Implementation of Transformation Optics Lecture
2.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS. differential equations with the initial values y(x 0. ; l.
Numerical Methods II UNIT.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS.1.1 Runge-Kutta Method of Fourth Order 1. Let = f x,y,z, = gx,y,z be the simultaneous first order