Compatible Systems and Charpit s Method Charpit s Method Some Special Types of First-Order PDEs. MA 201: Partial Differential Equations Lecture - 5

Size: px
Start display at page:

Download "Compatible Systems and Charpit s Method Charpit s Method Some Special Types of First-Order PDEs. MA 201: Partial Differential Equations Lecture - 5"

Transcription

1 Compatible Systems and MA 201: Partial Differential Equations Lecture - 5

2 Compatible Systems and Definition (Compatible systems of first-order PDEs) A system of two first-order PDEs and f(x,y,u,p,q) 0 (1) g(x,y,u,p,q) 0 (2) are said to be compatible if they have a common solution. Theorem Equations (1) and (2) are compatible on a domain D if (i) J (f,g) (p,q) f p f q g p g q 0 on D. (ii) p and q can be explicitly solved from (1) and (2) as p φ(x,y,u) and q ψ(x,y,u). Further, the equation is integrable. du φ(x,y,u)dx +ψ(x,y,u)dy

3 Compatible Systems and Theorem A necessary and sufficient condition for the integrability of the equation du φ(x,y,u)dx +ψ(x,y,u)dy is [f,g] (f,g) (x,p) + (f,g) (y,q) +p (f,g) (u,p) +q (f,g) 0. (3) (u,q) In other words, equations (1) and (2) are compatible iff (3) holds. Example Show that the equations xp yq 0, xup +yuq 2xy are compatible and solve them. Solution. Take f xp yq 0, g u(xp +yq) 2xy 0. Then f x p, f y q, f u 0, f p x, f q y, g x up 2y, g y uq 2x, g u xp +yq, g p ux, g q uy.

4 Compatible Systems and Compute J (f,g) (p, q) f p g p f q g q x y ux uy uxy +uxy 2uxy 0 for x 0, y 0, u 0. Further, (f,g) (x, p) f x f p g x g p p x up 2y ux uxp x(up 2y) 2xy (f,g) (u, p) f u f p g u g p 0 x xp +yq ux 0 x(xp +yq) x2 p xyq (f,g) (y,q) f y f q g y g q q y uq 2x uy quy +y(uq 2x) 2xy (f,g) (u, q) f u f q g u g q 0 y xp +yq zy y(xp +yq) y2 q +xyp.

5 Compatible Systems and It is an easy exercise to verify that [f,g] (f,g) (x,p) + (f,g) (y,q) +p (f,g) (u,p) +q (f,g) (u, q) 2xy x 2 p 2 xypq 2xy +y 2 q 2 +xypq y 2 q 2 x 2 p 2 0. So the equations are compatible. Next step is to determine p and q from the two equations xp yq 0, u(xp+yq) 2xy. Using these two equations, we have uxp +uyq 2xy 0 xp +yq 2xy u 2xp 2xy u p y u φ(x,y,u). and xp yq 0 q xp y xy yu q x u ψ(x,y,u).

6 Compatible Systems and Substituting p and q in du pdx +qdy, we get and hence integrating, we obtain udu ydx +xdy d(xy), u 2 2xy +k, where k is a constant. NOTE: For the compatibility of f(x,y,u,p,q) 0 and g(x,y,u,p,q) 0, it is not necessary that every solution of f(x,y,u,p,q) 0 be a solution of g(x,y,u,p,q) 0 or vice-versa. For instance, the equations f xp yq x 0 (4) g x 2 p +q xu 0 (5) are compatible. They have common solutions u x +c(1+xy), where c is an arbitrary constant. Note that u x(y +1) is a solution of (4) but not of (5).

7 Compatible Systems and Charpit s method It is a general method for finding the general solution of a nonlinear PDE of first-order of the form f(x,y,u,p,q) 0. (6) Basic Idea: To introduce another partial differential equation of the first order g(x,y,u,p,q,a) 0 (7) which contains an arbitrary constant a and is such that (i) equations (6) and (7) can be solved for p and q to obtain p p(x,y,u,a), q q(x,y,u,a). (ii) the equation du p(x,y,u,a)dx +q(x,y,u,a)dy (8) is integrable.

8 Compatible Systems and When such a function g is found, the solution F(x,y,u,a,b) 0 of (8) containing two arbitrary constants a and b will be the solution of (6). The compatibility of equations (6) and (7) yields [f,g] (f,g) (x,p) + (f,g) (y,q) +p (f,g) (u,p) +q (f,g) (u,q) 0. Expanding it, we are led to the following linear PDE in g(x,y,u,p,q): g f p x +f g q y +(pf p +qf q ) g u (f x +pf u ) g p (f y +qf u ) g q 0. (9)

9 Compatible Systems and Now solve (9) to determine g by finding the integrals of the following auxiliary equations: dx dy f p f q du pf p +qf q dp (f x +pf u ) dq (f y +qf u ) (10) These equations are known as Charpit s equations. Once an integral g(x,y,u,p,q,a) of this kind has been found, the problem reduces to solving for p and q, and then integrating equation (8). Remarks. For finding integrals, all of Charpit s equations (10) need not be used. p or q must occur in the solution obtained from (10).

10 Compatible Systems and Example Find a general solution of p 2 x +q 2 y u. (11) Solution. To find a general solution, we proceed as follows: Step 1: (Computing f x, f y, f u, f p, f q ). Set f p 2 x +q 2 y u 0. Then and hence, f x p 2, f y q 2, f u 1, f p 2px, f q 2qy, pf p +qf q 2p 2 x +2q 2 y, (f x +pf u ) p 2 +p, (f y +qf u ) q 2 +q.

11 Compatible Systems and Step 2: (Writing Charpit s equations and finding a solution g(x,y,u,p,q,a)). The Charpit s equations (or auxiliary) equations are: dx dy f p f q dx 2px dy 2qy From which it follows that du pf p +qf q dp (f x +pf u ) du 2(p 2 x +q 2 y) dp p 2 +p p 2 dx +2pxdp 2p 3 x +2p 2 x 2p 3 x p 2 dx +2pxdp p 2 x On integrating, we obtain q2 dy +2qydq q 2 y dq (f y +qf u ) dq q 2 +q q 2 dy +2qydq 2q 3 y +2q 2 y 2q 3 y log(p 2 x) log(q 2 y)+loga p 2 x aq 2 y, (12) where a is an arbitrary constant.

12 Compatible Systems and Step 3: (Solving for p and q). Using (11) and (12), we find that p 2 x +q 2 y u, p 2 x aq 2 y (aq 2 y)+q 2 y u q 2 y(1+a) u [ ] 1/2 q 2 u (1+a)y q u. (1+a)y and p 2 aq 2y x a u (1+a)y [ ] 1/2 au p. (1+a)x y x au (1+a)x

13 Compatible Systems and Step 4: (Writing du p(x,y,u,a)dx +q(x,y,u,a)dy and finding its solution). Writing Integrate to have [ ] 1/2 ] 1/2 au u du dx +[ dy (1+a)x (1+a)y ( ) 1/2 1+a ( a ) ( ) 1/2dx 1/2 1 du + dy. u x y [(1+a)u] 1/2 (ax) 1/2 +(y) 1/2 +b the general solution of equation (11).

14 Compatible Systems and Equations involving only p and q If the equation is of the form then Charpit s equations take the form dx f p dy f q f(p,q) 0, (13) du pf p +qf q dp 0 dq 0 the last two are actually equivalent to dp dt 0, dq 0 and hence dt an immediate solution is given by p a, where a is an arbitrary constant. Substituting p a in (13), we obtain a relation Then, integrating the expression we obtain q Q(a). du adx +Q(a)dy u ax +Q(a)y +b, (14) where b is a constant. Thus, (14) is a general solution of (13).

15 Compatible Systems and Note: Instead of taking dp dq dt 0, we can take dt 0 q a. In some problems, taking dq 0 the amount of computation involved may be reduced considerably. Example Find a general solution of the equation pq 1. Solution. If p a then pq 1 q 1 a. In this case, Q(a) 1/a. From (14), we obtain a general solution as u ax + y a +b a 2 x +y au b, where a and b are arbitrary constants.

16 Compatible Systems and Equations not involving the independent variables For equation of the type Charpit s equation becomes f(u,p,q) 0, (15) dx dy du dp dq. f p f q pf p +qf q pf u qf u From the last two relations, we have dp dq dp pf u qf u p dq q p aq, (16) where a is an arbitrary constant. Solving (15) and (16) for p and q, we obtain q Q(a,u) p aq(a,u).

17 Compatible Systems and Now It gives general solution as where b is an arbitrary constant. du pdx +qdy du aq(a,u)dx +Q(a,u)dy du Q(a,u)[adx +dy]. du ax +y +b, (17) Q(a,u) Example Find a general solution of the PDE p 2 u 2 +q 2 1. Solution. Putting p aq in the given PDE, we obtain a 2 q 2 u 2 +q 2 1 q 2 (1+a 2 u 2 ) 1 q (1+a 2 u 2 ) 1/2.

18 Compatible Systems and Now, p 2 (1 q 2 )/u 2 p 2 a 2 1+a 2 u 2 p a(1+a 2 u 2 ) 1/2. ( )( ) (1+a 2 u 2 ) u 2 Substituting p and q in du pdx +qdy, we obtain du a(1+a 2 u 2 ) 1/2 dx +(1+a 2 u 2 ) 1/2 dy (1+a 2 u 2 ) 1/2 du adx +dy 1 { } au(1+a 2 u 2 ) 1/2 log[au +(1+a 2 u 2 ) 1/2 ] 2a which is the general solution of the given PDE. ax +y +b,

19 Compatible Systems and Separable equations A first-order PDE is separable if it can be written in the form f(x,p) g(y,q). (18) For this type of equation, Charpit s equations become dx f p dy g q du dp dq. pf p qg q f x g y From the last two relations, we obtain an ODE dp dx dp f x f p dx + f x 0 (19) f p which may be solved to yield p as a function of x and an arbitrary constant a. Writing (19) in the form f p dp +f x dx 0, we see that its solution is f(x,p) a. Similarly, we get g(y,q) a. Determine p and q from the equation f(x,p) a, g(y,q) a and then use the relation du pdx +qdy to determine a complete integral.

20 Compatible Systems and Example Find a general solution of p 2 y(1+x 2 ) qx 2. Solution. First we write the given PDE in the form It follows that p 2 (1+x 2 ) x 2 q y p 2 (1+x 2 ) x 2 a 2 p where a is an arbitrary constant. Similarly, q y a2 q a 2 y. Now, the relation du pdx +qdy yields du (separable equation) ax 1+x 2, ax dx 1+x 2 +a2 ydy u a 1+x 2 + a2 y 2 +b, 2 where a and b are arbitrary constants, a general solutionfor the given PDE.

21 Compatible Systems and Clairaut s equation A first-order PDE is said to be in Clairaut form if it can be written as Charpit s equations take the form u px +qy +f(p,q). (20) dx dy x +f p y +f q du px +qy +pf p +qf q dp 0 dq 0. Now, equivalently considering dp dt 0 p a, where a is an arbitrary constant. dq dt 0 q b, where b is an arbitrary constant. Substituting the values of p and q in (20), we obtain the required general solution u ax +by +f(a,b).

22 Compatible Systems and Example Find a general solution of (p +q)(u xp yq) 1. Solution. The given PDE can be put in the form u xp +yq + 1 p +q, (21) which is of Clairaut s type. Putting p a and q b in (21), a general solution is given by u ax +by + 1 a+b, where a and b are arbitrary constants.

Some Special Types of First-Order PDEs Solving Cauchy s problem for nonlinear PDEs. MA 201: Partial Differential Equations Lecture - 6

Some Special Types of First-Order PDEs Solving Cauchy s problem for nonlinear PDEs. MA 201: Partial Differential Equations Lecture - 6 MA 201: Partial Differential Equations Lecture - 6 Example Find a general solution of p 2 x +q 2 y = u. (1) Solution. To find a general solution, we proceed as follows: Step 1: (Computing f x, f y, f u,

More information

Compatible Systems and Charpit s Method

Compatible Systems and Charpit s Method MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 28 Lecture 5 Compatible Systems Charpit s Method In this lecture, we shall study compatible systems of first-order PDEs the Charpit s method for solving

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Lecture Notes Dr. Q. M. Zaigham Zia Assistant Professor Department of Mathematics COMSATS Institute of Information Technology Islamabad, Pakistan ii Contents 1 Lecture 01

More information

MA 201: Partial Differential Equations Lecture - 2

MA 201: Partial Differential Equations Lecture - 2 MA 201: Partial Differential Equations Lecture - 2 Linear First-Order PDEs For a PDE f(x,y,z,p,q) = 0, a solution of the type F(x,y,z,a,b) = 0 (1) which contains two arbitrary constants a and b is said

More information

TAM3B DIFFERENTIAL EQUATIONS Unit : I to V

TAM3B DIFFERENTIAL EQUATIONS Unit : I to V TAM3B DIFFERENTIAL EQUATIONS Unit : I to V Unit I -Syllabus Homogeneous Functions and examples Homogeneous Differential Equations Exact Equations First Order Linear Differential Equations Reduction of

More information

Department of mathematics MA201 Mathematics III

Department of mathematics MA201 Mathematics III Department of mathematics MA201 Mathematics III Academic Year 2015-2016 Model Solutions: Quiz-II (Set - B) 1. Obtain the bilinear transformation which maps the points z 0, 1, onto the points w i, 1, i

More information

Lecture 5 - Fundamental Theorem for Line Integrals and Green s Theorem

Lecture 5 - Fundamental Theorem for Line Integrals and Green s Theorem Lecture 5 - Fundamental Theorem for Line Integrals and Green s Theorem Math 392, section C September 14, 2016 392, section C Lect 5 September 14, 2016 1 / 22 Last Time: Fundamental Theorem for Line Integrals:

More information

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai APPLIED MATHEMATICS Part 1: Ordinary Differential Equations Contents 1 First Order Differential Equations 3 1.1 Basic Concepts and Ideas................... 4 1.2 Separable Differential Equations................

More information

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Dr. Asmaa Al Themairi Assistant Professor a a Department of Mathematical sciences, University of Princess Nourah bint Abdulrahman,

More information

2. Second-order Linear Ordinary Differential Equations

2. Second-order Linear Ordinary Differential Equations Advanced Engineering Mathematics 2. Second-order Linear ODEs 1 2. Second-order Linear Ordinary Differential Equations 2.1 Homogeneous linear ODEs 2.2 Homogeneous linear ODEs with constant coefficients

More information

NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: MTH421 COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS

NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: MTH421 COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS MTH 421 NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: MTH421 COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS MTH 421 ORDINARY DIFFERENTIAL EQUATIONS COURSE WRITER Prof.

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods.

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods. Lesson 3: Linear differential equations of the first der Solve each of the following differential equations by two methods. Exercise 3.1. Solution. Method 1. It is clear that y + y = 3 e dx = e x is an

More information

Chapter 2. First-Order Partial Differential Equations. Prof. D. C. Sanyal

Chapter 2. First-Order Partial Differential Equations. Prof. D. C. Sanyal BY Prof. D. C. Sanyal Retired Professor Of Mathematics University Of Kalyani West Bengal, India E-mail : dcs klyuniv@yahoo.com 1 Module-2: Quasi-Linear Equations of First Order 1. Introduction In this

More information

2.2 Separable Equations

2.2 Separable Equations 2.2 Separable Equations Definition A first-order differential equation that can be written in the form Is said to be separable. Note: the variables of a separable equation can be written as Examples Solve

More information

Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA

Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA U G G G U 2 93 YX Y q 25 3 < : z? 0 (? 8 0 G 936 x z x z? \ 9 7500 00? 5 q 938 27? 60 & 69? 937 q? G x? 937 69 58 } x? 88 G # x 8 > x G 0 G 0 x 8 x 0 U 93 6 ( 2 x : X 7 8 G G G q x U> x 0 > x < x G U 5

More information

LOWELL. MICHIGAN, THURSDAY, MAY 23, Schools Close. method of distribution. t o t h e b o y s of '98 a n d '18. C o m e out a n d see t h e m get

LOWELL. MICHIGAN, THURSDAY, MAY 23, Schools Close. method of distribution. t o t h e b o y s of '98 a n d '18. C o m e out a n d see t h e m get UY Y 99 U XXX 5 Q == 5 K 8 9 $8 7 Y Y 8 q 6 Y x) 5 7 5 q U «U YU x q Y U ) U Z 9 Y 7 x 7 U x U x 9 5 & U Y U U 7 8 9 x 5 x U x x ; x x [ U K»5 98 8 x q 8 q K x Y Y x K Y 5 ~ 8» Y x ; ; ; ; ; ; 8; x 7;

More information

First Order Partial Differential Equations: a simple approach for beginners

First Order Partial Differential Equations: a simple approach for beginners First Order Partial Differential Equations: a simple approach for beginners Phoolan Prasad Department of Mathematics Indian Institute of Science, Bangalore 560 012 E-mail: prasad@math.iisc.ernet.in URL:

More information

Math 2a Prac Lectures on Differential Equations

Math 2a Prac Lectures on Differential Equations Math 2a Prac Lectures on Differential Equations Prof. Dinakar Ramakrishnan 272 Sloan, 253-37 Caltech Office Hours: Fridays 4 5 PM Based on notes taken in class by Stephanie Laga, with a few added comments

More information

Solving First Order PDEs

Solving First Order PDEs Solving Ryan C. Trinity University Partial Differential Equations Lecture 2 Solving the transport equation Goal: Determine every function u(x, t) that solves u t +v u x = 0, where v is a fixed constant.

More information

Solving First Order PDEs

Solving First Order PDEs Solving Ryan C. Trinity University Partial Differential Equations January 21, 2014 Solving the transport equation Goal: Determine every function u(x, t) that solves u t +v u x = 0, where v is a fixed constant.

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations (MA102 Mathematics II) Shyamashree Upadhyay IIT Guwahati Shyamashree Upadhyay ( IIT Guwahati ) Ordinary Differential Equations 1 / 25 First order ODE s We will now discuss

More information

2 Linear Differential Equations General Theory Linear Equations with Constant Coefficients Operator Methods...

2 Linear Differential Equations General Theory Linear Equations with Constant Coefficients Operator Methods... MA322 Ordinary Differential Equations Wong Yan Loi 2 Contents First Order Differential Equations 5 Introduction 5 2 Exact Equations, Integrating Factors 8 3 First Order Linear Equations 4 First Order Implicit

More information

Lecture two. January 17, 2019

Lecture two. January 17, 2019 Lecture two January 17, 2019 We will learn how to solve rst-order linear equations in this lecture. Example 1. 1) Find all solutions satisfy the equation u x (x, y) = 0. 2) Find the solution if we know

More information

1 First Order Ordinary Differential Equation

1 First Order Ordinary Differential Equation 1 Ordinary Differential Equation and Partial Differential Equations S. D. MANJAREKAR Department of Mathematics, Loknete Vyankatrao Hiray Mahavidyalaya Panchavati, Nashik (M.S.), India. shrimathematics@gmail.com

More information

Lecture Notes on. Differential Equations. Emre Sermutlu

Lecture Notes on. Differential Equations. Emre Sermutlu Lecture Notes on Differential Equations Emre Sermutlu ISBN: Copyright Notice: To my wife Nurten and my daughters İlayda and Alara Contents Preface ix 1 First Order ODE 1 1.1 Definitions.............................

More information

Module 2: First-Order Partial Differential Equations

Module 2: First-Order Partial Differential Equations Module 2: First-Order Partial Differential Equations The mathematical formulations of many problems in science and engineering reduce to study of first-order PDEs. For instance, the study of first-order

More information

First-Order ODE: Separable Equations, Exact Equations and Integrating Factor

First-Order ODE: Separable Equations, Exact Equations and Integrating Factor First-Order ODE: Separable Equations, Exact Equations and Integrating Factor Department of Mathematics IIT Guwahati REMARK: In the last theorem of the previous lecture, you can change the open interval

More information

Math 240 Calculus III

Math 240 Calculus III Calculus III Summer 2015, Session II Monday, August 3, 2015 Agenda 1. 2. Introduction The reduction of technique, which applies to second- linear differential equations, allows us to go beyond equations

More information

MA22S3 Summary Sheet: Ordinary Differential Equations

MA22S3 Summary Sheet: Ordinary Differential Equations MA22S3 Summary Sheet: Ordinary Differential Equations December 14, 2017 Kreyszig s textbook is a suitable guide for this part of the module. Contents 1 Terminology 1 2 First order separable 2 2.1 Separable

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Ryan C. Trinity University Partial Differential Equations Lecture 1 Ordinary differential equations (ODEs) These are equations of the form where: F(x,y,y,y,y,...)

More information

CHAPTER VIII. TOTAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND DEGREE IN THREE VARIABLES, WHICH ARE DERIVABLE FROM A SINGLE PRIMI TIVE.

CHAPTER VIII. TOTAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND DEGREE IN THREE VARIABLES, WHICH ARE DERIVABLE FROM A SINGLE PRIMI TIVE. CHAPTER VIII. TOTAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND DEGREE IN THREE VARIABLES, WHICH ARE DERIVABLE FROM A SINGLE PRIMI TIVE. 95. IN this chapter we shall indicate how the integration of an

More information

Chapter1. Ordinary Differential Equations

Chapter1. Ordinary Differential Equations Chapter1. Ordinary Differential Equations In the sciences and engineering, mathematical models are developed to aid in the understanding of physical phenomena. These models often yield an equation that

More information

Mathematical Methods - Lecture 9

Mathematical Methods - Lecture 9 Mathematical Methods - Lecture 9 Yuliya Tarabalka Inria Sophia-Antipolis Méditerranée, Titane team, http://www-sop.inria.fr/members/yuliya.tarabalka/ Tel.: +33 (0)4 92 38 77 09 email: yuliya.tarabalka@inria.fr

More information

M343 Homework 3 Enrique Areyan May 17, 2013

M343 Homework 3 Enrique Areyan May 17, 2013 M343 Homework 3 Enrique Areyan May 17, 013 Section.6 3. Consider the equation: (3x xy + )dx + (6y x + 3)dy = 0. Let M(x, y) = 3x xy + and N(x, y) = 6y x + 3. Since: y = x = N We can conclude that this

More information

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C.

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C. Midterm 1 33B-1 015 October 1 Find the exact solution of the initial value problem. Indicate the interval of existence. y = x, y( 1) = 0. 1 + y Solution. We observe that the equation is separable, and

More information

Definition of differential equations and their classification. Methods of solution of first-order differential equations

Definition of differential equations and their classification. Methods of solution of first-order differential equations Introduction to differential equations: overview Definition of differential equations and their classification Solutions of differential equations Initial value problems Existence and uniqueness Mathematical

More information

6 Second Order Linear Differential Equations

6 Second Order Linear Differential Equations 6 Second Order Linear Differential Equations A differential equation for an unknown function y = f(x) that depends on a variable x is any equation that ties together functions of x with y and its derivatives.

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University

The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University These notes are intended as a supplement to section 3.2 of the textbook Elementary

More information

Math512 PDE Homework 2

Math512 PDE Homework 2 Math51 PDE Homework October 11, 009 Exercise 1.3. Solve u = xu x +yu y +(u x+y y/ = 0 with initial conditon u(x, 0 = 1 x. Proof. In this case, we have F = xp + yq + (p + q / z = 0 and Γ parameterized as

More information

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1 hapter 6 Integrals In this chapter we will look at integrals in more detail. We will look at integrals along a curve, and multi-dimensional integrals in 2 or more dimensions. In physics we use these integrals

More information

Advanced Eng. Mathematics

Advanced Eng. Mathematics Koya University Faculty of Engineering Petroleum Engineering Department Advanced Eng. Mathematics Lecture 6 Prepared by: Haval Hawez E-mail: haval.hawez@koyauniversity.org 1 Second Order Linear Ordinary

More information

Math 4381 / 6378 Symmetry Analysis

Math 4381 / 6378 Symmetry Analysis Math 438 / 6378 Smmetr Analsis Elementar ODE Review First Order Equations Ordinar differential equations of the form = F(x, ( are called first order ordinar differential equations. There are a variet of

More information

Propagation of discontinuities in solutions of First Order Partial Differential Equations

Propagation of discontinuities in solutions of First Order Partial Differential Equations Propagation of discontinuities in solutions of First Order Partial Differential Equations Phoolan Prasad Department of Mathematics Indian Institute of Science, Bangalore 560 012 E-mail: prasad@math.iisc.ernet.in

More information

Econ 110: Introduction to Economic Theory. 8th Class 2/7/11

Econ 110: Introduction to Economic Theory. 8th Class 2/7/11 Econ 110: Introduction to Economic Theory 8th Class 2/7/11 go over problem answers from last time; no new problems today given you have your problem set to work on; we'll do some problems for these concepts

More information

First order Partial Differential equations

First order Partial Differential equations First order Partial Differential equations 0.1 Introduction Definition 0.1.1 A Partial Deferential equation is called linear if the dependent variable and all its derivatives have degree one and not multiple

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

Paradoxical Euler: Integrating by Differentiating. Andrew Fabian Hieu D. Nguyen. Department of Mathematics Rowan University, Glassboro, NJ 08028

Paradoxical Euler: Integrating by Differentiating. Andrew Fabian Hieu D. Nguyen. Department of Mathematics Rowan University, Glassboro, NJ 08028 Paradoxical Euler: Integrating by Differentiating Andrew Fabian Hieu D Nguyen Department of Mathematics Rowan University, Glassboro, NJ 0808 3-3-09 I Introduction Every student of calculus learns that

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS Basic concepts: Find y(x) where x is the independent and y the dependent varible, based on an equation involving x, y(x), y 0 (x),...e.g.: y 00 (x) = 1+y(x) y0 (x) 1+x or,

More information

H r# W im FR ID A Y, :Q q ro B E R 1 7,.,1 0 1 S. NEPTUNE TH RHE. Chancelor-Sherlll Act. on Ballot at ^yisii/

H r# W im FR ID A Y, :Q q ro B E R 1 7,.,1 0 1 S. NEPTUNE TH RHE. Chancelor-Sherlll Act. on Ballot at ^yisii/ ( # Y Q q 7 G Y G K G Q ( ) _ ( ) x z \ G 9 [ 895 G $ K K G x U Y 6 / q Y x 7 K 3 G? K x z x Y Y G U UY ( x G 26 $ q QUY K X Y 92 G& j x x ]( ] q ] x 2 ] 22 (? ] Y Y $ G x j 88 89 $5 Y ] x U $ 852 $ ((

More information

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics 3.33pt Chain Rule MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Spring 2019 Single Variable Chain Rule Suppose y = g(x) and z = f (y) then dz dx = d (f (g(x))) dx = f (g(x))g (x)

More information

NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS. Material Available with Question papers CONTACT ,

NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS. Material Available with Question papers CONTACT , NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS Material Available with Question papers CONTACT 8486 17507, 70108 65319 TEST BACTH SATURDAY & SUNDAY NATIONAL ACADEMY DHARMAPURI http://www.trbtnpsc.com/013/07/trb-questions-and-stu-materials.html

More information

ENGI 4430 PDEs - d Alembert Solutions Page 11.01

ENGI 4430 PDEs - d Alembert Solutions Page 11.01 ENGI 4430 PDEs - d Alembert Solutions Page 11.01 11. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

Lecture Notes in Mathematics. A First Course in Quasi-Linear Partial Differential Equations for Physical Sciences and Engineering Solution Manual

Lecture Notes in Mathematics. A First Course in Quasi-Linear Partial Differential Equations for Physical Sciences and Engineering Solution Manual Lecture Notes in Mathematics A First Course in Quasi-Linear Partial Differential Equations for Physical Sciences and Engineering Solution Manual Marcel B. Finan Arkansas Tech University c All Rights Reserved

More information

REFERENCE: CROFT & DAVISON CHAPTER 20 BLOCKS 1-3

REFERENCE: CROFT & DAVISON CHAPTER 20 BLOCKS 1-3 IV ORDINARY DIFFERENTIAL EQUATIONS REFERENCE: CROFT & DAVISON CHAPTER 0 BLOCKS 1-3 INTRODUCTION AND TERMINOLOGY INTRODUCTION A differential equation (d.e.) e) is an equation involving an unknown function

More information

First Order Differential Equations

First Order Differential Equations Chapter 2 First Order Differential Equations 2.1 9 10 CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS 2.2 Separable Equations A first order differential equation = f(x, y) is called separable if f(x, y)

More information

3. The Theorems of Green and Stokes

3. The Theorems of Green and Stokes 3. The Theorems of Green and tokes Consider a 1-form ω = P (x, y)dx + Q(x, y)dy on the rectangle R = [a, b] [c, d], which consists of points (x, y) satisfying a x b and c y d. The boundary R of R have

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) 1D Heat Equation: Derivation Current Semester 1 / 19 Introduction The derivation of the heat

More information

17.2 Nonhomogeneous Linear Equations. 27 September 2007

17.2 Nonhomogeneous Linear Equations. 27 September 2007 17.2 Nonhomogeneous Linear Equations 27 September 2007 Nonhomogeneous Linear Equations The differential equation to be studied is of the form ay (x) + by (x) + cy(x) = G(x) (1) where a 0, b, c are given

More information

ODE classification. February 7, Nasser M. Abbasi. compiled on Wednesday February 07, 2018 at 11:18 PM

ODE classification. February 7, Nasser M. Abbasi. compiled on Wednesday February 07, 2018 at 11:18 PM ODE classification Nasser M. Abbasi February 7, 2018 compiled on Wednesday February 07, 2018 at 11:18 PM 1 2 first order b(x)y + c(x)y = f(x) Integrating factor or separable (see detailed flow chart for

More information

Optimal control problems with PDE constraints

Optimal control problems with PDE constraints Optimal control problems with PDE constraints Maya Neytcheva CIM, October 2017 General framework Unconstrained optimization problems min f (q) q x R n (real vector) and f : R n R is a smooth function.

More information

Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv

Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv V Problem 1 (Equations with the dependent variable missing) By means of the substitutions v = dy dt, dv dt = d2 y dt 2 solve the following second-order differential equations 1. t 2 d2 y dt + 2tdy 1 =

More information

MATH34032 Mid-term Test 10.00am 10.50am, 26th March 2010 Answer all six question [20% of the total mark for this course]

MATH34032 Mid-term Test 10.00am 10.50am, 26th March 2010 Answer all six question [20% of the total mark for this course] MATH3432: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH3432 Mid-term Test 1.am 1.5am, 26th March 21 Answer all six question [2% of the total mark for this course] Qu.1 (a)

More information

A. MT-03, P Solve: (i) = 0. (ii) A. MT-03, P. 17, Solve : (i) + 4 = 0. (ii) A. MT-03, P. 16, Solve : (i)

A. MT-03, P Solve: (i) = 0. (ii) A. MT-03, P. 17, Solve : (i) + 4 = 0. (ii) A. MT-03, P. 16, Solve : (i) Program : M.A./M.Sc. (Mathematics) M.A./M.Sc. (Previous) Paper Code:MT-03 Differential Equations, Calculus of Variations & Special Functions Section C (Long Answers Questions) 1. Solve 2x cos y 2x sin

More information

Research Article Equivalent Lagrangians: Generalization, Transformation Maps, and Applications

Research Article Equivalent Lagrangians: Generalization, Transformation Maps, and Applications Journal of Applied Mathematics Volume 01, Article ID 86048, 19 pages doi:10.1155/01/86048 Research Article Equivalent Lagrangians: Generalization, Transformation Maps, and Applications N. Wilson and A.

More information

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs AM 205: lecture 14 Last time: Boundary value problems Today: Numerical solution of PDEs ODE BVPs A more general approach is to formulate a coupled system of equations for the BVP based on a finite difference

More information

Series Solutions of ODEs. Special Functions

Series Solutions of ODEs. Special Functions C05.tex 6/4/0 3: 5 Page 65 Chap. 5 Series Solutions of ODEs. Special Functions We continue our studies of ODEs with Legendre s, Bessel s, and the hypergeometric equations. These ODEs have variable coefficients

More information

Lecture 2. Introduction to Differential Equations. Roman Kitsela. October 1, Roman Kitsela Lecture 2 October 1, / 25

Lecture 2. Introduction to Differential Equations. Roman Kitsela. October 1, Roman Kitsela Lecture 2 October 1, / 25 Lecture 2 Introduction to Differential Equations Roman Kitsela October 1, 2018 Roman Kitsela Lecture 2 October 1, 2018 1 / 25 Quick announcements URL for the class website: http://www.math.ucsd.edu/~rkitsela/20d/

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) c01.tex 8/10/2010 22: 55 Page 1 PART A Ordinary Differential Equations (ODEs) Chap. 1 First-Order ODEs Sec. 1.1 Basic Concepts. Modeling To get a good start into this chapter and this section, quickly

More information

12. Stresses and Strains

12. Stresses and Strains 12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)

More information

Essential Ordinary Differential Equations

Essential Ordinary Differential Equations MODULE 1: MATHEMATICAL PRELIMINARIES 10 Lecture 2 Essential Ordinary Differential Equations In this lecture, we recall some methods of solving first-order IVP in ODE (separable and linear) and homogeneous

More information

Elementary ODE Review

Elementary ODE Review Elementary ODE Review First Order ODEs First Order Equations Ordinary differential equations of the fm y F(x, y) () are called first der dinary differential equations. There are a variety of techniques

More information

1MA6 Partial Differentiation and Multiple Integrals: I

1MA6 Partial Differentiation and Multiple Integrals: I 1MA6/1 1MA6 Partial Differentiation and Multiple Integrals: I Dr D W Murray Michaelmas Term 1994 1. Total differential. (a) State the conditions for the expression P (x, y)dx+q(x, y)dy to be the perfect

More information

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018 1 Linear Systems Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March, 018 Consider the system 4x y + z = 7 4x 8y + z = 1 x + y + 5z = 15. We then obtain x = 1 4 (7 + y z)

More information

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C 15. Green s theorem Math 212-Lecture 2 A simple closed curve in plane is one curve, r(t) : t [a, b] such that r(a) = r(b), and there are no other intersections. The positive orientation is counterclockwise.

More information

LECTURE NOTES OF DIFFERENTIAL EQUATIONS Nai-Sher Yeh

LECTURE NOTES OF DIFFERENTIAL EQUATIONS Nai-Sher Yeh LECTURE NOTES OF DIFFERENTIAL EQUATIONS Nai-Sher Yeh June 2; 2009 Differential Equations 2 Introduction. Ordinary Differential Equation Def. A functional equation containing a function and its derivatives

More information

Math 212-Lecture 8. The chain rule with one independent variable

Math 212-Lecture 8. The chain rule with one independent variable Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle

More information

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables.

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables. Chapter 2 First order PDE 2.1 How and Why First order PDE appear? 2.1.1 Physical origins Conservation laws form one of the two fundamental parts of any mathematical model of Continuum Mechanics. These

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre s equation. When α Z +, the equation has polynomial

More information

Lecture 22: A Population Growth Equation with Diffusion

Lecture 22: A Population Growth Equation with Diffusion M3 - ADVANCED ENGINEERING MATHEMATICS Lecture : A Population Gth Equation with Diffusion The logistic population equation studied in ordinary differential equations classes has the form: ( p (t) = rp(t)

More information

PARTIAL DIFFERENTIAL EQUATIONS

PARTIAL DIFFERENTIAL EQUATIONS PARTIAL DIFFERENTIAL EQUATIONS Lecturer: P.A. Markowich bgmt2008 http://www.damtp.cam.ac.uk/group/apde/teaching/pde_partii.html In addition to the sets of lecture notes written by previous lecturers ([1],[2])

More information

A Brief Review of Elementary Ordinary Differential Equations

A Brief Review of Elementary Ordinary Differential Equations A A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on

More information

PARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007

PARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007 PARTIAL DIFFERENTIAL EQUATIONS Lecturer: D.M.A. Stuart MT 2007 In addition to the sets of lecture notes written by previous lecturers ([1, 2]) the books [4, 7] are very good for the PDE topics in the course.

More information

FROBENIUS SERIES SOLUTIONS

FROBENIUS SERIES SOLUTIONS FROBENIUS SERIES SOLUTIONS TSOGTGEREL GANTUMUR Abstract. We introduce the Frobenius series method to solve second order linear equations, and illustrate it by concrete examples. Contents. Regular singular

More information

Continuous r.v practice problems

Continuous r.v practice problems Continuous r.v practice problems SDS 321 Intro to Probability and Statistics 1. (2+2+1+1 6 pts) The annual rainfall (in inches) in a certain region is normally distributed with mean 4 and standard deviation

More information

Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008

Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008 Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008 Chapter 1. Introduction Section 1.1 Background Definition Equation that contains some derivatives of an unknown function is called

More information

Lecture 8: Maxima and Minima

Lecture 8: Maxima and Minima Lecture 8: Maxima and Minima Rafikul Alam Department of Mathematics IIT Guwahati Local extremum of f : R n R Let f : U R n R be continuous, where U is open. Then f has a local maximum at p if there exists

More information

Nov : Lecture 20: Linear Homogeneous and Heterogeneous ODEs

Nov : Lecture 20: Linear Homogeneous and Heterogeneous ODEs 125 Nov. 09 2005: Lecture 20: Linear Homogeneous and Heterogeneous ODEs Reading: Kreyszig Sections: 1.4 (pp:19 22), 1.5 (pp:25 31), 1.6 (pp:33 38) Ordinary Differential Equations from Physical Models In

More information

Series Solutions of Differential Equations

Series Solutions of Differential Equations Chapter 6 Series Solutions of Differential Equations In this chapter we consider methods for solving differential equations using power series. Sequences and infinite series are also involved in this treatment.

More information

Green Lab. MAXIMA & ODE2. Cheng Ren, Lin. Department of Marine Engineering National Kaohsiung Marine University

Green Lab. MAXIMA & ODE2. Cheng Ren, Lin. Department of Marine Engineering National Kaohsiung Marine University Green Lab. 1/20 MAXIMA & ODE2 Cheng Ren, Lin Department of Marine Engineering National Kaohsiung Marine University email: crlin@mail.nkmu.edu.tw Objectives learn MAXIMA learn ODE2 2/20 ODE2 Method First

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georgia Tech PHYS 612 Mathematical Methods of Physics I Instructor: Predrag Cvitanović Fall semester 2012 Homework Set #5 due October 2, 2012 == show all your work for maximum credit, == put labels, title,

More information

ON CHARACTERISTIC 0 AND WEAKLY ALMOST PERIODIC FLOWS. Hyungsoo Song

ON CHARACTERISTIC 0 AND WEAKLY ALMOST PERIODIC FLOWS. Hyungsoo Song Kangweon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 161 167 ON CHARACTERISTIC 0 AND WEAKLY ALMOST PERIODIC FLOWS Hyungsoo Song Abstract. The purpose of this paper is to study and characterize the notions

More information

MB4018 Differential equations

MB4018 Differential equations MB4018 Differential equations Part II http://www.staff.ul.ie/natalia/mb4018.html Prof. Natalia Kopteva Spring 2015 MB4018 (Spring 2015) Differential equations Part II 0 / 69 Section 1 Second-Order Linear

More information

Symmetry Reductions of (2+1) dimensional Equal Width. Wave Equation

Symmetry Reductions of (2+1) dimensional Equal Width. Wave Equation Authors: Symmetry Reductions of (2+1) dimensional Equal Width 1. Dr. S. Padmasekaran Wave Equation Asst. Professor, Department of Mathematics Periyar University, Salem 2. M.G. RANI Periyar University,

More information

Immerse Metric Space Homework

Immerse Metric Space Homework Immerse Metric Space Homework (Exercises -2). In R n, define d(x, y) = x y +... + x n y n. Show that d is a metric that induces the usual topology. Sketch the basis elements when n = 2. Solution: Steps

More information

5.8 Laminar Boundary Layers

5.8 Laminar Boundary Layers 2.2 Marine Hydrodynamics, Fall 218 ecture 19 Copyright c 218 MIT - Department of Mechanical Engineering, All rights reserved. 2.2 - Marine Hydrodynamics ecture 19 5.8 aminar Boundary ayers δ y U potential

More information

T e c h n i c u e. SOUTH'S LIVEST COLLEGE WEEKLY Georgia School of Technology. Phi Kappa Tau Frat Installed With WeekEnd of Activity mm

T e c h n i c u e. SOUTH'S LIVEST COLLEGE WEEKLY Georgia School of Technology. Phi Kappa Tau Frat Installed With WeekEnd of Activity mm V X V U' V KY y,!!j[»jqu,, Y, 9 Y, 99 6 J K B B U U q : p B B By VV Y Kpp vy Y 7-8 y p p Kpp, z, p y, y, y p y, Kpp,, y p p p y p v y y y p, p, K, B, y y, B v U, Uvy, x, ; v y,, Uvy ; J, p p ( 5),, v y

More information

Math Lecture 46

Math Lecture 46 Math 2280 - Lecture 46 Dylan Zwick Fall 2013 Today we re going to use the tools we ve developed in the last two lectures to analyze some systems of nonlinear differential equations that arise in simple

More information

Consider an ideal pendulum as shown below. l θ is the angular acceleration θ is the angular velocity

Consider an ideal pendulum as shown below. l θ is the angular acceleration θ is the angular velocity 1 Second Order Ordinary Differential Equations 1.1 The harmonic oscillator Consider an ideal pendulum as shown below. θ l Fr mg l θ is the angular acceleration θ is the angular velocity A point mass m

More information