Compatible Systems and Charpit s Method

Size: px
Start display at page:

Download "Compatible Systems and Charpit s Method"

Transcription

1 MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 28 Lecture 5 Compatible Systems Charpit s Method In this lecture, we shall study compatible systems of first-order PDEs the Charpit s method for solving nonlinear PDEs. Let s begin with the following definition. DEFINITION 1. (Compatible systems of first-order PDEs) A system of two firstorder PDEs f(x, y, z, p, q) 0 (1) g(x, y, z, p, q) 0 (2) are said to be compatible if they have a common solution. THEOREM 2. The equations f(x, y, z, p, q) 0 g(x, y, z, p, q) 0 are compatible on a domain D if (i) J (f,g) (p,q) (ii) g p 0 on D. p q can be explicitly solved from (1) (2) as p ϕ(x, y, z) q ψ(x, y, z). Further, the equation is integrable. ϕ(x, y, z) + ψ(x, y, z)dy THEOREM 3. A necessary sufficient condition for the integrability of the equation ϕ(x, y, z) + ψ(x, y, z)dy is g) + + p (f, + q 0. (3) (x, p) (y, q) (z, p) (z, q) In other words, the equations (1) (2) are compatible iff (3) holds. EXAMPLE 4. Show that the equations xp yq 0, z(xp + yq) 2xy are compatible solve them. Solution. Take f xp yq 0, g z(xp + yq) 2xy 0. Note that f x p, f y q, f z 0, x, y. g x zp 2y, g y zq 2x, g z xp + yq, g p zx, zy.

2 MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 29 Compute J (p, q) g p x zx y zy zxy + zxy 2zxy 0 for x 0, y 0, z 0. Further, f x (x, p) g x g p f z (z, p) g z g p f y (y, q) g y f z (z, q) g z p x zxp x(zp 2y) 2xy zp 2y zx 0 x xp + yq zx 0 x(xp + yq) x2 p xyq q y qzy + y(zq 2x) 2xy zq 2x zy 0 y xp + yq zy y(xp + yq) y2 q + xyp. It is an easy exercise to verify that g) + + p (f, + q (x, p) (y, q) (z, p) (z, q) 2xy x 2 p 2 xypq 2xy + y 2 q 2 + xypq y 2 q 2 x 2 p 2 0. So the equations are compatible. Next step to determine p q from the two equations xp yq 0, z(xp+yq) 2xy. Using these two equations, we have zxp + zyq 2xy 0 xp + yq 2xy z 2xp 2xy p y z z xp yq 0 q xp y xy yz x z q x z Substituting p q in p + qdy, we get ψ(x, y, z). z y + xdy d(xy), ϕ(x, y, z).

3 MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 30 hence integrating, we obtain z 2 2xy + k, where k is a constant. NOTE: For the compatibility of f(x, y, z, p, q) 0 g(x, y, z, p, q) 0 it is not necessary that every solution of f(x, y, z, p, q) 0 be a solution of g(x, y, z, p, q) 0 or vice-versa as is generally believed. For instance, the equations f xp yq x 0 (4) g x 2 p + q xz 0 (5) are compatible. They have common solutions z x + c(1 + xy), where c is an arbitrary constant. Note that z x(y + 1) is a solution of (4) but not of (5). Charpit s Method: It is a general method for finding the complete integral of a nonlinear PDE of first-order of the form f(x, y, z, p, q) 0. (6) Basic Idea: The basic idea of this method is to introduce another partial differential equation of the first order g(x, y, z, p, q, a) 0 (7) which contains an arbitrary constant a is such that (i) Equations (6) (7) can be solved for p q to obtain p p(x, y, z, a), q q(x, y, z, a). (ii) The equation p(x, y, z, a) + q(x, y, z, a)dy (8) is integrable. When such a function g is found, the solution F (x, y, z, a, b) 0 of (8) containing two arbitrary constants a, b will be the solution of (6). Note: Notice that another PDE g is introduced so that the equations f g are compatible then common solutions of f g are determined in the Charpit s method. The equations (6) (7) are compatible if g) + + p (f, + q (x, p) (y, q) (z, p) (z, q) 0.

4 MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 31 Exping it, we are led to the linear PDE g x + f g q y + (p + q ) g z (f x + pf z ) g p (f y + qf z ) g q 0. (9) Now solve (9) to determine g by finding the integrals of the following auxiliary equations: dy p + q dp (f x + pf z ) (f y + qf z ) (10) These equations are known as Charpit s equations which are equivalent to the characteristics equations (10) of the previous Lecture 4. Once an integral g(x, y, z, p, q, a) of this kind has been found, the problem reduces to solving for p q, then integrating equation (8). REMARK For finding integrals, all of Charpit s equations (10) need not to be used. 2. p or q must occur in the solution obtained from (10). EXAMPLE 6. Find a complete integral of p 2 x + q 2 y z. (11) Solution. To find a complete integral, we proceed as follows. Step 1: (Computing f x, f y, f z,, ). Set f p 2 x + q 2 y z 0. Then f x p 2, f y q 2, f z 1, 2px, 2qy. p + q 2p 2 x + 2q 2 y, (f x + pf z ) p 2 + p, (f y + qf z ) q 2 + q. Step 2: (Writing Charpit s equations finding a solution g(x, y, z, p, q, a)). The Charpit s equations (or auxiliary) equations are: dy 2px dy 2qy dp p + q (f x + pf z ) 2(p 2 x + q 2 y) dp p 2 + p (f y + qf z ) q 2 + q From which it follows that p 2 + 2pxdp 2p 3 x + 2p 2 x 2p 3 x p2 + 2pxdp p 2 x q2 dy + 2qy q 2 y q 2 dy + 2qy 2q 3 y + 2q 2 y 2q 3 y

5 MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 32 On integrating, we obtain log(p 2 x) log(q 2 y) + log a p 2 x aq 2 y, (12) where a is an arbitrary constant. Step 3: (Solving for p q). Using (11) (12), we find that p 2 x + q 2 y z, p 2 x aq 2 y (aq 2 y) + q 2 y z q 2 y(1 + a) z q 2 z (1 + a)y q z 1/2. (1 + a)y p 2 aq 2 y x a z (1 + a)y az 1/2 p. (1 + a)x y x az (1 + a)x Step 4: (Writing p(x, y, z, a) + q(x, y, z, a)dy finding its solution). Writing Integrate to have the complete integral of the equation (11). az 1/2 z 1/2 + dy (1 + a)x (1 + a)y ( ) 1 + a 1/2 ( a ) ( ) 1/2 1 1/2 + dy. z x y [(1 + a)z] 1/2 (ax) 1/2 + (y) 1/2 + b Practice Problems 1. Show that the equations xp yq x x 2 p + q xz are compatible solve them. 2. Show that the equations f(x, y, p, q) 0 g(x, y, p, q) 0 are compatible if 3. Find complete integrals of the equations: (i) p (z + qy) 2 ; (ii) (p 2 + q 2 )y qz + (x, p) (y, p) 0.

Compatible Systems and Charpit s Method Charpit s Method Some Special Types of First-Order PDEs. MA 201: Partial Differential Equations Lecture - 5

Compatible Systems and Charpit s Method Charpit s Method Some Special Types of First-Order PDEs. MA 201: Partial Differential Equations Lecture - 5 Compatible Systems and MA 201: Partial Differential Equations Lecture - 5 Compatible Systems and Definition (Compatible systems of first-order PDEs) A system of two first-order PDEs and f(x,y,u,p,q) 0

More information

Some Special Types of First-Order PDEs Solving Cauchy s problem for nonlinear PDEs. MA 201: Partial Differential Equations Lecture - 6

Some Special Types of First-Order PDEs Solving Cauchy s problem for nonlinear PDEs. MA 201: Partial Differential Equations Lecture - 6 MA 201: Partial Differential Equations Lecture - 6 Example Find a general solution of p 2 x +q 2 y = u. (1) Solution. To find a general solution, we proceed as follows: Step 1: (Computing f x, f y, f u,

More information

Department of mathematics MA201 Mathematics III

Department of mathematics MA201 Mathematics III Department of mathematics MA201 Mathematics III Academic Year 2015-2016 Model Solutions: Quiz-II (Set - B) 1. Obtain the bilinear transformation which maps the points z 0, 1, onto the points w i, 1, i

More information

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Dr. Asmaa Al Themairi Assistant Professor a a Department of Mathematical sciences, University of Princess Nourah bint Abdulrahman,

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Lecture Notes Dr. Q. M. Zaigham Zia Assistant Professor Department of Mathematics COMSATS Institute of Information Technology Islamabad, Pakistan ii Contents 1 Lecture 01

More information

TAM3B DIFFERENTIAL EQUATIONS Unit : I to V

TAM3B DIFFERENTIAL EQUATIONS Unit : I to V TAM3B DIFFERENTIAL EQUATIONS Unit : I to V Unit I -Syllabus Homogeneous Functions and examples Homogeneous Differential Equations Exact Equations First Order Linear Differential Equations Reduction of

More information

Module 2: First-Order Partial Differential Equations

Module 2: First-Order Partial Differential Equations Module 2: First-Order Partial Differential Equations The mathematical formulations of many problems in science and engineering reduce to study of first-order PDEs. For instance, the study of first-order

More information

MA 201: Partial Differential Equations Lecture - 2

MA 201: Partial Differential Equations Lecture - 2 MA 201: Partial Differential Equations Lecture - 2 Linear First-Order PDEs For a PDE f(x,y,z,p,q) = 0, a solution of the type F(x,y,z,a,b) = 0 (1) which contains two arbitrary constants a and b is said

More information

A. H. Hall, 33, 35 &37, Lendoi

A. H. Hall, 33, 35 &37, Lendoi 7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9

More information

1 First Order Ordinary Differential Equation

1 First Order Ordinary Differential Equation 1 Ordinary Differential Equation and Partial Differential Equations S. D. MANJAREKAR Department of Mathematics, Loknete Vyankatrao Hiray Mahavidyalaya Panchavati, Nashik (M.S.), India. shrimathematics@gmail.com

More information

A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding

A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding - G Y Y 8 9 XXX G - Y - Q 5 8 G Y G Y - - * Y G G G G 9 - G - - : - G - - ) G G- Y G G q G G : Q G Y G 5) Y : z 6 86 ) ; - ) z; G ) 875 ; ) ; G -- ) ; Y; ) G 8 879 99 G 9 65 q 99 7 G : - G G Y ; - G 8

More information

Lecture 5 - Fundamental Theorem for Line Integrals and Green s Theorem

Lecture 5 - Fundamental Theorem for Line Integrals and Green s Theorem Lecture 5 - Fundamental Theorem for Line Integrals and Green s Theorem Math 392, section C September 14, 2016 392, section C Lect 5 September 14, 2016 1 / 22 Last Time: Fundamental Theorem for Line Integrals:

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

Essential Ordinary Differential Equations

Essential Ordinary Differential Equations MODULE 1: MATHEMATICAL PRELIMINARIES 10 Lecture 2 Essential Ordinary Differential Equations In this lecture, we recall some methods of solving first-order IVP in ODE (separable and linear) and homogeneous

More information

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x?

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x? Inverse Functions Question: What is the relationship between f(x) = x 3 and g(x) = 3 x? Question: What is the relationship between f(x) = x 2 and g(x) = x? Definition (One-to-One Function) A function f

More information

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL. Y 5 ; ) : Y 3 7 22 2 F $ 7 2 F Q 3 q q 6 2 3 6 2 5 25 2 2 3 $2 25: 75 5 $6 Y q 7 Y Y # \ x Y : { Y Y Y : ( \ _ Y ( ( Y F [ F F ; x Y : ( : G ( ; ( ~ x F G Y ; \ Q ) ( F \ Q / F F \ Y () ( \ G Y ( ) \F

More information

MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS. Question Bank. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS. Question Bank. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS Question Bank Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY MADURAI 625 020, Tamilnadu, India 1. Define PDE and Order

More information

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes These notes form a brief summary of what has been covered during the lectures. All the definitions must be memorized and understood. Statements

More information

Bidiagonal pairs, Tridiagonal pairs, Lie algebras, and Quantum Groups

Bidiagonal pairs, Tridiagonal pairs, Lie algebras, and Quantum Groups Bidiagonal pairs, Tridiagonal pairs, Lie algebras, and Quantum Groups Darren Funk-Neubauer Department of Mathematics and Physics Colorado State University - Pueblo Pueblo, Colorado, USA darren.funkneubauer@colostate-pueblo.edu

More information

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1 POLYNOMIALS A polynomial in x is an expression of the form p(x) = a 0 + a 1 x + a x +. + a n x n Where a 0, a 1, a. a n are real numbers and n is a non-negative integer and a n 0. A polynomial having only

More information

(Chapter 10) (Practical Geometry) (Class VII) Question 1: Exercise 10.1 Draw a line, say AB, take a point C outside it. Through C, draw a line parallel to AB using ruler and compasses only. Answer 1: To

More information

The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University

The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University These notes are intended as a supplement to section 3.2 of the textbook Elementary

More information

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still

More information

oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our

oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our x V - --- < x x 35 V? 3?/ -V 3 - ) - - [ Z8 - & Z - - - - - x 0-35 - 3 75 3 33 09 33 5 \ - - 300 0 ( -? 9 { - - - -- - < - V 3 < < - - Z 7 - z 3 - [ } & _ 3 < 3 ( 5 7< ( % --- /? - / 4-4 - & - % 4 V 2

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

17.2 Nonhomogeneous Linear Equations. 27 September 2007

17.2 Nonhomogeneous Linear Equations. 27 September 2007 17.2 Nonhomogeneous Linear Equations 27 September 2007 Nonhomogeneous Linear Equations The differential equation to be studied is of the form ay (x) + by (x) + cy(x) = G(x) (1) where a 0, b, c are given

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL G $ G 2 G ««2 ««q ) q «\ { q «««/ 6 «««««q «] «q 6 ««Z q «««Q \ Q «q «X ««G X G ««? G Q / Q Q X ««/«X X «««Q X\ «q «X \ / X G XX «««X «x «X «x X G X 29 2 ««Q G G «) 22 G XXX GG G G G G G X «x G Q «) «G

More information

Fourier series. Part - A

Fourier series. Part - A Fourier series Part - A 1.Define Dirichet s conditions Ans: A function defined in c x c + can be expanded as an infinite trigonometric series of the form a + a n cos nx n 1 + b n sin nx, provided i) f

More information

Camera calibration Triangulation

Camera calibration Triangulation Triangulation Perspective projection in homogenous coordinates ~x img I 0 apple R t 0 T 1 ~x w ~x img R t ~x w Matrix transformations in 2D ~x img K R t ~x w K = 2 3 1 0 t u 40 1 t v 5 0 0 1 Translation

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G

More information

NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS. Material Available with Question papers CONTACT ,

NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS. Material Available with Question papers CONTACT , NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS Material Available with Question papers CONTACT 8486 17507, 70108 65319 TEST BACTH SATURDAY & SUNDAY NATIONAL ACADEMY DHARMAPURI http://www.trbtnpsc.com/013/07/trb-questions-and-stu-materials.html

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional

More information

MA22S3 Summary Sheet: Ordinary Differential Equations

MA22S3 Summary Sheet: Ordinary Differential Equations MA22S3 Summary Sheet: Ordinary Differential Equations December 14, 2017 Kreyszig s textbook is a suitable guide for this part of the module. Contents 1 Terminology 1 2 First order separable 2 2.1 Separable

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

A. MT-03, P Solve: (i) = 0. (ii) A. MT-03, P. 17, Solve : (i) + 4 = 0. (ii) A. MT-03, P. 16, Solve : (i)

A. MT-03, P Solve: (i) = 0. (ii) A. MT-03, P. 17, Solve : (i) + 4 = 0. (ii) A. MT-03, P. 16, Solve : (i) Program : M.A./M.Sc. (Mathematics) M.A./M.Sc. (Previous) Paper Code:MT-03 Differential Equations, Calculus of Variations & Special Functions Section C (Long Answers Questions) 1. Solve 2x cos y 2x sin

More information

2.2 Separable Equations

2.2 Separable Equations 2.2 Separable Equations Definition A first-order differential equation that can be written in the form Is said to be separable. Note: the variables of a separable equation can be written as Examples Solve

More information

Mathematics 2013 YEAR 11 YEARLY EXAMINATIONS BAULKHAM HILLS HIGH SCHOOL

Mathematics 2013 YEAR 11 YEARLY EXAMINATIONS BAULKHAM HILLS HIGH SCHOOL BAULKHAM HILLS HIGH SCHOOL 03 YEAR YEARLY EXAMINATIONS Mathematics General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Black pen is preferred Board-approved calculators

More information

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank G k y $5 y / >/ k «««# ) /% < # «/» Y»««««?# «< >«>» y k»» «k F 5 8 Y Y F G k F >«y y

More information

ALGEBRAIC GEOMETRY HOMEWORK 3

ALGEBRAIC GEOMETRY HOMEWORK 3 ALGEBRAIC GEOMETRY HOMEWORK 3 (1) Consider the curve Y 2 = X 2 (X + 1). (a) Sketch the curve. (b) Determine the singular point P on C. (c) For all lines through P, determine the intersection multiplicity

More information

CHAPTER VIII. TOTAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND DEGREE IN THREE VARIABLES, WHICH ARE DERIVABLE FROM A SINGLE PRIMI TIVE.

CHAPTER VIII. TOTAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND DEGREE IN THREE VARIABLES, WHICH ARE DERIVABLE FROM A SINGLE PRIMI TIVE. CHAPTER VIII. TOTAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND DEGREE IN THREE VARIABLES, WHICH ARE DERIVABLE FROM A SINGLE PRIMI TIVE. 95. IN this chapter we shall indicate how the integration of an

More information

Math512 PDE Homework 2

Math512 PDE Homework 2 Math51 PDE Homework October 11, 009 Exercise 1.3. Solve u = xu x +yu y +(u x+y y/ = 0 with initial conditon u(x, 0 = 1 x. Proof. In this case, we have F = xp + yq + (p + q / z = 0 and Γ parameterized as

More information

Module Two: Differential Calculus(continued) synopsis of results and problems (student copy)

Module Two: Differential Calculus(continued) synopsis of results and problems (student copy) Module Two: Differential Calculus(continued) synopsis of results and problems (student copy) Srikanth K S 1 Syllabus Taylor s and Maclaurin s theorems for function of one variable(statement only)- problems.

More information

Polynomial Rings. i=0. i=0. n+m. i=0. k=0

Polynomial Rings. i=0. i=0. n+m. i=0. k=0 Polynomial Rings 1. Definitions and Basic Properties For convenience, the ring will always be a commutative ring with identity. Basic Properties The polynomial ring R[x] in the indeterminate x with coefficients

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

5. Introduction to Euclid s Geometry

5. Introduction to Euclid s Geometry 5. Introduction to Euclid s Geometry Multiple Choice Questions CBSE TREND SETTER PAPER _ 0 EXERCISE 5.. If the point P lies in between M and N and C is mid-point of MP, then : (A) MC + PN = MN (B) MP +

More information

POSITIVE POLYNOMIALS LECTURE NOTES (09: 10/05/10) Contents

POSITIVE POLYNOMIALS LECTURE NOTES (09: 10/05/10) Contents POSITIVE POLYNOMIALS LECTURE NOTES (09: 10/05/10) SALMA KUHLMANN Contents 1. Proof of Hilbert s Theorem (continued) 1 2. The Motzkin Form 2 3. Robinson Method (1970) 3 3. The Robinson Form 4 1. PROOF OF

More information

The first order quasi-linear PDEs

The first order quasi-linear PDEs Chapter 2 The first order quasi-linear PDEs The first order quasi-linear PDEs have the following general form: F (x, u, Du) = 0, (2.1) where x = (x 1, x 2,, x 3 ) R n, u = u(x), Du is the gradient of u.

More information

Math Circles: Number Theory III

Math Circles: Number Theory III Math Circles: Number Theory III Centre for Education in Mathematics and Computing University of Waterloo March 9, 2011 A prime-generating polynomial The polynomial f (n) = n 2 n + 41 generates a lot of

More information

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012 (Homework 1: Chapter 1: Exercises 1-7, 9, 11, 19, due Monday June 11th See also the course website for lectures, assignments, etc) Note: today s lecture is primarily about definitions Lots of definitions

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G q G Y Y 29 8 $ 29 G 6 q )

More information

Chapter 2. First-Order Partial Differential Equations. Prof. D. C. Sanyal

Chapter 2. First-Order Partial Differential Equations. Prof. D. C. Sanyal BY Prof. D. C. Sanyal Retired Professor Of Mathematics University Of Kalyani West Bengal, India E-mail : dcs klyuniv@yahoo.com 1 Module-2: Quasi-Linear Equations of First Order 1. Introduction In this

More information

Math 203A - Solution Set 1

Math 203A - Solution Set 1 Math 203A - Solution Set 1 Problem 1. Show that the Zariski topology on A 2 is not the product of the Zariski topologies on A 1 A 1. Answer: Clearly, the diagonal Z = {(x, y) : x y = 0} A 2 is closed in

More information

First Order Partial Differential Equations: a simple approach for beginners

First Order Partial Differential Equations: a simple approach for beginners First Order Partial Differential Equations: a simple approach for beginners Phoolan Prasad Department of Mathematics Indian Institute of Science, Bangalore 560 012 E-mail: prasad@math.iisc.ernet.in URL:

More information

Vectors and Fields. Vectors versus scalars

Vectors and Fields. Vectors versus scalars C H A P T E R 1 Vectors and Fields Electromagnetics deals with the study of electric and magnetic fields. It is at once apparent that we need to familiarize ourselves with the concept of a field, and in

More information

Additional Practice Lessons 2.02 and 2.03

Additional Practice Lessons 2.02 and 2.03 Additional Practice Lessons 2.02 and 2.03 1. There are two numbers n that satisfy the following equations. Find both numbers. a. n(n 1) 306 b. n(n 1) 462 c. (n 1)(n) 182 2. The following function is defined

More information

Propagation of discontinuities in solutions of First Order Partial Differential Equations

Propagation of discontinuities in solutions of First Order Partial Differential Equations Propagation of discontinuities in solutions of First Order Partial Differential Equations Phoolan Prasad Department of Mathematics Indian Institute of Science, Bangalore 560 012 E-mail: prasad@math.iisc.ernet.in

More information

2 Linear Differential Equations General Theory Linear Equations with Constant Coefficients Operator Methods...

2 Linear Differential Equations General Theory Linear Equations with Constant Coefficients Operator Methods... MA322 Ordinary Differential Equations Wong Yan Loi 2 Contents First Order Differential Equations 5 Introduction 5 2 Exact Equations, Integrating Factors 8 3 First Order Linear Equations 4 First Order Implicit

More information

Permutations and Polynomials Sarah Kitchen February 7, 2006

Permutations and Polynomials Sarah Kitchen February 7, 2006 Permutations and Polynomials Sarah Kitchen February 7, 2006 Suppose you are given the equations x + y + z = a and 1 x + 1 y + 1 z = 1 a, and are asked to prove that one of x,y, and z is equal to a. We

More information

Partial Differential Equations

Partial Differential Equations ++++++++++ Partial Differential Equations Previous year Questions from 017 to 199 Ramanasri Institute 017 W E B S I T E : M A T H E M A T I C S O P T I O N A L. C O M C O N T A C T : 8 7 5 0 7 0 6 6 /

More information

PUTNAM PROBLEMS DIFFERENTIAL EQUATIONS. First Order Equations. p(x)dx)) = q(x) exp(

PUTNAM PROBLEMS DIFFERENTIAL EQUATIONS. First Order Equations. p(x)dx)) = q(x) exp( PUTNAM PROBLEMS DIFFERENTIAL EQUATIONS First Order Equations 1. Linear y + p(x)y = q(x) Muliply through by the integrating factor exp( p(x)) to obtain (y exp( p(x))) = q(x) exp( p(x)). 2. Separation of

More information

Identity. "At least one dog has fleas" is translated by an existential quantifier"

Identity. At least one dog has fleas is translated by an existential quantifier Identity Quantifiers are so-called because they say how many. So far, we've only used the quantifiers to give the crudest possible answers to the question "How many dogs have fleas?": "All," "None," "Some,"

More information

SNAP Centre Workshop. Exponents and Radicals

SNAP Centre Workshop. Exponents and Radicals SNAP Centre Workshop Exponents and Radicals 25 Introduction Exponents are used as a way of representing repeated multiplication. For instance, when we see 4 3, we know that it is equivalent to (4)(4)(4),

More information

Optimal Control, Guidance and Estimation. Lecture 16. Overview of Flight Dynamics II. Prof. Radhakant Padhi. Prof. Radhakant Padhi

Optimal Control, Guidance and Estimation. Lecture 16. Overview of Flight Dynamics II. Prof. Radhakant Padhi. Prof. Radhakant Padhi Optimal Control, Guidance and Estimation Lecture 16 Overview of Flight Dynamics II Prof. Radhakant Padhi Dept. of erospace Engineering Indian Institute of Science - Bangalore Point Mass Dynamics Prof.

More information

Lecture Notes, Lectures 22, 23, 24. Voter preferences: Majority votes A > B, B > C. Transitivity requires A > C but majority votes C > A.

Lecture Notes, Lectures 22, 23, 24. Voter preferences: Majority votes A > B, B > C. Transitivity requires A > C but majority votes C > A. Lecture Notes, Lectures 22, 23, 24 Social Choice Theory, Arrow Possibility Theorem Paradox of Voting (Condorcet) Cyclic majority: Voter preferences: 1 2 3 A B C B C A C A B Majority votes A > B, B > C.

More information

Conic section. Ans: c. Ans: a. Ans: c. Episode:43 Faculty: Prof. A. NAGARAJ. 1. A circle

Conic section. Ans: c. Ans: a. Ans: c. Episode:43 Faculty: Prof. A. NAGARAJ. 1. A circle Episode:43 Faculty: Prof. A. NAGARAJ Conic section 1. A circle gx fy c 0 is said to be imaginary circle if a) g + f = c b) g + f > c c) g + f < c d) g = f. If (1,-3) is the centre of the circle x y ax

More information

Some Basic Logic. Henry Liu, 25 October 2010

Some Basic Logic. Henry Liu, 25 October 2010 Some Basic Logic Henry Liu, 25 October 2010 In the solution to almost every olympiad style mathematical problem, a very important part is existence of accurate proofs. Therefore, the student should be

More information

(3) Let Y be a totally bounded subset of a metric space X. Then the closure Y of Y

(3) Let Y be a totally bounded subset of a metric space X. Then the closure Y of Y () Consider A = { q Q : q 2 2} as a subset of the metric space (Q, d), where d(x, y) = x y. Then A is A) closed but not open in Q B) open but not closed in Q C) neither open nor closed in Q D) both open

More information

Similarity Reductions of (2+1)-Dimensional Multi-component Broer Kaup System

Similarity Reductions of (2+1)-Dimensional Multi-component Broer Kaup System Commun. Theor. Phys. Beijing China 50 008 pp. 803 808 c Chinese Physical Society Vol. 50 No. 4 October 15 008 Similarity Reductions of +1-Dimensional Multi-component Broer Kaup System DONG Zhong-Zhou 1

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

County Council Named for Kent

County Council Named for Kent \ Y Y 8 9 69 6» > 69 ««] 6 : 8 «V z 9 8 x 9 8 8 8?? 9 V q» :: q;; 8 x () «; 8 x ( z x 9 7 ; x >«\ 8 8 ; 7 z x [ q z «z : > ; ; ; ( 76 x ; x z «7 8 z ; 89 9 z > q _ x 9 : ; 6? ; ( 9 [ ) 89 _ ;»» «; x V

More information

1 Functions of many variables.

1 Functions of many variables. MA213 Sathaye Notes on Multivariate Functions. 1 Functions of many variables. 1.1 Plotting. We consider functions like z = f(x, y). Unlike functions of one variable, the graph of such a function has to

More information

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <.

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <. First order wave equations Transport equation is conservation law with J = cu, u t + cu x = 0, < x

More information

Solutions to Homework # 1 Math 381, Rice University, Fall (x y) y 2 = 0. Part (b). We make a convenient change of variables:

Solutions to Homework # 1 Math 381, Rice University, Fall (x y) y 2 = 0. Part (b). We make a convenient change of variables: Hildebrand, Ch. 8, # : Part (a). We compute Subtracting, we eliminate f... Solutions to Homework # Math 38, Rice University, Fall 2003 x = f(x + y) + (x y)f (x + y) y = f(x + y) + (x y)f (x + y). x = 2f(x

More information

Lecture 22: A Population Growth Equation with Diffusion

Lecture 22: A Population Growth Equation with Diffusion M3 - ADVANCED ENGINEERING MATHEMATICS Lecture : A Population Gth Equation with Diffusion The logistic population equation studied in ordinary differential equations classes has the form: ( p (t) = rp(t)

More information

Advanced Eng. Mathematics

Advanced Eng. Mathematics Koya University Faculty of Engineering Petroleum Engineering Department Advanced Eng. Mathematics Lecture 6 Prepared by: Haval Hawez E-mail: haval.hawez@koyauniversity.org 1 Second Order Linear Ordinary

More information

Max-Min Problems in R n Matrix

Max-Min Problems in R n Matrix Max-Min Problems in R n Matrix 1 and the essian Prerequisite: Section 6., Orthogonal Diagonalization n this section, we study the problem of nding local maxima and minima for realvalued functions on R

More information

Math 2a Prac Lectures on Differential Equations

Math 2a Prac Lectures on Differential Equations Math 2a Prac Lectures on Differential Equations Prof. Dinakar Ramakrishnan 272 Sloan, 253-37 Caltech Office Hours: Fridays 4 5 PM Based on notes taken in class by Stephanie Laga, with a few added comments

More information

1 Introduction to Predicate Resolution

1 Introduction to Predicate Resolution 1 Introduction to Predicate Resolution The resolution proof system for Predicate Logic operates, as in propositional case on sets of clauses and uses a resolution rule as the only rule of inference. The

More information

Statistical Learning Theory

Statistical Learning Theory Statistical Learning Theory Part I : Mathematical Learning Theory (1-8) By Sumio Watanabe, Evaluation : Report Part II : Information Statistical Mechanics (9-15) By Yoshiyuki Kabashima, Evaluation : Report

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations (MA102 Mathematics II) Shyamashree Upadhyay IIT Guwahati Shyamashree Upadhyay ( IIT Guwahati ) Ordinary Differential Equations 1 / 25 First order ODE s We will now discuss

More information

A Brief Review of Elementary Ordinary Differential Equations

A Brief Review of Elementary Ordinary Differential Equations A A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on

More information

Math 121 Homework 5: Notes on Selected Problems

Math 121 Homework 5: Notes on Selected Problems Math 121 Homework 5: Notes on Selected Problems 12.1.2. Let M be a module over the integral domain R. (a) Assume that M has rank n and that x 1,..., x n is any maximal set of linearly independent elements

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

First Order Differential Equations

First Order Differential Equations Chapter 2 First Order Differential Equations 2.1 9 10 CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS 2.2 Separable Equations A first order differential equation = f(x, y) is called separable if f(x, y)

More information

Chapter 8. Exploring Polynomial Functions. Jennifer Huss

Chapter 8. Exploring Polynomial Functions. Jennifer Huss Chapter 8 Exploring Polynomial Functions Jennifer Huss 8-1 Polynomial Functions The degree of a polynomial is determined by the greatest exponent when there is only one variable (x) in the polynomial Polynomial

More information

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 5. ORDINARY DIFFERENTIAL EQUATIONS (First order equations (A)) by A.J.Hobson 5.. Introduction and definitions 5..2 Exact equations 5..3 The method of separation of the variables

More information

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods.

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods. Lesson 3: Linear differential equations of the first der Solve each of the following differential equations by two methods. Exercise 3.1. Solution. Method 1. It is clear that y + y = 3 e dx = e x is an

More information

Immerse Metric Space Homework

Immerse Metric Space Homework Immerse Metric Space Homework (Exercises -2). In R n, define d(x, y) = x y +... + x n y n. Show that d is a metric that induces the usual topology. Sketch the basis elements when n = 2. Solution: Steps

More information

In this section, mathematical description of the motion of fluid elements moving in a flow field is

In this section, mathematical description of the motion of fluid elements moving in a flow field is Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small

More information

u(x, y) = x 1 3 y v(p, q, I) = u(x(p, q, I), y(p, q, I))

u(x, y) = x 1 3 y v(p, q, I) = u(x(p, q, I), y(p, q, I)) December 4, 207 Let p, q, I > 0. We try to maximize the utility function u(x, y) = x y under the constraint I px qy = 0 () Find the statinary point of f(x, y subject to g(x, y = 0 to find (2) We define

More information

BACHELOR'S DEGREE PROGRAMME (BDP) Term-End Examination December, 2015 ELECTIVE COURSE : MATHEMATICS MTE-08 : DIFFERENTIAL EQUATIONS

BACHELOR'S DEGREE PROGRAMME (BDP) Term-End Examination December, 2015 ELECTIVE COURSE : MATHEMATICS MTE-08 : DIFFERENTIAL EQUATIONS No. of Printed Pages : 1 MTE-08 BACHELOR'S DEGREE PROGRAMME (BDP) DI -7E37 Term-End Examination December, 015 ELECTIVE COURSE : MATHEMATICS MTE-08 : DIFFERENTIAL EQUATIONS Time : hours Maximum Marks: 50

More information

NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: MTH421 COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS

NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: MTH421 COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS MTH 421 NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: MTH421 COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS MTH 421 ORDINARY DIFFERENTIAL EQUATIONS COURSE WRITER Prof.

More information

Mathematics (www.tiwariacademy.com: Focus on free education)

Mathematics (www.tiwariacademy.com: Focus on free education) (: Focus on free education) Exercise 3.7 Question 1: The ages of two friends Ani and Biju differ by 3 years. Ani s father Dharam is twice as old as Ani and Biju is twice as old as his sister Cathy. The

More information

REFERENCE: CROFT & DAVISON CHAPTER 20 BLOCKS 1-3

REFERENCE: CROFT & DAVISON CHAPTER 20 BLOCKS 1-3 IV ORDINARY DIFFERENTIAL EQUATIONS REFERENCE: CROFT & DAVISON CHAPTER 0 BLOCKS 1-3 INTRODUCTION AND TERMINOLOGY INTRODUCTION A differential equation (d.e.) e) is an equation involving an unknown function

More information

CHAPTER 1. Theory of Second Order. Linear ODE s

CHAPTER 1. Theory of Second Order. Linear ODE s A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 2 A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY

More information

When Are Two Random Variables Independent?

When Are Two Random Variables Independent? When Are Two Random Variables Independent? 1 Introduction. Almost all of the mathematics of inferential statistics and sampling theory is based on the behavior of mutually independent random variables,

More information

MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions. December 6, 2017, Wednesday 10:40-12:30, SA-Z02

MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions. December 6, 2017, Wednesday 10:40-12:30, SA-Z02 1 MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions December 6 2017 Wednesday 10:40-12:30 SA-Z02 QUESTIONS: Solve any four of the following five problems [25]1. Solve the initial and

More information

15. Polynomial rings Definition-Lemma Let R be a ring and let x be an indeterminate.

15. Polynomial rings Definition-Lemma Let R be a ring and let x be an indeterminate. 15. Polynomial rings Definition-Lemma 15.1. Let R be a ring and let x be an indeterminate. The polynomial ring R[x] is defined to be the set of all formal sums a n x n + a n 1 x n +... a 1 x + a 0 = a

More information