16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity

Size: px
Start display at page:

Download "16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity"

Transcription

1 6.20 HANDOUT #2 Fall, 2002 Review of General Elasticity NOTATION REVIEW (e.g., for strain) Engineering Contracted Engineering Tensor Tensor ε x = ε = ε xx = ε ε y = ε 2 = ε yy = ε 22 ε z = ε 3 = ε zz = ε 33 γ yz = ε 4 = 2 ε yz = 2 ε 23 γ xz = ε 5 = 2 ε xz = 2 ε 3 γ xy = ε 6 = 2 ε xy = 2 ε 2 EQUATIONS OF ELASTICITY y 3, z y 2, y y, x Right-handed rectangular Cartesian 5 equations/5 unknowns coordinate system. Equilibrium (3) σ + σ 2 + σ 3 + f = 0 y y 2 y 3 σ 2 + σ 22 + σ 32 + f 2 = 0 σ mn + f n = 0 y y 2 y 3 y m σ 3 + σ 23 + σ 33 + f 3 = 0 y y 2 y 3 Paul A. Lagace 2002 Handout 2-

2 2. Strain-Displacement (6) ε = ε 22 = u ε 2 = ε u 2 = + u 2 y 2 y 2 y u 2 ε 3 = ε u 3 = + u 3 ε y 2 2 y 3 y mn = u m u + n 2 y n y m ε 33 = u 3 y 3 ε 32 = ε 23 = u 2 + u 3 2 y 3 y 2 3. Stress-Strain (6) Anisotropic: Generalized Hooke s Law: σ mn = E mnpq ε pq σ E E 22 E 33 2E 23 2E 3 2E 2 ε E 22 E 2222 E E E 223 2E 222 ε 22 σ 22 σ 33 E 33 E 2233 E E E 333 2E 332 ε 33 = σ 23 E 23 E 2223 E E E 323 2E 223 ε 23 σ 3 E 3 E 223 E 333 2E 323 2E 33 2E 23 ε 3 σ 2 E 2 E 222 E 332 2E 223 2E 23 2E 22 ε 2 Orthotropic: σ E E 22 E ε σ 22 E 22 E 2222 E ε 22 σ 33 E 33 E 2233 E ε 33 = σ E ε 23 σ E 33 0 ε 3 σ E 22 ε 2 Compliance Form: ε mn = S mnpq σ pq where: E - = S ~ ~ Paul A. Lagace 2002 Handout 2-2

3 DEFINITION OF ENGINEERING CONSTANTS. Longitudinal (Young s) (Extensional) Moduli: E mm = σ mm ε mm due to σ mm applied only (no summation on m) 2. Poisson s Ratios: ε ν nm = mm ε nn due to σ nn applied only (for n m) Reciprocity: ν nm E m = ν mn E n (no sum) (m n) 3. Shear Moduli: G mn = σ mn 2ε mn due to σ mn applied only (for m = 4, 5, 6) (for n m) 4. Coefficients of Mutual Influence: (using contracted notation) η mn = ε n ε m for σ m applied only (for m, n, =, 2, 3, 4, 5, 6, m n) (Note: one strain extensional, one strain shear) Reciprocity here as well 5. Chentsov Coefficients: (using contracted notation) η mn = ε n ε m for σ m applied only (for m, n, = 4, 5, 6, m n) Paul A. Lagace 2002 Handout 2-3

4 ENGINEERING STRESS-STRAIN EQUATIONS (using contracted notation) ε = [σ ν 2 σ 2 ν 3 σ 3 η4σ 4 η 5 σ 5 η 6 σ 6 E ] ε 2 = E2 [ ν 2 σ + σ 2 ν 23 σ 3 η σ 4 η σ 5 η σ 6 ] ε 3 = E3 [ ν 3 σ ν σ 2 + σ 3 η 34 σ 4 η 35 σ 5 η 36 σ 6 ] ν 32 γ 4 = ε 4 = γ 5 = ε 5 = γ 6 = ε 6 = [ η 4 σ η 42 σ 2 η 43 σ 3 + σ 4 η 45 σ 5 η 46 σ 6 ] G 4 [ η 5 σ η 52 σ 2 η 53 σ 3 η 54 σ 4 + σ 5 η 56 σ 6 ] G 5 [ η6 σ η 62 σ 2 η 63 σ 3 η 64 σ 4 η 65 σ 5 + σ 6 ] G 6 In general: ε n = E 6 n m= ν nm σ m Note: ν nn = - and η s --> ν s Orthotropic form In terms of ENGINEERING CONSTANTS (using contracted notation): ε ν 2 ν σ E E E ε 2 ν 2 ν σ 2 E 2 E 2 E 2 ε 3 ν 3 ν 32 σ E = 3 E 3 E 3 ε σ 4 G 4 ε G σ ε G 6 σ 6 6 Paul A. Lagace 2002 Handout 2-4

5 Isotropic form ε / E ν / E ν / E σ ε 2 ν / E / E ν / E σ 2 ε 3 ν / E ν / E / E σ 3 = ε / G 0 0 σ 4 ε / G 0 σ 5 ε / G σ 6 with: G = E 2 ( + ν) PLANE STRESS h << a, b σ zz, σ yz, σ xz = 0 = 0 z Anisotropic stress-strain equations ε = ε 2 = ε 6 = [σ ν 2 σ 2 η 6 σ 6 ] E [ ν 2 σ + σ 2 η 26 σ 6 ] Primary E 2 [ η 6 σ η 62 σ 2 + σ 6 ] G 6 Paul A. Lagace 2002 Handout 2-5

6 ε 3 = E3 [ ν 3 σ ν 32 σ 2 η 36 σ 6 ] ε 4 = ε 5 = [ η 4 σ η 42 σ 2 η 46 σ 6 ] G 4 [ η 5 σ η 52 σ 2 η 56 σ 6 ] G 5 Secondary PLANE STRAIN L >> x, y = 0 z ε 3 = ε 23 = ε 33 = 0 Paul A. Lagace 2002 Handout 2-6

7 SUMMARY Plane Stress Plane Strain Geometry: thickness (y 3 ) << in-plane dimensions (y, y 2 ) length (y 3 ) >> in-plane dimensions (y, y 2 ) Loading: Resulting Assumptions: Primary Variables: Secondary Variable(s): Note: σ 33 << σ αβ σ i3 = 0 ε αβ, σ αβ, u α ε 33, u 3 Eliminate ε 33 from eq. set by using σ 33 = 0 σ - ε eq. and expressing ε 33 in terms of ε αβ σ αβ only / y 3 = 0 ε i3 = 0 ε αβ, σ αβ, u α σ 33 Eliminate σ 33 from eq. Set by using σ 33 σ - ε eq. and expressing σ 33 in terms of ε αβ TRANSFORMATIONS σ mn = l mp l nq σ pq ε mn = l mp l nq ε pq x m = l mp x p ũ m = l mp u p Ẽ mnpq = lmr lns l pt l qu Erstu where: l~ ~ mn = cosine of angle from y m to y n Paul A. Lagace 2002 Handout 2-7

8 OTHER COORDINATE SYSTEMS F ( y, y 2, y 3 ) = ξ F2 ( y, y 2, y 3 ) = η F 3 ( y, y 2, y 3 ) = ζ Example - Cylindrical Coordinates 2 y ξ = r F ( y, y 2, y 3 ) = + y 2 η = θ F2 ( y, y 2, y 3 ) = tan - (y 2 / y ) ζ = z F3 ( y, y 2, y 3 ) = y 3 Equilibrium: r : σ rr + σ θr + σ zr + σ rr σ θθ + f r = 0 r r θ z r 2 θ : σ rθ + σ θθ + σ zθ + 2σ rθ + f θ = 0 r r θ z r z : σ rz + σ θz + σ zz + σ rz + f z = 0 r r θ z r (Engineering) Strain-Displacement: ur ε rr = r ε θθ = u θ r θ ε = zz ε rθ = u 3 z u θ + u r u θ r r θ r ε θz = u 3 r θ + u θ z ε zr = u r + u 3 z r Paul A. Lagace 2002 Handout 2-8

9 (Isotopic) Stress-Strain: ε rr = E [σ rr ν(σ θθ + σ zz )] ε θθ = E [σ θθ ν(σ rr + σ zz )] ε zz = E [σ zz ν(σ rr + σ θθ )] ε rθ = ε θz = ε = zr 2 ( + ν) σrθ E 2 ( + ν) σθz ( E 2 + ν) σ E zr STRESS FUNCTIONS 4 φ = Eα 2 ( T) ( ν) 2 V (isotropic) 2 2 where: 2 = + x 2 y 2 2 φ σ xx = 2 + V y σ = yy σ xy 2 φ x 2 2 φ = xy + V Paul A. Lagace 2002 Handout 2-9

10 EFFECTS OF THE ENVIRONMENT Temperature Thermal Strain: ε T = α T α = Coefficient of Thermal Expansion (C.T.E.) T general form: ε ij = α ij T Total Strain = Mechanical Strain + Thermal Strain M ε ij = ε ij + ε ij T M ε ij = S ijkl σ kl σ kl = E ijkl ε ij E ijkl α ij T Transformation of α ij : α = cos 2 θ α + sin 2 θ α 22 α *, α * 22 are C.T.E. s in α 22 = sin 2 θ α + cos 2 θ α 22 α 2 = cos θ sinθ (α 22 α ) principal material axes Sources of temperature differential Ambient environment Convection Aerodynamic heating specific Mach heat ratio number Adiabatic wall temp = T AW = + γ r M T 2 heat flux: q = h (T AW - T s ) recovery factor 2 T = ambient temperature ( K) heat transfer coefficient surface temperature of body Paul A. Lagace 2002 Handout 2-0

11 Radiation Emissivity Absorptivity Conduction q = - ε σ T s 4 q = α I s λ q = heat flux e = emissivity σ = Stefan-Boltzman constant T s = surface temperature q = heat flux α = absorptivity I s = intensity of source λ = angle factor q i T T T T q = k i = heat flux ij T x j k ij = thermal conductivity Fourier s equation: kz T 2 T T = ρc z 2 t thermal conductivity Degradation of material properties Glass transition temperature E(T), σ ult (T), σ y (T) Creep Paul A. Lagace 2002 Handout 2-

12 Other Environmental Effects M ε ij = ε ij + Σ ε ε ij total = mechanical + environmental Moisture: General: s ε ij = β ij c S ε ij = swelling strain β ij = swelling coefficient c = moisture concentration E ε ij = environmental strain E ε ij = χ ij χ χ ij = environmental operator χ = environmental scalar Piezoelectricity Piezoelectric strain: ε ij p = d ijk E k Coupled equations: E k = electric field d ijk = piezoelectric constant σ mn = E mnij ε ij E mnij d ijk E k D i = e ik E k + d inm σ mn e ik = dielectric constant D i = electrical charge Paul A. Lagace 2002 Handout 2-2

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations 6.2 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive quations Constitutive quations For elastic materials: If the relation is linear: Û σ ij = σ ij (ɛ) = ρ () ɛ ij σ ij =

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

3.2 Hooke s law anisotropic elasticity Robert Hooke ( ) Most general relationship

3.2 Hooke s law anisotropic elasticity Robert Hooke ( ) Most general relationship 3.2 Hooke s law anisotropic elasticity Robert Hooke (1635-1703) Most general relationship σ = C ε + C ε + C ε + C γ + C γ + C γ 11 12 yy 13 zz 14 xy 15 xz 16 yz σ = C ε + C ε + C ε + C γ + C γ + C γ yy

More information

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Continuum Mechanics. Continuum Mechanics and Constitutive Equations Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform

More information

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a two-dimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e

More information

3D and Planar Constitutive Relations

3D and Planar Constitutive Relations 3D and Planar Constitutive Relations A School on Mechanics of Fibre Reinforced Polymer Composites Knowledge Incubation for TEQIP Indian Institute of Technology Kanpur PM Mohite Department of Aerospace

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

Basic Equations of Elasticity

Basic Equations of Elasticity A Basic Equations of Elasticity A.1 STRESS The state of stress at any point in a loaded bo is defined completely in terms of the nine components of stress: σ xx,σ yy,σ zz,σ xy,σ yx,σ yz,σ zy,σ zx,andσ

More information

ELASTICITY (MDM 10203)

ELASTICITY (MDM 10203) LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering

More information

Unit 13 Review of Simple Beam Theory

Unit 13 Review of Simple Beam Theory MIT - 16.0 Fall, 00 Unit 13 Review of Simple Beam Theory Readings: Review Unified Engineering notes on Beam Theory BMP 3.8, 3.9, 3.10 T & G 10-15 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics

More information

2.2 Relation Between Mathematical & Engineering Constants Isotropic Materials Orthotropic Materials

2.2 Relation Between Mathematical & Engineering Constants Isotropic Materials Orthotropic Materials Chapter : lastic Constitutive quations of a Laminate.0 Introduction quations of Motion Symmetric of Stresses Tensorial and ngineering Strains Symmetry of Constitutive quations. Three-Dimensional Constitutive

More information

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Thermodynamics Derivation Hooke s Law: Anisotropic Elasticity

More information

Understand basic stress-strain response of engineering materials.

Understand basic stress-strain response of engineering materials. Module 3 Constitutive quations Learning Objectives Understand basic stress-strain response of engineering materials. Quantify the linear elastic stress-strain response in terms of tensorial quantities

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

Basic concepts to start Mechanics of Materials

Basic concepts to start Mechanics of Materials Basic concepts to start Mechanics of Materials Georges Cailletaud Centre des Matériaux Ecole des Mines de Paris/CNRS Notations Notations (maths) (1/2) A vector v (element of a vectorial space) can be seen

More information

Part II Materials Science and Metallurgy TENSOR PROPERTIES SYNOPSIS

Part II Materials Science and Metallurgy TENSOR PROPERTIES SYNOPSIS Part II Materials Science and Metallurgy TENSOR PROPERTIES Course C4 Dr P A Midgley 1 lectures + 1 examples class Introduction (1 1 / lectures) SYNOPSIS Reasons for using tensors. Tensor quantities and

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

Mechanics PhD Preliminary Spring 2017

Mechanics PhD Preliminary Spring 2017 Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n

More information

A short review of continuum mechanics

A short review of continuum mechanics A short review of continuum mechanics Professor Anette M. Karlsson, Department of Mechanical ngineering, UD September, 006 This is a short and arbitrary review of continuum mechanics. Most of this material

More information

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina Module III - Macro-mechanics of Lamina Lecture 23 Macro-Mechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the

More information

Linearized theory of elasticity

Linearized theory of elasticity Linearized theory of elasticity Arie Verhoeven averhoev@win.tue.nl CASA Seminar, May 24, 2006 Seminar: Continuum mechanics 1 Stress and stress principles Bart Nowak March 8 2 Strain and deformation Mark

More information

Macroscopic theory Rock as 'elastic continuum'

Macroscopic theory Rock as 'elastic continuum' Elasticity and Seismic Waves Macroscopic theory Rock as 'elastic continuum' Elastic body is deformed in response to stress Two types of deformation: Change in volume and shape Equations of motion Wave

More information

Continuum mechanism: Stress and strain

Continuum mechanism: Stress and strain Continuum mechanics deals with the relation between forces (stress, σ) and deformation (strain, ε), or deformation rate (strain rate, ε). Solid materials, rigid, usually deform elastically, that is the

More information

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Fig. 1. Circular fiber and interphase between the fiber and the matrix. Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In

More information

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive

More information

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth References: Turcotte and Schubert, Geodynamics, Sections 2.1,-2.4, 2.7, 3.1-3.8, 6.1, 6.2, 6.8, 7.1-7.4. Jaeger and Cook, Fundamentals of

More information

23. Disloca0ons. 23. Disloca0ons. I Main Topics

23. Disloca0ons. 23. Disloca0ons. I Main Topics I Main Topics A Disloca0ons and other defects in solids B Significance of disloca0ons C Planar disloca0ons D Displacement and stress fields for a screw disloca0on (mode III) 11/10/16 GG303 1 hhp://volcanoes.usgs.gov/imgs/jpg/photoglossary/fissure4_large.jpg

More information

The Finite Element Method

The Finite Element Method The Finite Element Method 3D Problems Heat Transfer and Elasticity Read: Chapter 14 CONTENTS Finite element models of 3-D Heat Transfer Finite element model of 3-D Elasticity Typical 3-D Finite Elements

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA Review of Fundamentals displacement-strain relation stress-strain relation balance of momentum (deformation) (constitutive equation) (Newton's Law)

More information

2.3 BASIC EQUATIONS OF CONTINUUM MECHANICS

2.3 BASIC EQUATIONS OF CONTINUUM MECHANICS 211 2.3 BASIC EQUATIONS OF CONTINUUM MECHANICS Continuum mechanics is the study of how materials behave when subjected to external influences. External influences which affect the properties of a substance

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

Smart Materials, Adaptive Structures, and Intelligent Mechanical Systems

Smart Materials, Adaptive Structures, and Intelligent Mechanical Systems Smart Materials, Adaptive Structures, and Intelligent Mechanical Systems Bishakh Bhattacharya & Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 19 Analysis of an Orthotropic Ply References

More information

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Somnath Bhowmick Materials Science and Engineering, IIT Kanpur April 6, 2018 Tensile test and Hooke s Law Upto certain strain (0.75),

More information

Unit IV State of stress in Three Dimensions

Unit IV State of stress in Three Dimensions Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength

More information

The Rotating Inhomogeneous Elastic Cylinders of. Variable-Thickness and Density

The Rotating Inhomogeneous Elastic Cylinders of. Variable-Thickness and Density Applied Mathematics & Information Sciences 23 2008, 237 257 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. The Rotating Inhomogeneous Elastic Cylinders of Variable-Thickness and

More information

Chapter 5 Linear Elasticity

Chapter 5 Linear Elasticity Chapter 5 Linear Elasticity 1 Introduction The simplest mechanical test consists of placing a standardized specimen with its ends in the grips of a tensile testing machine and then applying load under

More information

8 Properties of Lamina

8 Properties of Lamina 8 Properties of Lamina 8- ORTHOTROPIC LAMINA An orthotropic lamina is a sheet with unique and predictable properties and consists of an assemblage of fibers ling in the plane of the sheet and held in place

More information

Useful Formulae ( )

Useful Formulae ( ) Appendix A Useful Formulae (985-989-993-) 34 Jeremić et al. A.. CHAPTER SUMMARY AND HIGHLIGHTS page: 35 of 536 A. Chapter Summary and Highlights A. Stress and Strain This section reviews small deformation

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Overview Milestones in continuum mechanics Concepts of modulus and stiffness. Stress-strain relations Elasticity Surface and body

More information

Linear models. Chapter Notation

Linear models. Chapter Notation Chapter 3 Linear models The formulation of linear models is introduced on the basis of linear heat conduction, linear elastostatic and viscous flow problems. Linear models are used very frequently in engineering

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites ME 75 Lecture Effective Properties of Particulate and Unidirectional Composites Concepts from Elasticit Theor Statistical Homogeneit, Representative Volume Element, Composite Material Effective Stress-

More information

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2) ME 582 Advanced Materials Science Chapter 2 Macromechanical Analysis of a Lamina (Part 2) Laboratory for Composite Materials Research Department of Mechanical Engineering University of South Alabama, Mobile,

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Stress and Strain

More information

Elasticity in two dimensions 1

Elasticity in two dimensions 1 Elasticity in two dimensions 1 Elasticity in two dimensions Chapters 3 and 4 of Mechanics of the Cell, as well as its Appendix D, contain selected results for the elastic behavior of materials in two and

More information

A free-vibration thermo-elastic analysis of laminated structures by variable ESL/LW plate finite element

A free-vibration thermo-elastic analysis of laminated structures by variable ESL/LW plate finite element A free-vibration thermo-elastic analysis of laminated structures by variable ESL/LW plate finite element Authors: Prof. Erasmo Carrera Dr. Stefano Valvano Bologna, 4-7 July 2017 Research group at Politecnico

More information

2.4 CONTINUUM MECHANICS (SOLIDS)

2.4 CONTINUUM MECHANICS (SOLIDS) 43.4 CONTINUUM MCHANICS (SOLIDS) In this introduction to continuum mechanics we consider the basic equations describing the physical effects created by external forces acting upon solids and fluids. In

More information

Example 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.

Example 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60. 162 3. The linear 3-D elasticity mathematical model The 3-D elasticity model is of great importance, since it is our highest order hierarchical model assuming linear elastic behavior. Therefore, it provides

More information

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS I Main Topics A Why deal with tensors? B Order of scalars, vectors, and tensors C Linear transformation of scalars and vectors (and tensors) II Why

More information

Constitutive Equations

Constitutive Equations Constitutive quations David Roylance Department of Materials Science and ngineering Massachusetts Institute of Technology Cambridge, MA 0239 October 4, 2000 Introduction The modules on kinematics (Module

More information

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i,

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i, 1. Tensor of Rank 2 If Φ ij (x, y satisfies: (a having four components (9 for 3-D. Φ i j (x 1, x 2 = β i iβ j jφ ij (x 1, x 2. Example 1: ( 1 0 0 1 Φ i j = ( 1 0 0 1 To prove whether this is a tensor or

More information

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16. CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Principles of Measurement 6.3. The Pulse-Echo

More information

Distributed: Wednesday, March 17, 2004

Distributed: Wednesday, March 17, 2004 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 019.00 MECHANICS AND MATERIALS II QUIZ I SOLUTIONS Distributed: Wednesday, March 17, 004 This quiz consists

More information

Midterm Examination. Please initial the statement below to show that you have read it

Midterm Examination. Please initial the statement below to show that you have read it EN75: Advanced Mechanics of Solids Midterm Examination School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may use two pages

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical

More information

Strain Transformation equations

Strain Transformation equations Strain Transformation equations R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation

More information

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004 Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information

4. Mathematical models used in engineering structural analysis

4. Mathematical models used in engineering structural analysis 4. Mathematical models used in engineering structural analysis In this chapter we pursue a formidable task to present the most important mathematical models in structural mechanics. In order to best situate

More information

Exercise: concepts from chapter 8

Exercise: concepts from chapter 8 Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic

More information

Constitutive Relations

Constitutive Relations Constitutive Relations Dr. Andri Andriyana Centre de Mise en Forme des Matériaux, CEMEF UMR CNRS 7635 École des Mines de Paris, 06904 Sophia Antipolis, France Spring, 2008 Outline Outline 1 Review of field

More information

Anisotropic Perfectly Matched Layers for Elastic Waves in Cartesian and Curvilinear Coordinates

Anisotropic Perfectly Matched Layers for Elastic Waves in Cartesian and Curvilinear Coordinates Anisotropic Perfectly Matched Layers for Elastic Waves in Cartesian and Curvilinear Coordinates Yibing Zheng and Xiaojun Huang Earth Resources Laboratory Dept. of Earth, Atmospheric, and Planetary Sciences

More information

Elements of Rock Mechanics

Elements of Rock Mechanics Elements of Rock Mechanics Stress and strain Creep Constitutive equation Hooke's law Empirical relations Effects of porosity and fluids Anelasticity and viscoelasticity Reading: Shearer, 3 Stress Consider

More information

Analytical Mechanics: Elastic Deformation

Analytical Mechanics: Elastic Deformation Analytical Mechanics: Elastic Deformation Shinichi Hirai Dept. Robotics, Ritsumeikan Univ. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Elastic Deformation 1 / 60 Agenda Agenda

More information

ME 243. Lecture 10: Combined stresses

ME 243. Lecture 10: Combined stresses ME 243 Mechanics of Solids Lecture 10: Combined stresses Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

Effect of Growth Direction on Twin Formation in GaAs Crystals Grown by the Vertical Gradient Freeze Method

Effect of Growth Direction on Twin Formation in GaAs Crystals Grown by the Vertical Gradient Freeze Method Effect of Growth Direction on Twin Formation in GaAs Crystals Grown by the Vertical Gradient Freeze Method A.N. Gulluoglu 1,C.T.Tsai 2 Abstract: Twins in growing crystals are due to excessive thermal stresses

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Heat Transfer Heat transfer rate by conduction is related to the temperature gradient by Fourier s law. For the one-dimensional heat transfer problem in Fig. 1.8, in which temperature varies in the y-

More information

L8. Basic concepts of stress and equilibrium

L8. Basic concepts of stress and equilibrium L8. Basic concepts of stress and equilibrium Duggafrågor 1) Show that the stress (considered as a second order tensor) can be represented in terms of the eigenbases m i n i n i. Make the geometrical representation

More information

Composites Design and Analysis. Stress Strain Relationship

Composites Design and Analysis. Stress Strain Relationship Composites Design and Analysis Stress Strain Relationship Composite design and analysis Laminate Theory Manufacturing Methods Materials Composite Materials Design / Analysis Engineer Design Guidelines

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

Variational principles in mechanics

Variational principles in mechanics CHAPTER Variational principles in mechanics.1 Linear Elasticity n D Figure.1: A domain and its boundary = D [. Consider a domain Ω R 3 with its boundary = D [ of normal n (see Figure.1). The problem of

More information

1 Stress and Strain. Introduction

1 Stress and Strain. Introduction 1 Stress and Strain Introduction This book is concerned with the mechanical behavior of materials. The term mechanical behavior refers to the response of materials to forces. Under load, a material may

More information

Quasi-Harmonic Theory of Thermal Expansion

Quasi-Harmonic Theory of Thermal Expansion Chapter 5 Quasi-Harmonic Theory of Thermal Expansion 5.1 Introduction The quasi-harmonic approximation is a computationally efficient method for evaluating thermal properties of materials. Planes and Manosa

More information

DYNAMIC RESPONSE OF SYNTACTIC FOAM CORE SANDWICH USING A MULTIPLE SCALES BASED ASYMPTOTIC METHOD

DYNAMIC RESPONSE OF SYNTACTIC FOAM CORE SANDWICH USING A MULTIPLE SCALES BASED ASYMPTOTIC METHOD ECCM6-6 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, -6 June 4 DYNAMIC RESPONSE OF SYNTACTIC FOAM CORE SANDWICH USING A MULTIPLE SCALES BASED ASYMPTOTIC METHOD K. V. Nagendra Gopal a*,

More information

Waves in Linear Optical Media

Waves in Linear Optical Media 1/53 Waves in Linear Optical Media Sergey A. Ponomarenko Dalhousie University c 2009 S. A. Ponomarenko Outline Plane waves in free space. Polarization. Plane waves in linear lossy media. Dispersion relations

More information

Basic Concepts of Strain and Tilt. Evelyn Roeloffs, USGS June 2008

Basic Concepts of Strain and Tilt. Evelyn Roeloffs, USGS June 2008 Basic Concepts of Strain and Tilt Evelyn Roeloffs, USGS June 2008 1 Coordinates Right-handed coordinate system, with positions along the three axes specified by x,y,z. x,y will usually be horizontal, and

More information

Constitutive Relations

Constitutive Relations Constitutive Relations Andri Andriyana, Ph.D. Centre de Mise en Forme des Matériaux, CEMEF UMR CNRS 7635 École des Mines de Paris, 06904 Sophia Antipolis, France Spring, 2008 Outline Outline 1 Review of

More information

NIELINIOWA OPTYKA MOLEKULARNA

NIELINIOWA OPTYKA MOLEKULARNA NIELINIOWA OPTYKA MOLEKULARNA chapter 1 by Stanisław Kielich translated by:tadeusz Bancewicz http://zon8.physd.amu.edu.pl/~tbancewi Poznan,luty 2008 ELEMENTS OF THE VECTOR AND TENSOR ANALYSIS Reference

More information

Plane and axisymmetric models in Mentat & MARC. Tutorial with some Background

Plane and axisymmetric models in Mentat & MARC. Tutorial with some Background Plane and axisymmetric models in Mentat & MARC Tutorial with some Background Eindhoven University of Technology Department of Mechanical Engineering Piet J.G. Schreurs Lambèrt C.A. van Breemen March 6,

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 7-1 Transduction Based on Changes in the Energy Stored in an Electrical Field - Electrostriction The electrostrictive effect is a quadratic dependence of strain or stress on the polarization P

More information

ME FINITE ELEMENT ANALYSIS FORMULAS

ME FINITE ELEMENT ANALYSIS FORMULAS ME 2353 - FINITE ELEMENT ANALYSIS FORMULAS UNIT I FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PROBLEMS 01. Global Equation for Force Vector, {F} = [K] {u} {F} = Global Force Vector [K] = Global Stiffness

More information

Chapter 2 - Macromechanical Analysis of a Lamina. Exercise Set. 2.1 The number of independent elastic constants in three dimensions are: 2.

Chapter 2 - Macromechanical Analysis of a Lamina. Exercise Set. 2.1 The number of independent elastic constants in three dimensions are: 2. Chapter - Macromechanical Analysis of a Lamina Exercise Set. The number of independent elastic constants in three dimensions are: Anisotropic Monoclinic 3 Orthotropic 9 Transversely Orthotropic 5 Isotropic.

More information

Dynamics of Glaciers

Dynamics of Glaciers Dynamics of Glaciers McCarthy Summer School 01 Andy Aschwanden Arctic Region Supercomputing Center University of Alaska Fairbanks, USA June 01 Note: This script is largely based on the Physics of Glaciers

More information

DESIGN OF LAMINATES FOR IN-PLANE LOADING

DESIGN OF LAMINATES FOR IN-PLANE LOADING DESIGN OF LAMINATES FOR IN-PLANOADING G. VERCHERY ISMANS 44 avenue F.A. Bartholdi, 72000 Le Mans, France Georges.Verchery@m4x.org SUMMARY This work relates to the design of laminated structures primarily

More information

3.22 Mechanical Properties of Materials Spring 2008

3.22 Mechanical Properties of Materials Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 3.22 Mechanical Properties of Materials Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Quiz #1 Example

More information

12. Stresses and Strains

12. Stresses and Strains 12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)

More information

Composite Structures. Indian Institute of Technology Kanpur

Composite Structures. Indian Institute of Technology Kanpur Mechanics of Laminated Composite Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 23 Analysis of an Orthotropic Ply Lecture Overview Introduction Engineering constants for an 2

More information

Stress/Strain. Outline. Lecture 1. Stress. Strain. Plane Stress and Plane Strain. Materials. ME EN 372 Andrew Ning

Stress/Strain. Outline. Lecture 1. Stress. Strain. Plane Stress and Plane Strain. Materials. ME EN 372 Andrew Ning Stress/Strain Lecture 1 ME EN 372 Andrew Ning aning@byu.edu Outline Stress Strain Plane Stress and Plane Strain Materials otes and News [I had leftover time and so was also able to go through Section 3.1

More information

Vibrational Properties of Fibre Reinforced Hoses. James Southern MSc in Mathematical Modelling and Scientific Computing

Vibrational Properties of Fibre Reinforced Hoses. James Southern MSc in Mathematical Modelling and Scientific Computing Vibrational Properties of Fibre Reinforced Hoses James Southern MSc in Mathematical Modelling and Scientific Computing September 2002 Acknowledgements I would like to thank my supervisor Dr David Allwright

More information

Chapter 2 General Anisotropic Elasticity

Chapter 2 General Anisotropic Elasticity Chapter 2 General Anisotropic Elasticity Abstract This Chapter is an introduction to general anisotropic elasticity, i.e. to the elasticity of 3D anisotropic bodies. The main classical topics of the matter

More information

Numerical analyses of cement-based piezoelectric smart composites

Numerical analyses of cement-based piezoelectric smart composites Numerical analyses of cement-based piezoelectric smart composites *Jan Sladek 1, Pavol Novak 2, Peter L. Bishay 3, and Vladimir Sladek 1 1 Institute of Construction and Architecture, Slovak Academy of

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced

More information

A Finite Element Model for Numerical Analysis of Sintering

A Finite Element Model for Numerical Analysis of Sintering A Finite Element Model for Numerical Analysis of Sintering DANIELA CÂRSTEA High-School Group of Railways, Craiova ION CÂRSTEA Department of Computer Engineering and Communication University of Craiova

More information

DROP-WEIGHT SYSTEM FOR DYNAMIC PRESSURE CALIBRATION

DROP-WEIGHT SYSTEM FOR DYNAMIC PRESSURE CALIBRATION DROP-WIGHT SYSTM FOR DYNAMIC PRSSUR CALIBRATION Antti Lakka and Sari Saxholm MIKS, Centre for Metrology and Accreditation P.O. Box 9 (Tekniikantie 1) FI-2151 spoo Finland telephone: +358-29-554456, e-mail:

More information

HIGHER-ORDER THEORIES

HIGHER-ORDER THEORIES HIGHER-ORDER THEORIES THIRD-ORDER SHEAR DEFORMATION PLATE THEORY LAYERWISE LAMINATE THEORY J.N. Reddy 1 Third-Order Shear Deformation Plate Theory Assumed Displacement Field µ u(x y z t) u 0 (x y t) +

More information

Homework 7-8 Solutions. Problems

Homework 7-8 Solutions. Problems Homework 7-8 Solutions Problems 26 A rhombus is a parallelogram with opposite sides of equal length Let us form a rhombus using vectors v 1 and v 2 as two adjacent sides, with v 1 = v 2 The diagonals of

More information

Fundamentals of Linear Elasticity

Fundamentals of Linear Elasticity Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy

More information

Bending of Simply Supported Isotropic and Composite Laminate Plates

Bending of Simply Supported Isotropic and Composite Laminate Plates Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto Gutierrez-Miravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,

More information