Numerical Modelling in Geosciences. Lecture 6 Deformation


 Benedict Preston
 3 years ago
 Views:
Transcription
1 Numerical Modelling in Geosciences Lecture 6 Deformation
2 Tensor Secondrank tensor stress ), strain ), strain rate ) Invariants quantities independent of the coordinate system):  First invariant trace:!! xx!!! xy!!! xz! ij =! yx! yy!!! yz "! zx! zy!!! zz  Second invariant magnitude:  Third invariant determinant!!!! tr! ij ) =! xx! yy! zz )! = 1! ij = 1! xx! xy! xz! yx! yy! yz! zx! zy! ) zz
3 Stress In geodynamics compressional extensional) stress are negative positive). Pressure is positive under compression. Stress is measured in Pa = N/m. The stress tensor contains the components of the tractions acting on the element surfaces. The first index indicate the direction of stress, the second the normal to the stressed surface!! xx!!! xy!!! xz! ij =! yx! yy!!! yz "! zx! zy!!! zz T z T x Pressure is equal to the mean normal stress: D :!!P =! tr! ) 3D :!!P =! tr! ) 3 =!! kk =!!! xx yy =!! kk 3 =!!!! xx yy zz 3 In absence of internal angolar momentum, the tensor is symmetric: T y! xy =! yx! xz =! zx! zy =! yz
4 Deviatoric Stress Stress can be divided into a deviatoric and an isotropic components. The deviatoric components produce flow, the isotropic components i.e., pressure) compaction/dilation.!! ij =! ij " kk ij 3 =! ij " P" ij!!!where!!!" ij = 3D :!! ij = 1!!0!!0 0!!1!!0 ;! 0!!0!!1! xx!!! xy!!! xz! xx P!!!!!!! xy!!!!!!!!!!!!!! xz! yx! yy!!! yz =! yx!!!!!!! yy P!!!!!!!!!!!! yz! zx! zy!!! zz! zx!!!!!!!!!!!! zy!!!!!!!!! zz P Normal!deviatoric!stress :!! ii =! ii P;! Shear!deviatoric!stress :!! ij =! ji =! ij =! ji Please,!show!that!tr! ij ) = 0 Second!!invariant!of!deviatoric!stress!tensor :! zz )!! II = 1! ij = 1! xx! yy!! xy! xz!! yz
5 Deviatoric Stress Stress can be divided into a deviatoric and an isotropic components. The deviatoric components produce flow, the isotropic component i.e., pressure) compaction/dilation D :!! ij = "! xx!!!! yx!! xy! yy " =! xx P!!!!!!! xy!! yx!!!!!!! yy P Please,!show!that!in!D! xx = )! yy Second!!invariant!of!deviatoric!stress!tensor :! II = 1! ij =! xx! xy
6 Tectonic pressure If a medium is at rest, then no deviatoric stresses exist and the total pressure is equal to the lithostatic pressure. P TOT = P LITH = P 0 g z! 0!z)dz When deformation is applied, the total pressure is equal to the lithostatic pressure the tectonic pressure P TOT = P LITH P TECT P TECT =!! kk 3! P LITH Exercise: Calculate the lithostatic, total and tectonic pressures, and the total and deviatoric stress tensors at 10 km depth in the crust density = 500 kg/m 3, g z =10 m/s ), when a compressional stress of 150 MPa is applied along the x direction.
7 Displacement, its gradient and velocity! Displacement :! u! = " u x u y u z Rate!of!displacement :! D! u Dt =! v =! " v x v y v z Displacement!gradient :!!! u = "u i "j = "u x "x!!"u x "y!!"u x "u y "x!!"u y "y!!"u y "u z "x!!"u z "y!!"u z Pure shear!u y!y " L L Simple shear!u x!y " L L
8 Displacement gradient, strain, rotation Displacement gradient adimensional)= Strain symmetric) Rotation antisymmetric)!! u = "u i "j = "u x "x!!"u x "y!!"u x "u y "x!!"u y "y!!"u y "u z "x!!"u z "y!!"u z! u! = 1!! u! u! T ) 1!! u "! u! T ) = 1! ij = 1 "!u i!j!u j!i " ij = 1!u i!j "!u j!i!! u =! "!!Strain)!!Rotation) "!u i!j!u j!i 1!u i!j "!u j!i )! u! 1 = 1!!!!!! "u x "x!!!!!!!!! 1 "u y "x "u x "y "u z "x "u x "u x "y "u y "x!! 1!!!!!!!!!! "u y "y!!!!!!! 1! 1 "u z "y "u y "u x "u z "x "u y "u z "y!!!!!!!!!! "u z, ).!!!!!!!!!!0!!!!!!!!!! 1 "u x. "y / "u y!! 1 "x.. 1 "u y. "x / "u x!!!!!!!!!!!!0!!!!!!!!!! 1 "y.. 1 "u z . "x / "u x!! 1 "u z "y / "u y!!!!!!!!!!0 "u x / "u z "x "u y / "u z "y,
9 Strain Indicates the amount of deformation and is adimensional! ij = 1 "!u i!j!u j!i 1 " = 1 " )!!!!!!!u x!x!!!!!!!!! 1!u y!x!u x!y!u z!x!u x!z "!u x!y u y!x!! 1 "!!!!!!!!!!!u y!y!!!!!!! 1 "! 1 "!u z!y!u y!z!u x!z!u z!x!u y!z!u z!y!!!!!!!!!!!u z!z , Volumetric!strain =.V = tr! ij ) =! kk =! 11!! 33 If!incompressible! "V = tr! ij ) =! " u! = 0 Deviatoric!strain :! ij! =! ij! 1 3! ij" kk
10 Velocity gradient, strain rate, vorticity Velocity gradient s 1 )= Strain rate symmetric) Vorticity antisymmetric)!! v = "v i "j = "v x "x!!"v x "y!!"v x "v y "x!!"v y "y!!"v y "v z "x!!"v z "y!!"v z! v! = 1!! v! v! T ) 1!! v "! v! T ) = 1!! ij = 1 v i j v j i!" ij = 1 v i j " v j i!! v = "! " )!!Strain!rate) v i j v j i )!!Vorticity,!rotation!rate) ) 1 v i j " v j i ) )! v! 1 = 1!!!!!! "v x "x!!!!!!!!! 1 "v y "x "v x "y "v z "x "v x "v x "y "v y "x!! 1!!!!!!!!!! "v y "y!!!!!!! 1! 1 "v z "y "v y "v x "v z "x "v y "v z "y!!!!!!!!!! "v z, ).!!!!!!!!!!0!!!!!!!!!! 1 "v x. "y / "v y!! 1 "x.. 1 "v y. "x / "v x!!!!!!!!!!!!0!!!!!!!!!! 1 "y.. 1 "v z . "x / "v x!! 1 "v z "y / "v y!!!!!!!!!!0 "v x / "v z "x "v y / "v z "y,
11 Endmember flows Pure shear Simple shear Pure!Shear :!! v! 1!!!!0!!0 1!!!!0!!0 0!!0!!0 = 0!!"1!!0 =!!!" = 0!!"1!!0 0!!0!!0 0!!!0!!0 0!!!0!!0 0!!0!!0 0!!! 1 Simple!Shear :!! v! 0!!!1!!!0!!0!!0!!! 1!!0 1 = 0!!!0!!0 =!!!" =!!0!!0 " 1!!0!!0 0!!!0!!0 0!!!0!!0!!0!!!0!!0
12 Strain rate The strain rate tensor can be divided into a deviatoric and isotropic components. Dimension is s 1 ). The trace of the strain rate tensor gives the rate of volume change!!! xx!!!! xy!!!! xz!! ij =!! yx!!!! yy!!!! yz = 1 v i "!! zx!!!! zy!!!! j v j ) i zz!! ij =!.! ij 1 3!! kk " ij! 1  =, ) 1 " )!!!!!! v x x!!!!!!!!! 1 v y x v x y v z x v x z ) v x y v y x !! 1, ) !!!!!!!!!! v y, y!!!!!!! 1 ) ! 1, ) tr!! ij ) =!! kk =!! 11!!!! 33 = v x x v y y v z z = / 0 v! = 1 V! If!incompressible 1! V = tr!! ij tr!.! ij ) = 0 ) = / 0! v = 0 v z y v y z Second!!invariant!of!deviatoric!strain!rate!tensor :!!.! II = 1!.! ij v x z v z x v y z v z y !!!!!!!!!! v z, z , ,!! xy =!! yx =!!! xy =!!! yx!! xz =!! zx =!!! xz =!!! zx!! zy =!! yz =!!! zy =!!! yz
13 Displacement vs deformation gradient!! u = "u i "j = Displacement gradient "u x "x!!"u x "y!!"u x "u y "x!!"u y "y!!"u y "u z "x!!"u z "y!!"u z F ij = I!! u =! ij "u i "j = Deformation gradient ) F yy = L L L =1 "u y "y ) "u y "y = L L Length variation over the initial length 1 "u x "x!!!"u x "y!!!!!!"u x!! "u y "x!!!!1 "u y "y!!!"u y )!! "u z "x!!!!!"u z "y!!!!!1 "u z Final length over the initial length Pure shear Simple shear
14 Time derivative of deformation gradient We can track the history of deformation for a given Lagrangian particle by computing the time derivative of F, and successively by isolating the amount of deformation from the amount of rotation. For homogeneous, steadystate flow:!f!t = "! v F F tt = F t "! v F t Left!stretch!tensor : B = F F T! Initial deformation gradient F t=0 ij =! ij = I =! 1!!0!!0 0!!1!!0 " 0!!0!!1 Eigenvalues and eigenvectors of B give, respectively, the square of the magnitude and orientation of the principal stretch axes. Time to practice
15 Homework Read chapter 4 of textbook: Gerya, T. Introduction to numerical geodynamic modelling. Cambridge University Press, 345 pp. 010) Practice with code we have built to track the deformation history
PEAT SEISMOLOGY Lecture 2: Continuum mechanics
PEAT8002  SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a
More informationM E 320 Professor John M. Cimbala Lecture 10
M E 320 Professor John M. Cimbala Lecture 10 Today, we will: Finish our example problem rates of motion and deformation of fluid particles Discuss the Reynolds Transport Theorem (RTT) Show how the RTT
More informationIntroduction to Seismology Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Stress and Strain
More informationContinuum mechanism: Stress and strain
Continuum mechanics deals with the relation between forces (stress, σ) and deformation (strain, ε), or deformation rate (strain rate, ε). Solid materials, rigid, usually deform elastically, that is the
More informationTensor Visualization. CSC 7443: Scientific Information Visualization
Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its
More informationUnit IV State of stress in Three Dimensions
Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength
More information12. Stresses and Strains
12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM  Formulation Classification of Problems Scalar Vector 1D T(x) u(x)
More informationStress, Strain, Mohr s Circle
Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected
More informationLOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort
 7 7 Z 8 q ) V x  X > q  < Y Y X V  z     V  V  q \  q q <  V    x   V q > x  x q  x q  x    7 »     6 q x  >   x    x   q q  V  x   ( Y q Y7  >»>  x Y  ] [
More informationStress equilibrium in southern California from Maxwell stress function models fit to both earthquake data and a quasistatic dynamic simulation
Stress equilibrium in southern California from Maxwell stress function models fit to both earthquake data and a quasistatic dynamic simulation Peter Bird Dept. of Earth, Planetary, and Space Sciences
More information3D Elasticity Theory
3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.
More informationA DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any
Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»
More information19. Principal Stresses
19. Principal Stresses I Main Topics A Cauchy s formula B Principal stresses (eigenvectors and eigenvalues) C Example 10/24/18 GG303 1 19. Principal Stresses hkp://hvo.wr.usgs.gov/kilauea/update/images.html
More informationDynamics of the Mantle and Lithosphere ETH Zürich Continuum Mechanics in Geodynamics: Equation cheat sheet
Dynamics of the Mantle and Lithosphere ETH Zürich Continuum Mechanics in Geodynamics: Equation cheat sheet or all equations you will probably ever need Definitions 1. Coordinate system. x,y,z or x 1,x
More informationBasic Equations of Elasticity
A Basic Equations of Elasticity A.1 STRESS The state of stress at any point in a loaded bo is defined completely in terms of the nine components of stress: σ xx,σ yy,σ zz,σ xy,σ yx,σ yz,σ zy,σ zx,andσ
More informationGG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS
GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS I Main Topics A Why deal with tensors? B Order of scalars, vectors, and tensors C Linear transformation of scalars and vectors (and tensors) II Why
More informationStrain analysis.
Strain analysis ecalais@purdue.edu Plates vs. continuum Gordon and Stein, 1991 Most plates are rigid at the until know we have studied a purely discontinuous approach where plates are
More informationUseful Formulae ( )
Appendix A Useful Formulae (985989993) 34 Jeremić et al. A.. CHAPTER SUMMARY AND HIGHLIGHTS page: 35 of 536 A. Chapter Summary and Highlights A. Stress and Strain This section reviews small deformation
More informationSurface force on a volume element.
STRESS and STRAIN Reading: Section. of Stein and Wysession. In this section, we will see how Newton s second law and Generalized Hooke s law can be used to characterize the response of continuous medium
More informationChapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature
Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte
More informationElements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004
Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic
More informationStress/Strain. Outline. Lecture 1. Stress. Strain. Plane Stress and Plane Strain. Materials. ME EN 372 Andrew Ning
Stress/Strain Lecture 1 ME EN 372 Andrew Ning aning@byu.edu Outline Stress Strain Plane Stress and Plane Strain Materials otes and News [I had leftover time and so was also able to go through Section 3.1
More informationMechanics of materials Lecture 4 Strain and deformation
Mechanics of materials Lecture 4 Strain and deformation Reijo Kouhia Tampere University of Technology Department of Mechanical Engineering and Industrial Design Wednesday 3 rd February, 206 of a continuum
More informationLecture 8. Stress Strain in Multidimension
Lecture 8. Stress Strain in Multidimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]
More informationELASTICITY (MDM 10203)
LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering
More informationMECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso
MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Preliminary Math Concept of Stress Stress Components Equilibrium
More informationAE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1
AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Nonconservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01
More informationApplications of Eigenvalues & Eigenvectors
Applications of Eigenvalues & Eigenvectors Louie L. Yaw Walla Walla University Engineering Department For Linear Algebra Class November 17, 214 Outline 1 The eigenvalue/eigenvector problem 2 Principal
More informationGetting started: CFD notation
PDE of pth order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =
More informationRock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth
Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth References: Turcotte and Schubert, Geodynamics, Sections 2.1,2.4, 2.7, 3.13.8, 6.1, 6.2, 6.8, 7.17.4. Jaeger and Cook, Fundamentals of
More informationConstitutive Equations
Constitutive quations David Roylance Department of Materials Science and ngineering Massachusetts Institute of Technology Cambridge, MA 0239 October 4, 2000 Introduction The modules on kinematics (Module
More informationEigen decomposition for 3D stress tensor
Eigen decomposition for 3D stress tensor by Vince Cronin Begun September 13, 2010; last revised September 23, 2015 Unfinished Dra ; Subject to Revision Introduction If we have a cubic free body that is
More informationMECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso
MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Thermodynamics Derivation Hooke s Law: Anisotropic Elasticity
More informationGG612 Lecture 3. Outline
GG61 Lecture 3 Strain and Stress Should complete infinitesimal strain by adding rota>on. Outline Matrix Opera+ons Strain 1 General concepts Homogeneous strain 3 Matrix representa>ons 4 Squares of line
More informationModule #3. Transformation of stresses in 3D READING LIST. DIETER: Ch. 2, pp Ch. 3 in Roesler Ch. 2 in McClintock and Argon Ch.
HOMEWORK From Dieter 3, 4, 37 Module #3 Transformation of stresses in 3D READING LIST DIETER: Ch., pp. 736 Ch. 3 in Roesler Ch. in McClintock and Argon Ch. 7 in Edelglass The Stress Tensor z z x O
More informationChapter 5. The Differential Forms of the Fundamental Laws
Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations
More informationNDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.
CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of ElastoDynamics 6.2. Principles of Measurement 6.3. The PulseEcho
More informationSolution of Matrix Eigenvalue Problem
Outlines October 12, 2004 Outlines Part I: Review of Previous Lecture Part II: Review of Previous Lecture Outlines Part I: Review of Previous Lecture Part II: Standard Matrix Eigenvalue Problem Other Forms
More informationMechanics PhD Preliminary Spring 2017
Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n
More informationLecture 8: Tissue Mechanics
Computational Biology Group (CoBi), DBSSE, ETHZ Lecture 8: Tissue Mechanics Prof Dagmar Iber, PhD DPhil MSc Computational Biology 2015/16 7. Mai 2016 2 / 57 Contents 1 Introduction to Elastic Materials
More informationL8. Basic concepts of stress and equilibrium
L8. Basic concepts of stress and equilibrium Duggafrågor 1) Show that the stress (considered as a second order tensor) can be represented in terms of the eigenbases m i n i n i. Make the geometrical representation
More informationCE 240 Soil Mechanics & Foundations Lecture 7.1. in situ Stresses I (Das, Ch. 8)
CE 240 Soil Mechanics & Foundations Lecture 7.1 in situ Stresses I (Das, Ch. 8) Class Outline Stress tensor, stress units Effective stress, Stresses in saturated soil without seepage Stresses in saturated
More informationProperties of the stress tensor
Appendix C Properties of the stress tensor Some of the basic properties of the stress tensor and traction vector are reviewed in the following. C.1 The traction vector Let us assume that the state of stress
More informationHomework 1/Solutions. Graded Exercises
MTH 3103 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both
More informationBone Tissue Mechanics
Bone Tissue Mechanics João Folgado Paulo R. Fernandes Instituto Superior Técnico, 2016 PART 1 and 2 Introduction The objective of this course is to study basic concepts on hard tissue mechanics. Hard tissue
More informationTopics. GG612 Structural Geology Sec3on Steve Martel POST 805 Lecture 4 Mechanics: Stress and Elas3city Theory
GG612 Structural Geology Sec3on Steve Martel POST 805 smartel@hawaii.edu Lecture 4 Mechanics: Stress and Elas3city Theory 11/6/15 GG611 1 Topics 1. Stress vectors (trac3ons) 2. Stress at a point 3. Cauchy
More informationMath Review: Vectors and Tensors for Rheological Applications
Math Review: Vectors and Tensors for Rheological Applications Presented by Randy H. Ewoldt University of Illinois at UrbanaChampaign U. of Minnesota Rheological Measurements Short Course June 2016 MathReview1
More informationExercise: concepts from chapter 8
Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic
More informationUNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich
UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST
More informationIn this section, mathematical description of the motion of fluid elements moving in a flow field is
Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small
More informationLOWELL WEEKLY JOURNAL
Y » $ 5 Y 7 Y Y Y Q x Q» 75»»/ q } # ]»\   $ { Q» / X x»» 3 q $ 9 ) Y q  5 5 3 3 3 7 Q q   Q _»»/Q Y  9    ) [ X 7» »  )»? / /? Q Y»» # X Q»  ?» Q ) Q \ Q    3? 7» ? #»»» 7  / Q
More informationChapter 4: Fluid Kinematics
Overview Fluid kinematics deals with the motion of fluids without considering the forces and moments which create the motion. Items discussed in this Chapter. Material derivative and its relationship to
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139
MASSACHUSETTS NSTTUTE OF TECHNOLOGY DEPARTMENT OF MATERALS SCENCE AND ENGNEERNG CAMBRDGE, MASSACHUSETTS 39 3. MECHANCAL PROPERTES OF MATERALS PROBLEM SET SOLUTONS Reading Ashby, M.F., 98, Tensors: Notes
More informationDynamics of Glaciers
Dynamics of Glaciers McCarthy Summer School 01 Andy Aschwanden Arctic Region Supercomputing Center University of Alaska Fairbanks, USA June 01 Note: This script is largely based on the Physics of Glaciers
More informationWave and Elasticity Equations
1 Wave and lasticity quations Now let us consider the vibrating string problem which is modeled by the onedimensional wave equation. Suppose that a taut string is suspended by its extremes at the points
More information1 Stress and Strain. Introduction
1 Stress and Strain Introduction This book is concerned with the mechanical behavior of materials. The term mechanical behavior refers to the response of materials to forces. Under load, a material may
More informationClassification of Prostate Cancer Grades and TStages based on Tissue Elasticity Using Medical Image Analysis. Supplementary Document
Classification of Prostate Cancer Grades and TStages based on Tissue Elasticity Using Medical Image Analysis Supplementary Document Shan Yang, Vladimir Jojic, Jun Lian, Ronald Chen, Hongtu Zhu, Ming C.
More informationFMIA. Fluid Mechanics and Its Applications 113 Series Editor: A. Thess. Moukalled Mangani Darwish. F. Moukalled L. Mangani M.
FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in
More information1 Hooke s law, stiffness, and compliance
Nonquilibrium Continuum Physics TA session #5 TA: Yohai Bar Sinai 3.04.206 Linear elasticity I This TA session is the first of three at least, maybe more) in which we ll dive deep deep into linear elasticity
More information(MPa) compute (a) The traction vector acting on an internal material plane with normal n ( e1 e
EN10: Continuum Mechanics Homework : Kinetics Due 1:00 noon Friday February 4th School of Engineering Brown University 1. For the Cauchy stress tensor with components 100 5 50 0 00 (MPa) compute (a) The
More informationIOAN ŞERDEAN, DANIEL SITARU
Romanian Mathematical Magazine Web: http://www.ssmrmh.ro The Author: This article is published with open access. TRIGONOMETRIC SUBSTITUTIONS IN PROBLEM SOLVING PART IOAN ŞERDEAN, DANIEL SITARU Abstract.
More informationPEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II
PEAT8002  SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II Nick Rawlinson Research School of Earth Sciences Australian National University Waveform modelling Pwave firstmotions
More informationChapter 1 Fluid Characteristics
Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity
More informationLecture #6: 3D Rateindependent Plasticity (cont.) Pressuredependent plasticity
Lecture #6: 3D Rateindependent Plasticity (cont.) Pressuredependent plasticity by Borja Erice and Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling
More informationLecture Notes 8
12.005 Lecture Notes 8 Assertion: most of the stress tensor in the Earth is close to "lithostatic," τ ij ~ ρgd δ ij, where ρ is the average density of the overburden, g is gravitational acceleration,
More informationChapter 9: Differential Analysis
91 Introduction 92 Conservation of Mass 93 The Stream Function 94 Conservation of Linear Momentum 95 Navier Stokes Equation 96 Differential Analysis Problems Recall 91 Introduction (1) Chap 5: Control
More informationAE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.
AE/ME 339 Computational Fluid Dynamics (CFD) 9//005 Topic7_NS_ F0 1 Momentum equation 9//005 Topic7_NS_ F0 1 Consider the moving fluid element model shown in Figure.b Basis is Newton s nd Law which says
More informationLecture 7. Properties of Materials
MIT 3.00 Fall 2002 c W.C Carter 55 Lecture 7 Properties of Materials Last Time Types of Systems and Types of Processes Division of Total Energy into Kinetic, Potential, and Internal Types of Work: Polarization
More informationMechanics of Earthquakes and Faulting
Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Standard Solids and Fracture Fluids: Mechanical, Chemical Effects Effective Stress Dilatancy Hardening and Stability Mead, 1925
More informationSEISMOLOGY I. Laurea Magistralis in Physics of the Earth and of the Environment. Elasticity. Fabio ROMANELLI
SEISMOLOGY I Laurea Magistralis in Physics of the Earth and of the Environment Elasticity Fabio ROMANELLI Dept. Earth Sciences Università degli studi di Trieste romanel@dst.units.it 1 Elasticity and Seismic
More informationMechanics of Earthquakes and Faulting
Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Overview Milestones in continuum mechanics Concepts of modulus and stiffness. Stressstrain relations Elasticity Surface and body
More informationV (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)
IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common
More informationChapter 9: Differential Analysis of Fluid Flow
of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known
More informationNeatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.
» ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z
More informationMath512 PDE Homework 2
Math51 PDE Homework October 11, 009 Exercise 1.3. Solve u = xu x +yu y +(u x+y y/ = 0 with initial conditon u(x, 0 = 1 x. Proof. In this case, we have F = xp + yq + (p + q / z = 0 and Γ parameterized as
More informationTensor fields. Tensor fields: Outline. Chantal Oberson Ausoni
Tensor fields Chantal Oberson Ausoni 7.8.2014 ICS Summer school Roscoff  Visualization at the interfaces 28.78.8, 2014 1 Tensor fields: Outline 1. TENSOR FIELDS: DEFINITION 2. PROPERTIES OF SECONDORDER
More informationElements of Rock Mechanics
Elements of Rock Mechanics Stress and strain Creep Constitutive equation Hooke's law Empirical relations Effects of porosity and fluids Anelasticity and viscoelasticity Reading: Shearer, 3 Stress Consider
More information6. SCALARS, VECTORS, AND TENSORS (FOR ORTHOGONAL COORDINATE SYSTEMS)
(FOR ORTHOGONAL COORDINATE SYSTEMS) I Main Topics A What are scalars, vectors, and tensors? B Order of scalars, vectors, and tensors C Linear transformaoon of scalars and vectors (and tensors) D Matrix
More informationCrew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA
U G G G U 2 93 YX Y q 25 3 < : z? 0 (? 8 0 G 936 x z x z? \ 9 7500 00? 5 q 938 27? 60 & 69? 937 q? G x? 937 69 58 } x? 88 G # x 8 > x G 0 G 0 x 8 x 0 U 93 6 ( 2 x : X 7 8 G G G q x U> x 0 > x < x G U 5
More informationNumerical Modelling in Geosciences. Lecture 1 Introduction and basic mathematics for PDEs
Numerical Modelling in Geosciences Lecture 1 Introduction and basic mathematics for PDEs Useful information Slides and exercises: download at my homepage: http://www.geoscienze.unipd.it/users/faccendamanuele
More informationContinuum Mechanics. Continuum Mechanics and Constitutive Equations
Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform
More informationMacroscopic theory Rock as 'elastic continuum'
Elasticity and Seismic Waves Macroscopic theory Rock as 'elastic continuum' Elastic body is deformed in response to stress Two types of deformation: Change in volume and shape Equations of motion Wave
More information3 2 6 Solve the initial value problem u ( t) 3. a If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1
Math Problem a If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b True or false and why 1. if A is
More informationProblem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1
Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2ad,g,h,j 2.6, 2.9; Chapter 3: 1ad,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate
More informationOCN/ATM/ESS 587. The winddriven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction
OCN/ATM/ESS 587 The winddriven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The winddriven ocean. The major ocean gyres
More informationEquilibrium of Deformable Body
Equilibrium of Deformable Body Review Static Equilibrium If a body is in static equilibrium under the action applied external forces, the Newton s Second Law provides us six scalar equations of equilibrium
More informationCHAPTER 4 Stress Transformation
CHAPTER 4 Stress Transformation ANALYSIS OF STRESS For this topic, the stresses to be considered are not on the perpendicular and parallel planes only but also on other inclined planes. A P a a b b P z
More informationFinite Element Method in Geotechnical Engineering
Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 58, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps
More informationCONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS
Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical
More informationA short review of continuum mechanics
A short review of continuum mechanics Professor Anette M. Karlsson, Department of Mechanical ngineering, UD September, 006 This is a short and arbitrary review of continuum mechanics. Most of this material
More informationLinear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems.
Linear Algebra Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems May 1, 2018 () Linear Algebra May 1, 2018 1 / 8 Table of contents 1
More informationComputer Applications in Engineering and Construction Programming Assignment #9 Principle Stresses and Flow Nets in Geotechnical Design
CVEN 302501 Computer Applications in Engineering and Construction Programming Assignment #9 Principle Stresses and Flow Nets in Geotechnical Design Date distributed : 12/2/2015 Date due : 12/9/2015 at
More informationIntroduction, Basic Mechanics 2
Computational Biomechanics 18 Lecture : Introduction, Basic Mechanics Ulli Simon, Lucas Engelhardt, Martin Pietsch Scientific Computing Centre Ulm, UZWR Ulm University Contents Mechanical Basics Moment
More informationClassical Mechanics. Luis Anchordoqui
1 Rigid Body Motion Inertia Tensor Rotational Kinetic Energy Principal Axes of Rotation Steiner s Theorem Euler s Equations for a Rigid Body Eulerian Angles Review of Fundamental Equations 2 Rigid body
More informationBasic Concepts of Strain and Tilt. Evelyn Roeloffs, USGS June 2008
Basic Concepts of Strain and Tilt Evelyn Roeloffs, USGS June 2008 1 Coordinates Righthanded coordinate system, with positions along the three axes specified by x,y,z. x,y will usually be horizontal, and
More informationTwo Posts to Fill On School Board
Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83
More informationEE C247B ME C218 Introduction to MEMS Design Spring 2017
247B/M 28: Introduction to MMS Design Lecture 0m2: Mechanics of Materials CTN 2/6/7 Outline C247B M C28 Introduction to MMS Design Spring 207 Prof. Clark T. Reading: Senturia, Chpt. 8 Lecture Topics:
More informationChapter 2 Governing Equations
Chapter Governing Equations Abstract In this chapter fundamental governing equations for propagation of a harmonic disturbance on the surface of an elastic halfspace is presented. The elastic media is
More informationHIGHERORDER THEORIES
HIGHERORDER THEORIES THIRDORDER SHEAR DEFORMATION PLATE THEORY LAYERWISE LAMINATE THEORY J.N. Reddy 1 ThirdOrder Shear Deformation Plate Theory Assumed Displacement Field µ u(x y z t) u 0 (x y t) +
More informationLecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI
Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still
More information