Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Size: px
Start display at page:

Download "Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell"

Transcription

1 Heat Transfer Heat transfer rate by conduction is related to the temperature gradient by Fourier s law. For the one-dimensional heat transfer problem in Fig. 1.8, in which temperature varies in the y- direction only, the heat transfer rate is obtained by Fourier s law q = y dt k dy (1.66) 1

2 Figure 1.8 One-dimensional conduction. 2

3 For heat conduction in a multidimensional system, eq. (1.66) can be rewritten in the following generalized form q = k where both the heat flux and the temperature gradient are vectors, i.e., T (1.67) q = iq + jq + kq x y z (1.68) 3

4 Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Unlike the isotropic materials whose thermal conductivity is a scalar, the thermal conductivity of the anisotropic material is a tensor of the second order: kxx kxy k xz k = k yx k yy k yz (1.69) kzx kzy k zz and eq. (1.67) will become q = k T (1.70) Transport Phenomena in Multiphase Systems with Phase Change 4

5 In a multicomponent system, mass transfer can also contribute to the heat flux N N N x x D J q = k T + hi Ji + crut i= 1 i= 1 j = 1( j i) ρ D ρ ρ T i j i Ji j i ij i j (1.71) where the second term on the right-hand side represents the interdiffusional convection term, and the third term is the contribution of concentration gradient to the heat flux (the diffusion-thermo or Dufour effect). 5

6 For a binary system ω and ω D = x x D ω 1ω 2 (1.72) where 1 are 2 mass fraction of component 1 and 2 respectively. x1 x2 D12D33 D13D 23 D12 = ω ω D + D D D (1.73) Transport Phenomena in Multiphase Systems with Phase Change 6

7 Figure 1.9 Forced convective heat transfer. q = h( Tw T ) Nu = hl k (1.74) (1.75) 7

8 T a b l e 1. 5 Typical values of mean convective heat transfer coefficients Mode Geometry 2 h (W/m -K) Forced convection Air flows at 2 m/s over a 0.2 m square plate 12 Air at 2 atm flowing in a 2.5 cm-diameter tube with a velocity of 10 m/s 65 Water flowing in a 2.5 cm-diameter tube with a mass flow rate of 0.5 kg/s 3500 Airflow across 5 cm-diameter cylinder with velocity of 50 m/s 180 Free convection Vertical plate 0.3 m high in air 4.5 o ( T = 20 C) ) Horizontal cylinder with a diameter of 2 cm in water 890 Evaporation Falling film on a heated wall Condensation of water at 1 Vertical surface atm Outside horizontal tube Boiling of water at 1 atm Natural convectioncontrolled melting and solidification Pool Forced convection Melting in a rectangular enclosure Solidification around a horizontal tube in a superheated liquid phase change material

9 The third mode of heat transfer is radiation. When matter is heated, some of its molecules or atoms are excited to a higher energy level. Thermal radiation occurs when these excited molecules or atoms return to lower energy states. Although thermal radiation can result from changes of the energy states of electrons, as well as vibrational and rotational energy of molecules or atoms, all of these radiant energies travel at the speed of light. The wavelength is related to the frequency by An electromagnetic wave can also be viewed as a particle a photon with energy of ε λ ν = = hν c (1.76) (1.77) Transport Phenomena in Multiphase Systems with Phase Change 9

10 For a blackbody, the spectral emissive power can be obtained by Planck s law c E 1 b, λ c /( T ) 2 2 λ ( e 1) The emissive power for a blackbody, is = Substituting eq. (1.78) into eq. (1.79), Stefan-Boltzmann s law is obtained For a real surface, the emissive power is obtained by λ Eb = Eb, λ d λ E b = 0 σ (1.78) (1.79) (1.80) (1.81) If the temperature of the surroundings is T sur, the heat transfer rate per unit area from the small object is obtained by SB T E = ε E b q = ε σ T T SB ( w sur ) (1.82) Transport Phenomena in Multiphase Systems with Phase Change 10

11 T w Figure 1.10 Radiation heat transfer between a small surface and its surroundings. 11

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell 9.2 The Blackbody as the Ideal Radiator A material that absorbs 100 percent of the energy incident on it from all directions

More information

ME 476 Solar Energy UNIT TWO THERMAL RADIATION

ME 476 Solar Energy UNIT TWO THERMAL RADIATION ME 476 Solar Energy UNIT TWO THERMAL RADIATION Unit Outline 2 Electromagnetic radiation Thermal radiation Blackbody radiation Radiation emitted from a real surface Irradiance Kirchhoff s Law Diffuse and

More information

Heat Transfer: Physical Origins and Rate Equations. Chapter One Sections 1.1 and 1.2

Heat Transfer: Physical Origins and Rate Equations. Chapter One Sections 1.1 and 1.2 Heat Transfer: Physical Origins and Rate Equations Chapter One Sections 1.1 and 1. Heat Transfer and Thermal Energy What is heat transfer? Heat transfer is thermal energy in transit due to a temperature

More information

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 9210-221 Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 0 You should have the following for this examination one answer book non programmable calculator pen, pencil, drawing instruments

More information

Unit B-4: List of Subjects

Unit B-4: List of Subjects ES312 Energy Transfer Fundamentals Unit B: First Law of Thermodynamics ROAD MAP... B-1: The Concept of Energy B-2: Work Interactions B-3: First Law of Thermodynamics B-4: Heat Transfer Fundamentals Unit

More information

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course HEAT TRANSFER GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 2 C O N T E N T 1. INTRODUCTION

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

WITPRESS WIT Press publishes leading books in Science and Technology. Visit our website for the current list of titles.

WITPRESS WIT Press publishes leading books in Science and Technology. Visit our website for the current list of titles. Introduction to Heat Transfer WITPRESS WIT Press publishes leading books in Science and Technology. Visit our website for the current list of titles. www.witpress.com WITeLibrary Home of the Transactions

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

HEAT AND MASS TRANSFER. List of Experiments:

HEAT AND MASS TRANSFER. List of Experiments: HEAT AND MASS TRANSFER List of Experiments: Conduction Heat Transfer Unit 1. Investigation of Fourier Law for linear conduction of heat along a simple bar. 2. Study the conduction of heat along a composite

More information

11. Advanced Radiation

11. Advanced Radiation . Advanced adiation. Gray Surfaces The gray surface is a medium whose monochromatic emissivity ( λ does not vary with wavelength. The monochromatic emissivity is defined as the ratio of the monochromatic

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-187 S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B.

More information

HEAT TRANSFER. PHI Learning PfcO too1. Principles and Applications BINAY K. DUTTA. Delhi Kolkata. West Bengal Pollution Control Board

HEAT TRANSFER. PHI Learning PfcO too1. Principles and Applications BINAY K. DUTTA. Delhi Kolkata. West Bengal Pollution Control Board HEAT TRANSFER Principles and Applications BINAY K. DUTTA West Bengal Pollution Control Board Kolkata PHI Learning PfcO too1 Delhi-110092 2014 Contents Preface Notations ix xiii 1. Introduction 1-8 1.1

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 1 - Introduction 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Outline Modes of Heat Transfer Basic Heat Transfer Phenomena Conduction Convection

More information

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7 Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

a. Fourier s law pertains to conductive heat transfer. A one-dimensional form of this law is below. Units are given in brackets.

a. Fourier s law pertains to conductive heat transfer. A one-dimensional form of this law is below. Units are given in brackets. QUESTION An understanding of the basic laws governing heat transfer is imperative to everything you will learn this semester. Write the equation for and explain the following laws governing the three basic

More information

1.3 Molecular Level Presentation

1.3 Molecular Level Presentation 1.3.1 Introduction A molecule is the smallest chemical unit of a substance that is capable of stable, independent existence. Not all substances are composed of molecules. Some substances are composed of

More information

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer Ministry of Higher Education And Scientific Research University Of Technology Heat Transfer Third Year By Dr.Jamal Al-Rubeai 2008-2009 Heat Transfer 1. Modes of Heat Transfer: Conduction, Convection and

More information

Radiation Heat Transfer

Radiation Heat Transfer Heat Lectures 0- CM30 /5/06 CM30 ransport I Part II: Heat ransfer Radiation Heat ransfer In Unit Operations Heat Shields Professor Faith Morrison Department of Chemical Engineering Michigan echnological

More information

Basic Equations of Elasticity

Basic Equations of Elasticity A Basic Equations of Elasticity A.1 STRESS The state of stress at any point in a loaded bo is defined completely in terms of the nine components of stress: σ xx,σ yy,σ zz,σ xy,σ yx,σ yz,σ zy,σ zx,andσ

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information

Chapter 1 INTRODUCTION AND BASIC CONCEPTS

Chapter 1 INTRODUCTION AND BASIC CONCEPTS Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep

More information

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity 6.20 HANDOUT #2 Fall, 2002 Review of General Elasticity NOTATION REVIEW (e.g., for strain) Engineering Contracted Engineering Tensor Tensor ε x = ε = ε xx = ε ε y = ε 2 = ε yy = ε 22 ε z = ε 3 = ε zz =

More information

Coolant. Circuits Chip

Coolant. Circuits Chip 1) A square isothermal chip is of width w=5 mm on a side and is mounted in a subtrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant

More information

heat transfer process where a liquid undergoes a phase change into a vapor (gas)

heat transfer process where a liquid undergoes a phase change into a vapor (gas) Two-Phase: Overview Two-Phase two-phase heat transfer describes phenomena where a change of phase (liquid/gas) occurs during and/or due to the heat transfer process two-phase heat transfer generally considers

More information

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Introduction to Heat Transfer What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Thermal Resistance Thermal Capacitance Thermal

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

Introduction to Thermal Radiation

Introduction to Thermal Radiation Introduction to Thermal Radiation Figures except for the McDonnell Douglas figures come from Incorpera & DeWitt, Introduction to Heat and Mass Transfer or Cengel, Heat Transfer: Practical pproach Thermal

More information

Electromagnetic Radiation. Physical Principles of Remote Sensing

Electromagnetic Radiation. Physical Principles of Remote Sensing Electromagnetic Radiation Physical Principles of Remote Sensing Outline for 4/3/2003 Properties of electromagnetic radiation The electromagnetic spectrum Spectral emissivity Radiant temperature vs. kinematic

More information

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127 C ONTENTS Preface xviii Nomenclature xxvi CHAPTER ONE BASICS OF HEAT TRANSFER 1 1-1 Thermodynamics and Heat Transfer 2 Application Areas of Heat Transfer 3 Historical Background 3 1-2 Engineering Heat

More information

Convection Heat Transfer. Introduction

Convection Heat Transfer. Introduction Convection Heat Transfer Reading Problems 12-1 12-8 12-40, 12-49, 12-68, 12-70, 12-87, 12-98 13-1 13-6 13-39, 13-47, 13-59 14-1 14-4 14-18, 14-24, 14-45, 14-82 Introduction Newton s Law of Cooling Controlling

More information

Outline. Stock Flow and temperature. Earth as a black body. Equation models for earth s temperature. Balancing earth s energy flows.

Outline. Stock Flow and temperature. Earth as a black body. Equation models for earth s temperature. Balancing earth s energy flows. Outline Stock Flow and temperature Earth as a black body Equation models for earth s temperature { { Albedo effect Greenhouse effect Balancing earth s energy flows Exam questions How does earth maintain

More information

Chapter 3 Energy Balance and Temperature. Astro 9601

Chapter 3 Energy Balance and Temperature. Astro 9601 Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module-07: Heat Transfer 3: Heat Radiation

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module-07: Heat Transfer 3: Heat Radiation Paper No. : 04 Paper Title: Unit Operations in Food Processing Module-07: Heat Transfer 3: Heat Radiation 7.1 Introduction Radiation heat transfer is the transfer of heat energy in the form of electromagnetic

More information

Autumn 2005 THERMODYNAMICS. Time: 3 Hours

Autumn 2005 THERMODYNAMICS. Time: 3 Hours CORK INSTITUTE OF TECHNOOGY Bachelor of Engineering (Honours) in Mechanical Engineering Stage 3 (Bachelor of Engineering in Mechanical Engineering Stage 3) (NFQ evel 8) Autumn 2005 THERMODYNAMICS Time:

More information

Applied Thermodynamics HEAT TRANSFER. Introduction What and How?

Applied Thermodynamics HEAT TRANSFER. Introduction What and How? LANDMARK UNIVERSITY, OMU-ARAN LECTURE NOTE: 3 COLLEGE: COLLEGE OF SCIENCE AND ENGINEERING DEPARTMENT: MECHANICAL ENGINEERING PROGRAMME: ENGR. ALIYU, S.J Course code: MCE 311 Course title: Applied Thermodynamics

More information

4.2 Concepts of the Boundary Layer Theory

4.2 Concepts of the Boundary Layer Theory Advanced Heat by Amir Faghri, Yuwen Zhang, and John R. Howell 4.2 Concepts of the Boundary Layer Theory It is difficult to solve the complete viscous flow fluid around a body unless the geometry is very

More information

Lecture Outline. Energy 9/25/12

Lecture Outline. Energy 9/25/12 Introduction to Climatology GEOGRAPHY 300 Solar Radiation and the Seasons Tom Giambelluca University of Hawai i at Mānoa Lauren Kaiser 09/05/2012 Geography 300 Lecture Outline Energy Potential and Kinetic

More information

Chapter 3 Energy Balance and Temperature. Topics to be covered

Chapter 3 Energy Balance and Temperature. Topics to be covered Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and31) 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

Lecture 28. Key words: Heat transfer, conduction, convection, radiation, furnace, heat transfer coefficient

Lecture 28. Key words: Heat transfer, conduction, convection, radiation, furnace, heat transfer coefficient Lecture 28 Contents Heat transfer importance Conduction Convection Free Convection Forced convection Radiation Radiation coefficient Illustration on heat transfer coefficient 1 Illustration on heat transfer

More information

Lecture 3a: Surface Energy Balance

Lecture 3a: Surface Energy Balance Lecture 3a: Surface Energy Balance Instructor: Prof. Johnny Luo http://www.sci.ccny.cuny.edu/~luo Surface Energy Balance 1. Factors affecting surface energy balance 2. Surface heat storage 3. Surface

More information

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface.

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface. 5.2.1 Capillary Pressure: The Young-Laplace Equation Vapor Fo Fs Fs Fi Figure 5.1 Origin of surface tension at liquid-vapor interface. Liquid 1 5.2.1 Capillary Pressure: The Young-Laplace Equation Figure

More information

STUDY OF HEAT TRANSFER MECHANISMS DURING THE LENS TM PROCESS

STUDY OF HEAT TRANSFER MECHANISMS DURING THE LENS TM PROCESS STUDY OF HEAT TRANSFER MECHANISMS DURING THE LENS TM PROCESS Liang Wang 1 and Sergio Felicelli 1. Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 3976, USA; email:

More information

Energy and Radiation. GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2

Energy and Radiation. GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2 Energy and Radiation GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2 Last lecture: the Atmosphere! Mainly nitrogen (78%) and oxygen (21%)! T, P and ρ! The Ideal Gas Law! Temperature profiles Lecture outline!

More information

Heat Transfer Analysis

Heat Transfer Analysis Heat Transfer 2011 Alex Grishin MAE 323 Chapter 8: Grishin 1 In engineering applications, heat is generally transferred from one location to another and between bodies. This transfer is driven by differences

More information

Lecture 22. Temperature and Heat

Lecture 22. Temperature and Heat Lecture 22 Temperature and Heat Today s Topics: 0 th Law of Thermodynamics Temperature Scales Thermometers Thermal Expansion Heat, Internal Energy and Work Heat Transfer Temperature and the Zeroth Law

More information

What is it good for? RT is a key part of remote sensing and climate modeling.

What is it good for? RT is a key part of remote sensing and climate modeling. Read Bohren and Clothiaux Ch.; Ch 4.-4. Thomas and Stamnes, Ch..-.6; 4.3.-4.3. Radiative Transfer Applications What is it good for? RT is a key part of remote sensing and climate modeling. Remote sensing:

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Earth: the Goldilocks Planet

Earth: the Goldilocks Planet Earth: the Goldilocks Planet Not too hot (460 C) Fig. 3-1 Not too cold (-55 C) Wave properties: Wavelength, velocity, and? Fig. 3-2 Reviewing units: Wavelength = distance (meters or nanometers, etc.) Velocity

More information

DR.PRADIP DUTTA Department of Mechanical Engineering Indian Institute of Science Bangalore

DR.PRADIP DUTTA Department of Mechanical Engineering Indian Institute of Science Bangalore DR.PRADIP DUTTA Department of Mechanical Engineering Indian Institute of Science Bangalore What is Heat Transfer? Energy in transit due to temperature difference. Thermodynamics tells us: How much heat

More information

General Considerations 1

General Considerations 1 General Considerations 1 Absorption or emission of electromagnetic radiation results in a permanent energy transfer from the emitting object or to the absorbing medium. This permanent energy transfer can

More information

Physics 112 Second Midterm Exam February 22, 2000

Physics 112 Second Midterm Exam February 22, 2000 Physics 112 Second Midterm Exam February 22, 2000 MIDTERM EXAM INSTRUCTIONS: You have 90 minutes to complete this exam. This is a closed book exam, although you are permitted to consult two sheets of handwritten

More information

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. RADIATION INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. Radiation: The energy emitted by matter in the form

More information

Heat Transfer with Phase Change

Heat Transfer with Phase Change CM3110 Transport I Part II: Heat Transfer Heat Transfer with Phase Change Evaporators and Condensers Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Heat

More information

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A PROBLEM 3. KNON: Various geometric shapes involving two areas and. FIND: Shape factors, F and F, for each configuration. SSUMPTIONS: Surfaces are diffuse. NLYSIS: The analysis is not to make use of tables

More information

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation

More information

ATMO/OPTI 656b Spring 2009

ATMO/OPTI 656b Spring 2009 Nomenclature and Definition of Radiation Quantities The various Radiation Quantities are defined in Table 2-1. Keeping them straight is difficult and the meanings may vary from textbook to textbook. I

More information

Law of Heat Transfer

Law of Heat Transfer Law of Heat Transfer The Fundamental Laws which are used in broad area of applications are: 1. The law of conversion of mass 2. Newton s second law of motion 3. First and second laws of thermodynamics

More information

ENGR Heat Transfer II

ENGR Heat Transfer II ENGR 7901 - Heat Transfer II Convective Heat Transfer 1 Introduction In this portion of the course we will examine convection heat transfer principles. We are now interested in how to predict the value

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A PROBLEM 3. KNON: Various geometric shapes involving two areas and. FIND: Shape factors, F and F, for each configuration. SSUMPTIONS: Surfaces are diffuse. NLYSIS: The analysis is not to make use of tables

More information

Lecture 2: principles of electromagnetic radiation

Lecture 2: principles of electromagnetic radiation Remote sensing for agricultural applications: principles and methods Lecture 2: principles of electromagnetic radiation Instructed by Prof. Tao Cheng Nanjing Agricultural University March Crop 11, Circles

More information

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION Chapter Chapter Fundamentals of Thermal Radiation FUNDAMENTALS OF THERMAL RADIATION Electromagnetic and Thermal Radiation -C Electromagnetic waves are caused by accelerated charges or changing electric

More information

ME 315 Final Examination Solution 8:00-10:00 AM Friday, May 8, 2009 CIRCLE YOUR DIVISION

ME 315 Final Examination Solution 8:00-10:00 AM Friday, May 8, 2009 CIRCLE YOUR DIVISION ME 315 Final Examination Solution 8:00-10:00 AM Friday, May 8, 009 This is a closed-book, closed-notes examination. There is a formula sheet at the back. You must turn off all communications devices before

More information

The Black Body Radiation

The Black Body Radiation The Black Body Radiation = Chapter 4 of Kittel and Kroemer The Planck distribution Derivation Black Body Radiation Cosmic Microwave Background The genius of Max Planck Other derivations Stefan Boltzmann

More information

PROBLEM h fg ρ v ρ l σ 10 3 T sat (kj/kg) (kg/m 3 ) (N/m) (K)

PROBLEM h fg ρ v ρ l σ 10 3 T sat (kj/kg) (kg/m 3 ) (N/m) (K) PROBLEM 10.9 KNOWN: Fluids at 1 atm: mercury, ethanol, R-1. FIND: Critical heat flux; compare with value for water also at 1 atm. ASSUMPTIONS: (1) Steady-state conditions, () Nucleate pool boiling. PROPERTIES:

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION 11 Fourier s Law of Heat Conduction, General Conduction Equation Based on Cartesian Coordinates, Heat Transfer Through a Wall, Composite Wall

More information

Chapter 1. Introduction. Introduction to Heat Transfer

Chapter 1. Introduction. Introduction to Heat Transfer Chapter 1 Introduction to Heat Transfer Islamic Azad University Karaj Branch Dr. M. Khosravy 1 Introduction Thermodynamics: Energy can be transferred between a system and its surroundgs. A system teracts

More information

San Jose State University Department of Mechanical and Aerospace Engineering ME 211, Advanced Heat Transfer, Fall 2015

San Jose State University Department of Mechanical and Aerospace Engineering ME 211, Advanced Heat Transfer, Fall 2015 San Jose State University Department of Mechanical and Aerospace Engineering ME 211, Advanced Heat Transfer, Fall 2015 Instructor: Office Location: Younes Shabany TBD Telephone: (408)313-8391 Email: Office

More information

Indo-German Winter Academy

Indo-German Winter Academy Indo-German Winter Academy - 2007 Radiation in Non-Participating and Participating Media Tutor Prof. S. C. Mishra Technology Guwahati Chemical Engineering Technology Guwahati 1 Outline Importance of thermal

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan

Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan Write Down Your NAME, Last First Circle Your DIVISION Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan ME315 - Heat and Mass Transfer School of Mechanical Engineering Purdue

More information

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE COURSE TITLE : HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Conduction,Fourier law,variation

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect /30/2018 Lecture 5: Greenhouse Effect Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature atmosphere Wien s Law Shortwave and Longwave Radiation

More information

Reading Problems , 15-33, 15-49, 15-50, 15-77, 15-79, 15-86, ,

Reading Problems , 15-33, 15-49, 15-50, 15-77, 15-79, 15-86, , Radiation Heat Transfer Reading Problems 15-1 15-7 15-27, 15-33, 15-49, 15-50, 15-77, 15-79, 15-86, 15-106, 15-107 Introduction The following figure shows the relatively narrow band occupied by thermal

More information

Transport processes. 7. Semester Chemical Engineering Civil Engineering

Transport processes. 7. Semester Chemical Engineering Civil Engineering Transport processes 7. Semester Chemical Engineering Civil Engineering 1 Course plan 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume nalysis 4. Differential nalysis of Fluid Flow

More information

Documentation of the Solutions to the SFPE Heat Transfer Verification Cases

Documentation of the Solutions to the SFPE Heat Transfer Verification Cases Documentation of the Solutions to the SFPE Heat Transfer Verification Cases Prepared by a Task Group of the SFPE Standards Making Committee on Predicting the Thermal Performance of Fire Resistive Assemblies

More information

FINAL Examination Paper (COVER PAGE) Programme : BACHELOR OF ENGINEERING (HONS) IN MECHANICAL ENGINEERING PROGRAMME (BMEGI)

FINAL Examination Paper (COVER PAGE) Programme : BACHELOR OF ENGINEERING (HONS) IN MECHANICAL ENGINEERING PROGRAMME (BMEGI) MEE0 (F) / Page of Session : August 0 FINA Examination Paper (COVER PAGE) Programme : BACHEOR OF ENGINEERING (HONS) IN MECHANICA ENGINEERING PROGRAMME (BMEGI) Course : MEE0 : Combustion, Heat and Mass

More information

Modeling of Environmental Systems

Modeling of Environmental Systems Modeling of Environmental Systems While the modeling of predator-prey dynamics is certainly simulating an environmental system, there is more to the environment than just organisms Recall our definition

More information

Lecture 3a: Surface Energy Balance

Lecture 3a: Surface Energy Balance Lecture 3a: Surface Energy Balance Instructor: Prof. Johnny Luo http://www.sci.ccny.cuny.edu/~luo Total: 50 pts Absorption of IR radiation O 3 band ~ 9.6 µm Vibration-rotation interaction of CO 2 ~

More information

Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices.

Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices. Thermal Analysis with SolidWorks Simulation 2013 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites to

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

The Black Body Radiation

The Black Body Radiation The Black Body Radiation = Chapter 4 of Kittel and Kroemer The Planck distribution Derivation Black Body Radiation Cosmic Microwave Background The genius of Max Planck Other derivations Stefan Boltzmann

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture 34 Heat Heat transfer Conduction Convection Radiation http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Thermal physics Heat. Specific

More information

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases.

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases. ME 323 Sample Final Exam. 120pts total True/False. Circle the correct answer. (1pt each, 7pts total) 1. A solid angle of 2π steradians defines a hemispherical shell. T F 2. The Earth irradiates the Sun.

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect Lecture 5: Greenhouse Effect S/4 * (1-A) T A 4 T S 4 T A 4 Wien s Law Shortwave and Longwave Radiation Selected Absorption Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation

More information

= (fundamental constants c 0, h, k ). (1) k

= (fundamental constants c 0, h, k ). (1) k Introductory Physics Laboratory, Faculty of Physics and Geosciences, University of Leipzig W 12e Radiation Thermometers Tasks 1 Measure the black temperature T s of a glowing resistance wire at eight different

More information

Monday 9 September, :30-11:30 Class#03

Monday 9 September, :30-11:30 Class#03 Monday 9 September, 2013 10:30-11:30 Class#03 Topics for the hour Solar zenith angle & relationship to albedo Blackbody spectra Stefan-Boltzman Relationship Layer model of atmosphere OLR, Outgoing longwave

More information

11 Quantum theory: introduction and principles

11 Quantum theory: introduction and principles Part 2: Structure Quantum theory: introduction and principles Solutions to exercises E.b E.2b E.3b E.4b E.5b E.6b Discussion questions A successful theory of black-body radiation must be able to explain

More information

A100H Exploring the Universe: The interaction of light and matter. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: The interaction of light and matter. Martin D. Weinberg UMass Astronomy A100H Exploring the Universe: The interaction of light and matter Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu February 11, 2016 Read: Chap 5 02/11/16 slide 1 Exam #1: Thu 18 Feb

More information

Astrophysics (Physics 489) Final Exam

Astrophysics (Physics 489) Final Exam Astrophysics (Physics 489) Final Exam 1. A star emits radiation with a characteristic wavelength! max = 100 nm. (! max is the wavelength at which the Planck distribution reaches its maximum.) The apparent

More information

Transport processes. 7. Semester Chemical Engineering Civil Engineering

Transport processes. 7. Semester Chemical Engineering Civil Engineering Transport processes 7. Semester Chemical Engineering Civil Engineering 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume Analysis 4. Differential Analysis of Fluid Flow 5. Viscous

More information

1. Why photons? 2. Photons in a vacuum

1. Why photons? 2. Photons in a vacuum Photons and Other Messengers 1. Why photons? Ask class: most of our information about the universe comes from photons. What are the reasons for this? Let s compare them with other possible messengers,

More information

6. Laminar and turbulent boundary layers

6. Laminar and turbulent boundary layers 6. Laminar and turbulent boundary layers John Richard Thome 8 avril 2008 John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Convection 8 avril 2008 1 / 34 6.1 Some introductory ideas Figure 6.1 A boundary

More information

University of New Mexico Mechanical Engineering Fall 2012 PhD qualifying examination Heat Transfer

University of New Mexico Mechanical Engineering Fall 2012 PhD qualifying examination Heat Transfer University of New Mexico Mechanical Engineering Fall 2012 PhD qualifying examination Heat Transfer Closed book. Formula sheet and calculator are allowed, but not cell phones, computers or any other wireless

More information