Orientation Distribution Function for Diffusion MRI

Size: px
Start display at page:

Download "Orientation Distribution Function for Diffusion MRI"

Transcription

1 Orientation Distribution Function for Diffusion MRI Evgeniya Balmashnova 28 October 2009

2 Diffusion Tensor Imaging

3 Diffusion MRI

4 Diffusion MRI P(r, t) = 1 (4πDt) 3/2 e 1 4t r 2 D 1 t Diffusion time D Diffusion coefficient P Probability of travel to point r in time t

5 Diffusion Tensor Imaging P(r, t) = 1 (4π D t) 3/2 e 1 4t rt D 1 r D = D xx D xy D xz D yx D yy D yz D zx D zy D zz

6 Diffusion Tensor Imaging: Application

7 Diffusion Tensor Imaging

8 Diffusion Tensor Imaging

9 MRI and Diffusion Tensor Imaging

10 MRI and Diffusion Tensor Imaging

11 MRI and Diffusion Tensor Imaging

12 MRI and Diffusion Tensor Imaging

13 MRI and Diffusion Tensor Imaging

14 High Angular Resolution Diffusion Imaging S(g) = S 0 e bd(g) (Stejskal & Tanner, 1965)

15 High Angular Resolution Diffusion Imaging S(g) = S 0 e bd(g) (Stejskal & Tanner, 1965)

16 HARDI

17 HARDI

18 HARDI

19 Diffusion Orientation Distribution Function

20 Diffusion Orientation Distribution Function

21 Diffusion Orientation Distribution Function

22 Diffusion Orientation Distribution Function

23 Alternative Decompositions Spherical harmonics N l D N (g) = c lm Y lm (g) l=0 m= l High order tensors 3 3 D N (g) =... D i 1...i N g i1... g in i 1 =1 i N =1 Hierarchial tensors N 3 3 D N (g) =... D i 1...i l g i1... g il (Florack & Balmashnova, 2008) l=0 i 1 =1 i N =1

24 Alternative Decompositions Spherical harmonics N l D N (g) = c lm Y lm (g) l=0 m= l High order tensors 3 3 D N (g) =... D i 1...i N g i1... g in i 1 =1 i N =1 Hierarchial tensors N 3 3 D N (g) =... D i 1...i l g i1... g il (Florack & Balmashnova, 2008) l=0 i 1 =1 i N =1

25 Alternative Decompositions Spherical harmonics N l D N (g) = c lm Y lm (g) l=0 m= l High order tensors 3 3 D N (g) =... D i 1...i N g i1... g in i 1 =1 i N =1 Hierarchial tensors N 3 3 D N (g) =... D i 1...i l g i1... g il (Florack & Balmashnova, 2008) l=0 i 1 =1 i N =1

26 Alternative Decompositions Spherical harmonics N l D N (g) = c lm Y lm (g) l=0 m= l High order tensors 3 3 D N (g) =... D i 1...i N g i1... g in i 1 =1 i N =1 Hierarchial tensors N 3 3 D N (g) =... D i 1...i l g i1... g il (Florack & Balmashnova, 2008) l=0 i 1 =1 i N =1

27 Spherical Harmonics Regularization Simple formula for ODF Requires bookkeeping No maxima detection High Order Tensors No straightforward regularization No straightforward ODF formulas Simple bookkeeping Maxima detection algorithms

28 Spherical Harmonics Regularization Simple formula for ODF Requires bookkeeping No maxima detection High Order Tensors No straightforward regularization No straightforward ODF formulas Simple bookkeeping Maxima detection algorithms

29 Spherical Harmonics Regularization Simple formula for ODF Requires bookkeeping No maxima detection High Order Tensors No straightforward regularization No straightforward ODF formulas Simple bookkeeping Maxima detection algorithms

30 Spherical Harmonics Regularization Simple formula for ODF Requires bookkeeping No maxima detection High Order Tensors No straightforward regularization No straightforward ODF formulas Simple bookkeeping Maxima detection algorithms

31 Spherical Harmonics Regularization Simple formula for ODF Requires bookkeeping No maxima detection High Order Tensors No straightforward regularization No straightforward ODF formulas Simple bookkeeping Maxima detection algorithms

32 Spherical Harmonics Regularization Simple formula for ODF Requires bookkeeping No maxima detection High Order Tensors No straightforward regularization No straightforward ODF formulas Simple bookkeeping Maxima detection algorithms

33 1. E 0 (D 0 ) = (S(g) D 0 ) 2 dω, Ω 2. E n(d i 1...in n 1 ) = ((S(g) D i 1...i k g i1... g ik ) D i 1...in g i1... g in ) 2 dω Ω k=0 D i 1...i n g i1... g in span{y nm (g), m = n,..., n}

34 1. E 0 (D 0 ) = (S(g) D 0 ) 2 dω, Ω 2. E n(d i 1...in n 1 ) = ((S(g) D i 1...i k g i1... g ik ) D i 1...in g i1... g in ) 2 dω Ω k=0 D i 1...i n g i1... g in span{y nm (g), m = n,..., n}

35 1. E 0 (D 0 ) = (S(g) D 0 ) 2 dω, Ω 2. E n(d i 1...in n 1 ) = ((S(g) D i 1...i k g i1... g ik ) D i 1...in g i1... g in ) 2 dω Ω k=0 D i 1...i n g i1... g in span{y nm (g), m = n,..., n}

36 Regularization D N (g)= N 3 l=0 i 1 = i N =1 Di 1...i l g i1...g il D t (g)=e t g D(g)= N 3 l=0 i 1 = i N =1 Di 1...i l(t) g i1...g il D i 1...i l (t) = e tl(l+1) D i 1...i l

37 Regularization D N (g)= N 3 l=0 i 1 = i N =1 Di 1...i l g i1...g il D t (g)=e t g D(g)= N 3 l=0 i 1 = i N =1 Di 1...i l(t) g i1...g il D i 1...i l (t) = e tl(l+1) D i 1...i l

38 Regularization D N (g)= N 3 l=0 i 1 = i N =1 Di 1...i l g i1...g il D t (g)=e t g D(g)= N 3 l=0 i 1 = i N =1 Di 1...i l(t) g i1...g il D i 1...i l (t) = e tl(l+1) D i 1...i l

39 Regularization D N (g)= N 3 l=0 i 1 = i N =1 Di 1...i l g i1...g il D t (g)=e t g D(g)= N 3 l=0 i 1 = i N =1 Di 1...i l(t) g i1...g il D i 1...i l (t) = e tl(l+1) D i 1...i l

40 Regularization D N (g)= N 3 l=0 i 1 = i N =1 Di 1...i l g i1...g il D t (g)=e t g D(g)= N 3 l=0 i 1 = i N =1 Di 1...i l(t) g i1...g il D i 1...i l (t) = e tl(l+1) D i 1...i l

41 MRI and Diffusion Tensor Imaging

42 MRI and Diffusion Tensor Imaging

43 MRI and Diffusion Tensor Imaging

44 MRI and Diffusion Tensor Imaging

45 MRI and Diffusion Tensor Imaging

46 MRI and Diffusion Tensor Imaging

47 MRI and Diffusion Tensor Imaging

48 MRI and Diffusion Tensor Imaging

49 MRI and Diffusion Tensor Imaging

50 MRI and Diffusion Tensor Imaging

51 MRI and Diffusion Tensor Imaging

52 MRI and Diffusion Tensor Imaging

53 MRI and Diffusion Tensor Imaging

54 MRI and Diffusion Tensor Imaging

55 Orientation Distribution Function P(R) = S(q) exp ( 2πiq R)dq ODF(g) = 0 P(r g)dr

56 Orientation Distribution Function P(R) = S(q) exp ( 2πiq R)dq ODF(g) = 0 P(r g)dr

57 Orientation Distribution Function: Q-ball Approximation by Funk-Radon transform ODF (g) ζ[s](g) = δ(g T w)s(w)dw w =1 w =1 δ(g T w)y lm (w)dw = 2πP l (0)Y lm (g)

58 Orientation Distribution Function: Q-ball Approximation by Funk-Radon transform ODF (g) ζ[s](g) = δ(g T w)s(w)dw w =1 w =1 δ(g T w)y lm (w)dw = 2πP l (0)Y lm (g)

59 Orientation Distribution Function: Q-ball Approximation by Funk-Radon transform ODF (g) ζ[s](g) = δ(g T w)s(w)dw w =1 w =1 δ(g T w)y lm (w)dw = 2πP l (0)Y lm (g)

60 Orientation Distribution Function: Q-ball 1. Fit Nth order tensor decomposition to the signal by solving linear system of equations. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = 2π( 1)k/2 (k 1)!! k!! e k(k+1)t D i 1...i k.

61 Orientation Distribution Function: Q-ball 1. Fit Nth order tensor decomposition to the signal by solving linear system of equations. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = 2π( 1)k/2 (k 1)!! k!! e k(k+1)t D i 1...i k.

62 Orientation Distribution Function: Q-ball 1. Fit Nth order tensor decomposition to the signal by solving linear system of equations. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = 2π( 1)k/2 (k 1)!! k!! e k(k+1)t D i 1...i k.

63 Orientation Distribution Function: Q-ball 1. Fit Nth order tensor decomposition to the signal by solving linear system of equations. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = 2π( 1)k/2 (k 1)!! k!! e k(k+1)t D i 1...i k.

64 Diffusion Orientation transform (DOT) P(R) = S(q) exp ( 2πiq R)dq e 2πiq R = 4π P(R 0 g) = l l=0 m= l l l=0 m= l ( i) l j l (2πqr)Y lm (u)y lm(g) ( i) l Y lm (g) Y lm (u)i l(u)du

65 Diffusion Orientation transform (DOT) P(R) = S(q) exp ( 2πiq R)dq e 2πiq R = 4π P(R 0 g) = l l=0 m= l l l=0 m= l ( i) l j l (2πqr)Y lm (u)y lm(g) ( i) l Y lm (g) Y lm (u)i l(u)du

66 Diffusion Orientation transform (DOT) P(R) = S(q) exp ( 2πiq R)dq e 2πiq R = 4π P(R 0 g) = l l=0 m= l l l=0 m= l ( i) l j l (2πqr)Y lm (u)y lm(g) ( i) l Y lm (g) Y lm (u)i l(u)du

67 Diffusion Orientation transform (DOT)

68 Diffusion Orientation transform (DOT) Quality depends on R 0 There is no way to indicate optimal choice of R 0 Not robust to noise

69 Diffusion Orientation transform (DOT) Quality depends on R 0 There is no way to indicate optimal choice of R 0 Not robust to noise

70 Diffusion Orientation transform (DOT) Quality depends on R 0 There is no way to indicate optimal choice of R 0 Not robust to noise

71 P(R 0 g) = l,m ( i) l Y lm (g) Y lm (u)i l(u, R 0 )du I l (u, R 0 ) = 4π ODF(g) = ( i) l Y lm (g) l,m 0 J 1 (2πqR 0 )e 4π2 q 2 td(u) dq Y ( ) lm (u) I l (u, R 0 )dr 0 du 0

72 P(R 0 g) = l,m ( i) l Y lm (g) Y lm (u)i l(u, R 0 )du I l (u, R 0 ) = 4π ODF (g) = ( i) l Y lm (g) l,m 0 J 1 (2πqR 0 )e 4π2 q 2 td(u) dq Y ( ) lm (u) I l (u, R 0 )dr 0 du 0

73 P(R 0 g) = l,m ( i) l Y lm (g) Y lm (u)i l(u, R 0 )du I l (u, R 0 ) = 4π ODF (g) = ( i) l Y lm (g) l,m 0 J 1 (2πqR 0 )e 4π2 q 2 td(u) dq Y ( ) lm (u) I l (u, R 0 )dr 0 du 0

74 R l l+3 0Γ( 2 I l (u, R 0 ) = ) 2 l+3 π 3/2 (D(u)t) (l+3)/2 Γ(l + 3/2) 1 F 1 ( l ; l ; R2 0 4D(u)t ) 1 1F 1 (a, b, z) = t a 1 (1 t) b a 1 e zt dt 0 where 0 I l (u, R 0 )dr 0 = 1 Ĩ l D(u)t Ĩ l = Γ( l+1 2 ) 4lπ 3/2 Γ(l/2)

75 R l l+3 0Γ( 2 I l (u, R 0 ) = ) 2 l+3 π 3/2 (D(u)t) (l+3)/2 Γ(l + 3/2) 1 F 1 ( l ; l ; R2 0 4D(u)t ) 1 1F 1 (a, b, z) = t a 1 (1 t) b a 1 e zt dt 0 where 0 I l (u, R 0 )dr 0 = 1 Ĩ l D(u)t Ĩ l = Γ( l+1 2 ) 4lπ 3/2 Γ(l/2)

76 R l l+3 0Γ( 2 I l (u, R 0 ) = ) 2 l+3 π 3/2 (D(u)t) (l+3)/2 Γ(l + 3/2) 1 F 1 ( l ; l ; R2 0 4D(u)t ) 1 1F 1 (a, b, z) = t a 1 (1 t) b a 1 e zt dt 0 where 0 I l (u, R 0 )dr 0 = 1 Ĩ l D(u)t Ĩ l = Γ( l+1 2 ) 4lπ 3/2 Γ(l/2)

77 R l l+3 0Γ( 2 I l (u, R 0 ) = ) 2 l+3 π 3/2 (D(u)t) (l+3)/2 Γ(l + 3/2) 1 F 1 ( l ; l ; R2 0 4D(u)t ) 1 1F 1 (a, b, z) = t a 1 (1 t) b a 1 e zt dt 0 where 0 I l (u, R 0 )dr 0 = 1 Ĩ l D(u)t Ĩ l = Γ( l+1 2 ) 4lπ 3/2 Γ(l/2)

78 1 D(u)t = l,m α lm Y lm (u) ODF(g) = l,m ( 1) l/2 Ĩ l α lm Y lm (g)

79 1 D(u)t = l,m α lm Y lm (u) ODF(g) = l,m ( 1) l/2 Ĩ l α lm Y lm (g)

80 1 1. Fit Nth order tensor decomposition to D(u)t. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = ( 1)k/2 Γ( k+1 2 ) 4kπ 3/2 Γ(k/2) e k(k+1)t D i 1...i k.

81 1 1. Fit Nth order tensor decomposition to D(u)t. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = ( 1)k/2 Γ( k+1 2 ) 4kπ 3/2 Γ(k/2) e k(k+1)t D i 1...i k.

82 1 1. Fit Nth order tensor decomposition to D(u)t. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = ( 1)k/2 Γ( k+1 2 ) 4kπ 3/2 Γ(k/2) e k(k+1)t D i 1...i k.

83 1 1. Fit Nth order tensor decomposition to D(u)t. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = ( 1)k/2 Γ( k+1 2 ) 4kπ 3/2 Γ(k/2) e k(k+1)t D i 1...i k.

84 Hardware phantom

85 Synthetic data Multi-tensor model n S(g) = p k e bgt D k g k=1

86 Q-ball and DOT-ODF comparison S(g) = S 0 e bd(g) Squared difference 9 1e 7 ODF-based method validation, without numerical b-value

87 Tracking Riemannian metric Finsler metric.

88 Finsler Metric Riemannian metric Finsler metric.

89 Open Questions Voxel classification Scales selection Reality check

90 Open Questions Voxel classification Scales selection Reality check

91 Open Questions Voxel classification Scales selection Reality check

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still

More information

Decomposition of Higher-Order Homogeneous Tensors and Applications to HARDI

Decomposition of Higher-Order Homogeneous Tensors and Applications to HARDI Decomposition of Higher-Order Homogeneous Tensors and Applications to HARDI E. Balmashnova, A. Fuster and L.M.J. Florack Eindhoven University of Technology, The Netherlands E.Balmachnova@tue.nl Abstract.

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

On the Blurring of the Funk Radon Transform in Q Ball Imaging

On the Blurring of the Funk Radon Transform in Q Ball Imaging On the Blurring of the Funk Radon Transform in Q Ball Imaging Antonio Tristán-Vega 1, Santiago Aja-Fernández 1, and Carl-Fredrik Westin 2 1 Laboratory of Image Processing, University of Valladolid, Spain

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

Sec. 1.1: Basics of Vectors

Sec. 1.1: Basics of Vectors Sec. 1.1: Basics of Vectors Notation for Euclidean space R n : all points (x 1, x 2,..., x n ) in n-dimensional space. Examples: 1. R 1 : all points on the real number line. 2. R 2 : all points (x 1, x

More information

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions Closed-Form Solution Of Absolute Orientation Using Unit Berthold K. P. Horn Department of Computer and Information Sciences November 11, 2004 Outline 1 Introduction 2 3 The Problem Given: two sets of corresponding

More information

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient Rigid body dynamics Rigid body simulation Once we consider an object with spatial extent, particle system simulation is no longer sufficient Rigid body simulation Unconstrained system no contact Constrained

More information

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep. Rotational Motion Chapter 4 P. J. Grandinetti Chem. 4300 Sep. 1, 2017 P. J. Grandinetti (Chem. 4300) Rotational Motion Sep. 1, 2017 1 / 76 Angular Momentum The angular momentum of a particle with respect

More information

General Physics I. Lecture 10: Rolling Motion and Angular Momentum.

General Physics I. Lecture 10: Rolling Motion and Angular Momentum. General Physics I Lecture 10: Rolling Motion and Angular Momentum Prof. WAN, Xin (万歆) 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Rolling motion of a rigid object: center-of-mass motion

More information

M E 320 Professor John M. Cimbala Lecture 10

M E 320 Professor John M. Cimbala Lecture 10 M E 320 Professor John M. Cimbala Lecture 10 Today, we will: Finish our example problem rates of motion and deformation of fluid particles Discuss the Reynolds Transport Theorem (RTT) Show how the RTT

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

Tensor Visualization. CSC 7443: Scientific Information Visualization

Tensor Visualization. CSC 7443: Scientific Information Visualization Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its

More information

Wavelet Frames on the Sphere for Sparse Representations in High Angular Resolution Diusion Imaging. Chen Weiqiang

Wavelet Frames on the Sphere for Sparse Representations in High Angular Resolution Diusion Imaging. Chen Weiqiang Wavelet Frames on the Sphere for Sparse Representations in High Angular Resolution Diusion Imaging Chen Weiqiang Overview 1. Introduction to High Angular Resolution Diusion Imaging (HARDI). 2. Wavelets

More information

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Preliminary Math Concept of Stress Stress Components Equilibrium

More information

MANY BILLS OF CONCERN TO PUBLIC

MANY BILLS OF CONCERN TO PUBLIC - 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -

More information

Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA

Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA U G G G U 2 93 YX Y q 25 3 < : z? 0 (? 8 0 G 936 x z x z? \ 9 7500 00? 5 q 938 27? 60 & 69? 937 q? G x? 937 69 58 } x? 88 G # x 8 > x G 0 G 0 x 8 x 0 U 93 6 ( 2 x : X 7 8 G G G q x U> x 0 > x < x G U 5

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

Fast and Accurate HARDI and its Application to Neurological Diagnosis

Fast and Accurate HARDI and its Application to Neurological Diagnosis Fast and Accurate HARDI and its Application to Neurological Diagnosis Dr. Oleg Michailovich Department of Electrical and Computer Engineering University of Waterloo June 21, 2011 Outline 1 Diffusion imaging

More information

A Novel Tensor Distribution Model for the Diffusion Weighted MR Signal

A Novel Tensor Distribution Model for the Diffusion Weighted MR Signal A Novel Tensor Distribution Model for the Diffusion Weighted MR Signal Baba C. UFRF Professor & Director Center for Vision, Graphics, and Medical Imaging Department of Computer & Information Science and

More information

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant DE2-EA 2.1: M4DE Dr Connor Myant 6. 3D Kinematics Comments and corrections to connor.myant@imperial.ac.uk Lecture resources may be found on Blackboard and at http://connormyant.com Contents Three-Dimensional

More information

Lesson Rigid Body Dynamics

Lesson Rigid Body Dynamics Lesson 8 Rigid Body Dynamics Lesson 8 Outline Problem definition and motivations Dynamics of rigid bodies The equation of unconstrained motion (ODE) User and time control Demos / tools / libs Rigid Body

More information

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction OCN/ATM/ESS 587 The wind-driven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The wind-driven ocean. The major ocean gyres

More information

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth References: Turcotte and Schubert, Geodynamics, Sections 2.1,-2.4, 2.7, 3.1-3.8, 6.1, 6.2, 6.8, 7.1-7.4. Jaeger and Cook, Fundamentals of

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1 AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

Finsler Geometry on Higher Order Tensor Fields and Applications to High Angular Resolution Diffusion Imaging

Finsler Geometry on Higher Order Tensor Fields and Applications to High Angular Resolution Diffusion Imaging Int J Comput Vis (2011) 92: 325 336 DOI 101007/s11263-010-0377-z Finsler Geometry on Higher Order Tensor Fields and Applications to High Angular Resolution Diffusion Imaging Laura Astola Luc Florack Published

More information

A. H. Hall, 33, 35 &37, Lendoi

A. H. Hall, 33, 35 &37, Lendoi 7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9

More information

Diffusion Tensor Imaging (DTI): An overview of key concepts

Diffusion Tensor Imaging (DTI): An overview of key concepts Diffusion Tensor Imaging (DTI): An overview of key concepts (Supplemental material for presentation) Prepared by: Nadia Barakat BMB 601 Chris Conklin Thursday, April 8 th 2010 Diffusion Concept [1,2]:

More information

Unit IV State of stress in Three Dimensions

Unit IV State of stress in Three Dimensions Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength

More information

Uniformity of the Universe

Uniformity of the Universe Outline Universe is homogenous and isotropic Spacetime metrics Friedmann-Walker-Robertson metric Number of numbers needed to specify a physical quantity. Energy-momentum tensor Energy-momentum tensor of

More information

14.7: Maxima and Minima

14.7: Maxima and Minima 14.7: Maxima and Minima Marius Ionescu October 29, 2012 Marius Ionescu () 14.7: Maxima and Minima October 29, 2012 1 / 13 Local Maximum and Local Minimum Denition Marius Ionescu () 14.7: Maxima and Minima

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

1/30. Rigid Body Rotations. Dave Frank

1/30. Rigid Body Rotations. Dave Frank . 1/3 Rigid Body Rotations Dave Frank A Point Particle and Fundamental Quantities z 2/3 m v ω r y x Angular Velocity v = dr dt = ω r Kinetic Energy K = 1 2 mv2 Momentum p = mv Rigid Bodies We treat a rigid

More information

Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections. Andrew Hall October 16, 2015

Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections. Andrew Hall October 16, 2015 Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections Andrew Hall October 16, 2015 Outline Resource-Renewable Boiling Water Reactor (RBWR) Current Neutron

More information

Homework 1/Solutions. Graded Exercises

Homework 1/Solutions. Graded Exercises MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both

More information

12. Stresses and Strains

12. Stresses and Strains 12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)

More information

Rigid body dynamics. Basilio Bona. DAUIN - Politecnico di Torino. October 2013

Rigid body dynamics. Basilio Bona. DAUIN - Politecnico di Torino. October 2013 Rigid body dynamics Basilio Bona DAUIN - Politecnico di Torino October 2013 Basilio Bona (DAUIN - Politecnico di Torino) Rigid body dynamics October 2013 1 / 16 Multiple point-mass bodies Each mass is

More information

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations Course BA1: Hilary Term 007 Section 8: Quaternions and Rotations David R. Wilkins Copyright c David R. Wilkins 005 Contents 8 Quaternions and Rotations 1 8.1 Quaternions............................ 1 8.

More information

Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields

Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields Çağatay Demiralp and David H. Laidlaw Brown University Providence, RI, USA Abstract. We give a proof of concept

More information

General Relativity ASTR 2110 Sarazin. Einstein s Equation

General Relativity ASTR 2110 Sarazin. Einstein s Equation General Relativity ASTR 2110 Sarazin Einstein s Equation Curvature of Spacetime 1. Principle of Equvalence: gravity acceleration locally 2. Acceleration curved path in spacetime In gravitational field,

More information

FMIA. Fluid Mechanics and Its Applications 113 Series Editor: A. Thess. Moukalled Mangani Darwish. F. Moukalled L. Mangani M.

FMIA. Fluid Mechanics and Its Applications 113 Series Editor: A. Thess. Moukalled Mangani Darwish. F. Moukalled L. Mangani M. FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in

More information

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS I Main Topics A Why deal with tensors? B Order of scalars, vectors, and tensors C Linear transformation of scalars and vectors (and tensors) II Why

More information

Diffusion Tensor Imaging tutorial

Diffusion Tensor Imaging tutorial NA-MIC http://na-mic.org Diffusion Tensor Imaging tutorial Sonia Pujol, PhD Surgical Planning Laboratory Harvard University DTI tutorial This tutorial is an introduction to the advanced Diffusion MR capabilities

More information

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL. Y $ Y Y 7 27 Y 2» x 7»» 2» q» ~ [ } q q $ $ 6 2 2 2 2 2 2 7 q > Y» Y >» / Y» ) Y» < Y»» _»» < Y > Y Y < )»» >» > ) >» >> >Y x x )»» > Y Y >>»» }> ) Y < >» /» Y x» > / x /»»»»» >» >» >»» > > >» < Y /~ >

More information

Q SON,' (ESTABLISHED 1879L

Q SON,' (ESTABLISHED 1879L ( < 5(? Q 5 9 7 00 9 0 < 6 z 97 ( # ) $ x 6 < ( ) ( ( 6( ( ) ( $ z 0 z z 0 ) { ( % 69% ( ) x 7 97 z ) 7 ) ( ) 6 0 0 97 )( 0 x 7 97 5 6 ( ) 0 6 ) 5 ) 0 ) 9%5 z» 0 97 «6 6» 96? 0 96 5 0 ( ) ( ) 0 x 6 0

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Approach Curve COMSOL Report File

Approach Curve COMSOL Report File Approach Curve COMSOL Report File Contents 1. Global Definitions 1.1. Parameters 1 2. Model 1 (mod1) 2.1. Definitions 2.2. Geometry 1 2.3. Transport of Diluted Species (chds) 2.4. Mesh 1 3. Study 1 3.1.

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Introduction to Fluid Mechanics Tien-Tsan Shieh April 16, 2009 What is a Fluid? The key distinction between a fluid and a solid lies in the mode of resistance to change of shape. The fluid, unlike the

More information

AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT

AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT FLÁIO SILESTRE DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT LECTURE NOTES LAGRANGIAN MECHANICS APPLIED TO RIGID-BODY DYNAMICS IMAGE CREDITS: BOEING FLÁIO SILESTRE Introduction Lagrangian Mechanics shall be

More information

Numerical Implementation of Transformation Optics

Numerical Implementation of Transformation Optics ECE 5322 21 st Century Electromagnetics Instructor: Office: Phone: E Mail: Dr. Raymond C. Rumpf A 337 (915) 747 6958 rcrumpf@utep.edu Lecture #16b Numerical Implementation of Transformation Optics Lecture

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs)

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Yonas T. Weldeselassie (Ph.D. Candidate) Medical Image Computing and Analysis Lab, CS, SFU DT-MR Imaging Introduction

More information

Chapter 1 Fluid Characteristics

Chapter 1 Fluid Characteristics Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity

More information

In this section, mathematical description of the motion of fluid elements moving in a flow field is

In this section, mathematical description of the motion of fluid elements moving in a flow field is Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small

More information

Projectively Flat Fourth Root Finsler Metrics

Projectively Flat Fourth Root Finsler Metrics Projectively Flat Fourth Root Finsler Metrics Benling Li and Zhongmin Shen 1 Introduction One of important problems in Finsler geometry is to study the geometric properties of locally projectively flat

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

Classical Mechanics. Luis Anchordoqui

Classical Mechanics. Luis Anchordoqui 1 Rigid Body Motion Inertia Tensor Rotational Kinetic Energy Principal Axes of Rotation Steiner s Theorem Euler s Equations for a Rigid Body Eulerian Angles Review of Fundamental Equations 2 Rigid body

More information

This sample exam is longer than the actual exam will be. Many of the sample exam problems are similar to those of the actual exam. = m a. I xx.

This sample exam is longer than the actual exam will be. Many of the sample exam problems are similar to those of the actual exam. = m a. I xx. Phys 326 Sample Final Exam SOLUTION 8-11 am 18 December 2012 144 Loomis Closed book, no calculators, but you are permitted one two-sided 8 1/2 x 11" set of notes. This sample exam is longer than the actual

More information

ACCEPTS HUGE FLORAL KEY TO LOWELL. Mrs, Walter Laid to Rest Yesterday

ACCEPTS HUGE FLORAL KEY TO LOWELL. Mrs, Walter Laid to Rest Yesterday $ j < < < > XXX Y 928 23 Y Y 4% Y 6 -- Q 5 9 2 5 Z 48 25 )»-- [ Y Y Y & 4 j q - Y & Y 7 - -- - j \ -2 -- j j -2 - - - - [ - - / - ) ) - - / j Y 72 - ) 85 88 - / X - j ) \ 7 9 Y Y 2 3» - ««> Y 2 5 35 Y

More information

Metric tensors for homogeneous, isotropic, 5-dimensional pseudo Riemannian models

Metric tensors for homogeneous, isotropic, 5-dimensional pseudo Riemannian models Revista Colombiana de Matematicas Volumen 32 (1998), paginas 79-79 Metric tensors for homogeneous, isotropic, 5-dimensional pseudo Riemannian models LUIS A. ANCHORDOQUI Universidad Nacional de La Plata

More information

Modelling ice shelf basal melt with Glimmer-CISM coupled to a meltwater plume model

Modelling ice shelf basal melt with Glimmer-CISM coupled to a meltwater plume model Modelling ice shelf basal melt with Glimmer-CISM coupled to a meltwater plume model Carl Gladish NYU CIMS February 17, 2010 Carl Gladish (NYU CIMS) Glimmer-CISM + Plume February 17, 2010 1 / 24 Acknowledgements

More information

Numerical Modelling in Geosciences. Lecture 6 Deformation

Numerical Modelling in Geosciences. Lecture 6 Deformation Numerical Modelling in Geosciences Lecture 6 Deformation Tensor Second-rank tensor stress ), strain ), strain rate ) Invariants quantities independent of the coordinate system): - First invariant trace:!!

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G

More information

Algebraic Expressions

Algebraic Expressions Algebraic Expressions 1. Expressions are formed from variables and constants. 2. Terms are added to form expressions. Terms themselves are formed as product of factors. 3. Expressions that contain exactly

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II PEAT8002 - SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II Nick Rawlinson Research School of Earth Sciences Australian National University Waveform modelling P-wave first-motions

More information

Math Review: Vectors and Tensors for Rheological Applications

Math Review: Vectors and Tensors for Rheological Applications Math Review: Vectors and Tensors for Rheological Applications Presented by Randy H. Ewoldt University of Illinois at Urbana-Champaign U. of Minnesota Rheological Measurements Short Course June 2016 MathReview-1

More information

MATH 31BH Homework 5 Solutions

MATH 31BH Homework 5 Solutions MATH 3BH Homework 5 Solutions February 4, 204 Problem.8.2 (a) Let x t f y = x 2 + y 2 + 2z 2 and g(t) = t 2. z t 3 Then by the chain rule a a a D(g f) b = Dg f b Df b c c c = [Dg(a 2 + b 2 + 2c 2 )] [

More information

A Riemannian Framework for Denoising Diffusion Tensor Images

A Riemannian Framework for Denoising Diffusion Tensor Images A Riemannian Framework for Denoising Diffusion Tensor Images Manasi Datar No Institute Given Abstract. Diffusion Tensor Imaging (DTI) is a relatively new imaging modality that has been extensively used

More information

Basic Equations of Elasticity

Basic Equations of Elasticity A Basic Equations of Elasticity A.1 STRESS The state of stress at any point in a loaded bo is defined completely in terms of the nine components of stress: σ xx,σ yy,σ zz,σ xy,σ yx,σ yz,σ zy,σ zx,andσ

More information

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank G k y $5 y / >/ k «««# ) /% < # «/» Y»««««?# «< >«>» y k»» «k F 5 8 Y Y F G k F >«y y

More information

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,. ? ( # [ ( 8? [ > 3 Q [ ««> » 9 Q { «33 Q> 8 \ \ 3 3 3> Q»«9 Q ««« 3 8 3 8 X \ [ 3 ( ( Z ( Z 3( 9 9 > < < > >? 8 98 ««3 ( 98 < # # Q 3 98? 98 > > 3 8 9 9 ««««> 3 «>

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Rigid body physics Particle system Most simple instance of a physics system Each object (body) is a particle Each particle

More information

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Computational Fluid Dynamics (CFD) 9//005 Topic7_NS_ F0 1 Momentum equation 9//005 Topic7_NS_ F0 1 Consider the moving fluid element model shown in Figure.b Basis is Newton s nd Law which says

More information

DIPOLES III. q const. The voltage produced by such a charge distribution is given by. r r'

DIPOLES III. q const. The voltage produced by such a charge distribution is given by. r r' DIPOLES III We now consider a particularly important charge configuration a dipole. This consists of two equal but opposite charges separated by a small distance. We define the dipole moment as p lim q

More information

Lecture notes on introduction to tensors. K. M. Udayanandan Associate Professor Department of Physics Nehru Arts and Science College, Kanhangad

Lecture notes on introduction to tensors. K. M. Udayanandan Associate Professor Department of Physics Nehru Arts and Science College, Kanhangad Lecture notes on introduction to tensors K. M. Udayanandan Associate Professor Department of Physics Nehru Arts and Science College, Kanhangad 1 . Syllabus Tensor analysis-introduction-definition-definition

More information

Solving Einstein s Equation Numerically III

Solving Einstein s Equation Numerically III Solving Einstein s Equation Numerically III Lee Lindblom Center for Astrophysics and Space Sciences University of California at San Diego Mathematical Sciences Center Lecture Series Tsinghua University

More information

Diffusion Tensor Imaging I. Jennifer Campbell

Diffusion Tensor Imaging I. Jennifer Campbell Diffusion Tensor Imaging I Jennifer Campbell Diffusion Imaging Molecular diffusion The diffusion tensor Diffusion weighting in MRI Alternatives to the tensor Overview of applications Diffusion Imaging

More information

Programming Project 2: Harmonic Vibrational Frequencies

Programming Project 2: Harmonic Vibrational Frequencies Programming Project 2: Harmonic Vibrational Frequencies Center for Computational Chemistry University of Georgia Athens, Georgia 30602 Summer 2012 1 Introduction This is the second programming project

More information

1 First and second variational formulas for area

1 First and second variational formulas for area 1 First and second variational formulas for area In this chapter, we will derive the first and second variational formulas for the area of a submanifold. This will be useful in our later discussion on

More information

Exercise 1: Inertia moment of a simple pendulum

Exercise 1: Inertia moment of a simple pendulum Exercise : Inertia moment of a simple pendulum A simple pendulum is represented in Figure. Three reference frames are introduced: R is the fixed/inertial RF, with origin in the rotation center and i along

More information

Estimation of Non-Negative ODFs using the Eigenvalue Distribution of Spherical Functions

Estimation of Non-Negative ODFs using the Eigenvalue Distribution of Spherical Functions Estimation of Non-Negative ODFs using the Eigenvalue Distribution of Spherical Functions Evan Schwab, Bijan Afsari, and René Vidal Center for Imaging Science, Johns Hopkins University Abstract. Current

More information

Rigid Body Rotation. Speaker: Xiaolei Chen Advisor: Prof. Xiaolin Li. Department of Applied Mathematics and Statistics Stony Brook University (SUNY)

Rigid Body Rotation. Speaker: Xiaolei Chen Advisor: Prof. Xiaolin Li. Department of Applied Mathematics and Statistics Stony Brook University (SUNY) Rigid Body Rotation Speaker: Xiaolei Chen Advisor: Prof. Xiaolin Li Department of Applied Mathematics and Statistics Stony Brook University (SUNY) Content Introduction Angular Velocity Angular Momentum

More information

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16. CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Principles of Measurement 6.3. The Pulse-Echo

More information

MATH 19520/51 Class 5

MATH 19520/51 Class 5 MATH 19520/51 Class 5 Minh-Tam Trinh University of Chicago 2017-10-04 1 Definition of partial derivatives. 2 Geometry of partial derivatives. 3 Higher derivatives. 4 Definition of a partial differential

More information

Topological insulator part I: Phenomena

Topological insulator part I: Phenomena Phys60.nb 5 Topological insulator part I: Phenomena (Part II and Part III discusses how to understand a topological insluator based band-structure theory and gauge theory) (Part IV discusses more complicated

More information

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science. CASA-Report September 2010

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science. CASA-Report September 2010 EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science CASA-Report 10-48 September 2010 A new tensorial framework for single-shell high angular resolution diffusion imaging by

More information

Solution of Matrix Eigenvalue Problem

Solution of Matrix Eigenvalue Problem Outlines October 12, 2004 Outlines Part I: Review of Previous Lecture Part II: Review of Previous Lecture Outlines Part I: Review of Previous Lecture Part II: Standard Matrix Eigenvalue Problem Other Forms

More information

Flight Dynamics & Control Equations of Motion of 6 dof Rigid Aircraft-Kinematics

Flight Dynamics & Control Equations of Motion of 6 dof Rigid Aircraft-Kinematics Flight Dynamic & Control Equation of Motion of 6 dof Rigid Aircraft-Kinematic Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Outline Rotation Matrix Angular Velocity Euler

More information

CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer

CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Monday October 3: Discussion Assignment

More information

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1 Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2a-d,g,h,j 2.6, 2.9; Chapter 3: 1a-d,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate

More information