A Tractable, Approximate, Combinatorial 3D rigidity characterization

Size: px
Start display at page:

Download "A Tractable, Approximate, Combinatorial 3D rigidity characterization"

Transcription

1 A Trtl, Approximt, Comintoril D riiity rtriztion Mr Sitrm Yon Zou Jun 0, 00 Astrt Tr is no known, trtl, rtriztion o D riiity o sts o points onstrin y pirwis istns or D istn onstrint rps. W iv omintoril pproximt rtriztion o su rps wi w ll moul-riiity, wi n trmin y polynomil tim loritm. W sow tt tis proprty is nturl n roust in orml sns. Riiity implis moul-riiity, n moulriiity siniintly improvs upon t nrliz Lmn r-o-rom or nsity ount. Spiilly, rps ontinin nns or ins [8] r not moul-rii, wil t nrliz Lmn ount woul lim riiity. T loritm tt ollows rom our rtriztion o moul-riiity ivs omplt omposition o non moul-rii rps into its mximl moul-rii surps. To put t rsult in prsptiv, it soul not tt, prior to t rnt loritm o [] tr ws no known polynomil tim loritm or otinin ll mximl surps o n input onstrint rp tt stisy t nrliz Lmn ount, spiilly wn ovronstrints or runnt onstrints r prsnt. T nw mto s n implmnt in t FRONTIER [], [5], [8], [9] opnsour D omtri onstrint solvr n s mny usul proprtis n prtil pplitions [0], [], [], [], []. Spiilly, t mto is us or onstrutin so-ll omposition-romintion (DR) pln or D omtri onstrint systms, wi is ruil to t t xponntil omplxity o solvin t (sprs) polynomil systm otin rom t ntir omtri onstrint systm. T DR-pln uis t lri-numri solvr y nsurin tt only smll susystms r vr solv. T nw, pproximt rtriztion o D riiity prmits FRONTIER to l wit r lrr lss o D onstrint systms ( lss qut or most pplitions) tn ny otr urrnt omtri onstrint solvr. Kywors: Comintoril Riiity, Vritionl omtri onstrint solvin, Cylil n D omtri onstrint systms, Domposition o omtri onstrint systms, Unronstrin n Ovronstrin systms, Dr o From nlysis, Constrint rps. Introution A D istn onstrint rp is wit rp wit vrtis rprsntin point ojts in D n s rprsntin istn onstrints twn t points. T wit o vrtx is, rprsntin its positionl rs o rom (o), n t wit o is, rprsntin t numr o rs o rom t onstrint rmovs. T onstrints n writtn s qurti qutions in vrils rprsntin t oorints o t points For xmpl, istn onstrint o twn two points (x, y, z ) n (x, y, z ) in D is writtn s (x x ) + (y y ) + (z z ) =. T rsultin D istn onstrint systm is si to nrilly rii, i it s t most initly mny inonrunt solutions (i.., its solution st, t orrsponin lri vrity, is init moulo rottions n trnsltions) in t nri s (i.., wn nri, lrilly inpnnt st o vlus is osn or t istn onstrints). Tus t proprty o nri riiity o istn onstrint systm - in inpnnt o t tul istn vlus - is in t proprty o t unrlyin istn onstrint rp lon. (W ll t orrsponin onstrint rp rii). On woul xpt purly omintoril rtriztion (n orrsponin loritm) or trminin riiity o istn onstrint rps. Wil Lmn s torm [9] ivs su rtriztion or D istn onstrint rps, no su rtriztion s n provn or D, ltou svrl onjturs Univrsity o Flori; Work support in prt y NSF Grnt CCR , NSF Grnt EIA orrsponin utor: sitrm@is.ul.u

2 xist [8]. A (rl) solution or min or rliztion o istn onstrint systm is somtims ll rmwork. Tr is rtriztion o riiity o istn onstrint rp usin so ll ininitsiml riiity o rmworks n t ssoit riiity mtrois [8]. Tis rtriztion ssrts ull nri rnk o so-ll riiity mtrix (its ntris r vtors trmin y t oorint positions o t onstrin pirs o points, xprss s intrmints). Howvr, tis rtriztion os not yil polynomil tim loritm or trminin riiity o istn onstrint rp. In t, non o t omintoril rtriztion onjturs pprs to trnslt to polynomil tim loritm. Hr, w opt irnt tk. W iv omintoril pproximt rtriztion o D riiity, wi w ll moul-riiity, wi n trmin y polynomil tim loritm. W sow tt tis proprty is nturl n roust in orml sns. Riiity implis moul-riiity, n moul-riiity siniintly improvs upon t nrliz Lmn r-o-rom or nsity ount. Spiilly, rps ontinin nns or ins [8] r not moul-rii, wil t nrliz Lmn ount woul lim riiity. Mor prisly: rii moul-rii nrliz Lmn or o rii (ontins nns n ins) T loritm tt ollows rom our rtriztion o moul-riiity s numr o usul proprtis. Mny o ts r s on t t tt t loritm ivs omplt omposition o non moul-rii rps into its mximl moul-rii surps. T nw mto s n implmnt in t FRONTIER [], [5], [8], [9] opnsour D omtri onstrint solvr (00 n 00 vrsions) n s mny prtil pplitions: omtri onstrint systms r us s suint, miniml, itl rprsnttions o omtri omposits in mny ontxts inluin mnil omputr i sin, rootis, molulr molin n tin omtry For rnt rviws o t xtnsiv litrtur on omtri onstrint solvin s,., [, 8, 6]. Most o t omtri onstrint solvrs so r l wit D onstrint systms, ltou som o t nwr ppros inluin [,, 6, 7] [5,, ] [0,,, 5], xtn to D onstrint systms. Ts onstrint solvrs v n ompr wit rspt to vrious orml prormn msurs in [6]. T nw, pproximt rtriztion o D riiity prmits FRONTIER to l wit r lrr lss o D onstrint systms ( lss qut or most pplitions) tn ny otr urrnt onstrint solvr. Most omtri onstrint solvrs rly on rursivly omposin t input onstrint systm into smll, nrilly rii susystms prior to solvin. Ts susystms r to n o-t-sl lri-numri solvr, n t solutions r romin to nrt solution to t ntir onstrint systm. Tis ompositionromintion (DR) pln (in in Stion.) is ruil to t t xponntil omplxity o solvin t (sprs) polynomil systm otin rom t ntir omtri onstrint systm, y uiin t lrinumri solvr tivly: only smll susystms r vr solv. It is lso ruil tt t DR-pln nrt iintly, rtinly in polynomil tim. As rsult, DR-plnnrs r usully rp loritms tt omintorilly trmin riiity o t susystms in t DR-pln. For t DR-pln to tivly ui t solvr, t susystms in t DR-pln n to rii so tt tir solutions n romin. Howvr, i t DR-plnnr soul rr ossionlly y lsly limin riiity, tis rror will tt urin t tul solvin pross. In Stion. w iv t si kroun on omtri onstrint rps, nri riiity, nrliz Lmn or o nlysis, DR-plns n tir si proprtis. T rtriztion o moul-riiity (n t orrsponin loritm) prsnt in Stion uil upon n ltrnt rtriztion (n orrsponin Frontir vrtx loritm) o [] o nrliz Lmn or o riiity or D omtri onstrint rps tt is s on DR-plns. Tis rtriztion s mny usul proprtis [], [], [], [0], [], [] wi r inrit y t nw moul-riiity rtriztion, spiilly us it ivs polynomil tim loritm or trminin omplt omposition into mximl o rii surps, i t rp is not o rii. Most importntly, t loritm works in t prsn o runnt or ovronstrints. Erlir rp loritms su s [9] or trminin o riiity rly on t rmovl o ovronstrints. Wil [0] provi mto or rmovin ovronstrints witout mkin t wol rp o unronstrin, tis oul mk o rii surps unronstrin. Hn mtos su s [9] o not provi omplt ompositions.. Constrint Grps, Drs o From, DR-Plns Gomtri onstrint rps r nrliztion o t istn onstrint rps to wi t nw rsults o tis ppr r rstrit. Howvr, t onpts in tis n t nxt stions pply to nrl onstrint rps

3 s wll. A omtri onstrint rp G = (V, E, w) is wit rp wit n vrtis (rprsntin omtri ojts) V n m s (rprsntin onstrints) E; w(v) is t wit o vrtx v n w() is t wit o, orrsponin to t numr o rs o rom vill to n ojt rprsnt y v n numr o rs o rom (os) rmov y onstrint rprsnt y rsptivly. Svrl D istn onstrint rps wos vrtis o wit (rprsntin points) n s o wit (rprsntin istn ) n oun in Fiurs,,,, 0. A surp A G tt stisis w(v) () A w() + D v A is ll ns, wr D is imnsion-pnnt onstnt, to sri low. Funtion (A) = A w() v A w(v) is ll nsity o rp A. Its mnitu is lso ll t nrliz Lmn or o ount, sin it is nturl nrliztion o Lmn s torm [9] tt ivs omintoril rtriztion o riiity or D istn onstrint rps. T onstnt D is typilly ( ) + wr is t imnsion. T onstnt D pturs t rs o rom o rii oy in imnsions. For D ontxts n Eulin omtry, w xpt D = n or D ontxts D = 6, in nrl. I w xpt t rii oy to ix wit rspt to lol oorint systm, tn D = 0. Nxt, w iv som purly omintoril proprtis o onstrint rps s on nsity. Ts will ltr sown to rlt to proprtis o t orrsponin onstrint systms. A ns rp wit nsity stritly rtr tn D is ll ovronstrin. A rp tt is ns n ll o wos surps (inluin itsl) v nsity t most D is ll o wllonstrin. A rp G is ll o wll-ovronstrin i it stisis t ollowin: G is ns, G s tlst on o ovronstrin surp, n s t proprty tt on rplin ll o ovronstrin surps y o wllonstrin surps (in ny mnnr), G rmins ns. A rp tt is o wllonstrin or o wll-ovronstrin is si to o rii or o lustr. A ns rp is miniml i it s no ns propr surp. Not tt ll miniml ns surps r o lustrs ut t onvrs is not t s. A rp tt is not o lustr is si to o unronstrin. I ns rp is not miniml, it oul in t n o unronstrin rp: t nsity o t rp oul t rsult o min surp o nsity rtr tn D. A trivil rp is ny rp tt rus (y rsolvin inins) to sinl point in D or to ix or vril lnt lin smnt in D. All ts trivil rps v rottionl symmtris n r o rii; t ormr two ss r truly rii n r o ovronstrin. To isuss ow t rp torti proprtis s on r o rom (o) nlysis sri ov rlt to orrsponin proprtis o t orrsponin onstrint systm, w n to introu t notion o nriity. Formlly w us t notion o nriity o., []. A proprty is si to ol nrilly or polynomils,..., n i tr is nonzro polynomil P in t oiints o t i su tt tis proprty ols or ll,..., n or wi P os not vnis. Tus t onstrint systm E is nrilly rii i tr is nonzro polynomil P in t oiints o t qutions o E - or t prmtrs o t onstrint systm - su tt E s t most initly mny zros moulo rottions n trnsltions, wn P os not vnis. For xmpl, i E onsists o istn onstrints, t prmtrs r t istns. Evn i E s no ovrt prmtrs, i., i E is m up o onstrints su s inins or tnnis or prpniulrity or prlllism, E in t s in prmtrs pturin t xtnt o inin, tnny, t., wi w onsir to t prmtrs o E. (Gnrilly ovronstrin systms v no zros wn P os not vnis n nrilly unronstrin systms v ininitly mny zros, i.., non-zro-imnsionl lri vrity; ot nrilly wllonstrin n nrilly ovronstrin systms r si to nrilly rii; t lttr r somtims rr to s runntly rii).. Inquy o nrliz Lmn or o nlysis A nrilly rii systm lwys ivs o lustr, ut t onvrs is not lwys t s. In t, tr r o wll-onstrin lustrs wos orrsponin systms r not nrilly rii n r in t nrilly not rii. T root us o ts mislssiitions is t prsn o in pnnt onstrints tt nnot oun y o ount.

4 Fiur : D onstrint systm rwn on D nvs ilustrtin t nns prolm; orrsponin onstrint rps v vrtis o wit n s o wit ; s txt or xplntion Consir or xmpl t Fiurs,,, rlt to t so-ll nns prolm in D, wi is typ o onstrint pnn ourrin in lr lss o D istn onstrint rps, ltou tis ttion is nontrivil. A o nlysis o t D onstrint systm in Fiur (top) woul rport t lt n rit susystms (P, P, P, P, P 5 n P, P 6, P 7, P 8, P 5 rsptivly) n t wol systm to o wllonstrin lustrs. Fiur (ottom) s t sm numr o onstrints, ut o nlysis woul rport ot tt t lt surp s o ovronstrin n t wol s o unronstrin. Fiur (lt) lso s t sm numr o onstrints n is o rii lustr. Howvr, wil t lt n rit susystms r (in t) nrilly rii, t wol systm is nrilly ovronstrin. In wll-in sns, tis us y onstrint pnn. On t otr n, wn rstrit to onsistntly ovronstrin situtions (tos ois o istns - su s in tis xmpl - tt r urnt to mit solution), t systm in Fiur (lt) is nrilly unronstrin, ltou t systm on Fiur (rit) is nrilly wllonstrin. In t, onstrint systm is nrilly ovronstin i t ommon ovrlp o ny sust o its o wllonstrin lustrs is o unronstrin. T ov nns is spil s o tis. Howvr, t o nlysis is inurt only in t nns sitution. Anotr stnr xmpl, in imnsions t rp K 7,6 rprsntin istns is miniml ns, n n o rii lustr, ut it os not rprsnt nrilly rii systm. Howvr, s mntion rlir, in imnsions, orin to Lmn s torm [9] i ll omtri ojts r points n ll onstrints r istn onstrints twn ts points tn ny miniml ns o rii lustr rprsnts nrilly rii systm. In t, tr is no known, trtl rtriztion o nri riiity o istn systms or or ir imnsions, s purly proprtis o t onstrint rp. In t vn in D, wil Lmn s torm [9] omintorilly rtrizs nri riiity o point n istn systms, tr r no known omintoril rtriztions o riiity, wn otr onstrints sis istns r involv. For xmpl, in t s o nl onstrints in D: lin smnts wit inin onstrints orm trinl wit *-* = 6 (rsp. *6-* = 9) rs o rom. It woul ppr tt to mk it wllonstrin, w n introu nl onstrints ( o wi rmovs o). But in t, tis woul mk it nrilly ovronstrin.. T n or omposition: o DR-plns n tir proprtis T ovrwlmin ost o solvin omtri onstrint systm is t siz o t lrst susystm tt is solv usin irt lri/numri solvr. Tis siz itts t prtil utility o t ovrll onstrint solvr, sin t tim omplxity o t onstrint solvr is t lst xponntil in t siz o t lrst su

5 Fiur : Moiitions to D systm in Fiur : o wllonstrin (DR-pln s sinl sour, top) n unronstrin ( DR-pln s mny sours, ottom); s txt or xplntion susystm. T DR-plnnr is rp loritm tt outputs omposition-romintion pln (DR-pln) o t onstrint rp. In t pross o omintorilly onstrutin t DR-pln in ottom up mnnr, t st i, it lots o rii surp S i in t urrnt onstrint rp G i, n uss n strt simpliition o S i to to rt trnsorm onstrint rp G i+. Domposition loritms s on onstrint rps v n propos sin t rly 90 s s on ronition o surp pttrns su s trinls [7, 5, 6, ] [0, ]; n s on Mximum Mtin [7, ]. Howvr, prior to [6], t DR-plnnin prolm n pproprit prormn msurs or t plnnrs wr not ormlly in. Tt ppr lso ivs tl omprin min typs o DR-plnnrs, wit rspt to ts prormn msurs. A susqunt ppr [7] prsnts t rmwork o DR-plnnr s on nrliz o nlysis (yon ttin spii pttrns) tt woul optimiz ts prormn msurs. T omplt o-s DR-plnnr, ll t Frontir vrtx DR-plnnr, s on tis rmwork, lon wit proprtis, proos n pplitions is prsnt in []. Ts r skt in Stion n orm t strtin point o t nw rtriztion o moul-riiity n t orrsponin loritm prsnt in Stion. Formlly, DR-pln o onstrint rp G is irt yli rp (DAG) wos nos rprsnt rii surps in G, n s rprsnt ontinmnt. T lvs or sinks o t DAG r ll t vrtis (primitiv lustrs) o G. T roots or sours r ll t mximl rii lustrs o G. In prtil DR-pln, t lst onition my not ol. Tr oul mny DR-plns or G. S Fiur. Not tt t inition o DR-plns is roust (s typ o Cur-Rossr proprty) in tt ny prtil DR-pln n xtn to otin DR-pln or G. I.., i t DR-pln is in uilt ottom up, ny onstrution pt will l to vli DR-pln. A o DR-pln is on wr o t lustrs is only rquir to o rii, n t roots r rquir to ll t mximl o rii lustrs o G. On n in prtil o DR-pln nloously: t o DR-pln inition is lso roust in tt ny prtil o DR-pln xtns to o DR-pln. An optiml (o) DR-pln is on tt minimizs t mximum n-in. T siz o (o) rii lustr in (o) DR-pln is its n-in (it rprsnts t siz o t orrsponin susystm, on its il lustrs r solv). All proprtis in or DR-plns trnsr s prormn msurs o t DR-plnnrs or DR-plnnin 5

6 Fiur : o ovronstrin lustrs in wll (sinl sour in DR-pln) n unronstrin (multipl sours in DR-pln) rps; s txt or xplntion 6

7 C0 C6 C7 i C C6 C7 C C C C0=S(D(G)) C C9 6 C5 8 C Fiur : D istn onstrint rp G n DR-pln; ll vrtis rprsnt points n v wit n s rprsnt istns n v wit loritms. It is sown in [], tt t prolm o inin t optiml DR-pln o onstrint rp is NPr, n pproximility rsults r sown only in spil ss. Nonpproximility rsults r not known. Tis is t s vn wn on is only intrst in o DR-pln. Howvr, most DR-plnnrs mk o ois urin omputtion (sy t orr in wi vrtis r onsir) n w n sk ow wll (los to optiml) t st omputtion pt o su DR-plnnr woul prorm (on t worst s input). W ll tis t st-oi pproximtion tor o t DR-plnnr. As w sll s in t nxt stion, oo (o) DR-pln is ruil not only or solvin iiny, ut or trminin (o) riiity o t input onstrint rp, s wll s or unronstrint ttion n ompltion [], [], is inispnsl or nvition o t solution sp, [], [], or lin wit ovronstrints, [0] n or iintly uptin t onstrint systm []. All o ts proprtis n oun in [9], [8]. A w otr proprtis o DR-plns r o intrst. W woul lik t wit i., numr o lustrs in t DR-pln to smll, prrly t most ui in t siz o G: tis rlts t omplxity o t DR-plnnr. Dtrminin o riiity vi omplt, mximl ompositions: T Frontir Vrtx Aloritm (FA) DR-Plnnr In tis stion, w irst iv n ltrntiv rtriztion o o riiity wi trnslts to usul proprty o o DR-plns ll o ompltnss. (W omit proos). Tn w skt rlvnt proprtis o Frontir vrtx DR-plns n t orrsponin DR-plnnr (FA DR-plnnr) [7, ] wi ollows tis rtriztion. Lt C omtri onstrint rp. Tn Q = {C,..., C m }, st o o rii propr surps o C, is omplt, mximl, o rii omposition o C i t ollowin ol. I tr is mximl, o rii propr surp o C tn it must ontin on o t C i in Q. Furtrmor, Q soul stisy on o t ollowin. Cs : m = n C n C intrst on nontrivil surp n tir union inus ll o C Cs : E o t C i s is nrly mximl wit rspt to t st Q in t ollowin sns: t only o rii propr surps o C tt stritly ontin C i intrst ll t otr surps C j, j i on nontrivil surps; T nxt torm ivs n ltrnt rtriztion o o riiity. Torm. Lt C omtri onstrint rp n Q = {C,..., C m }, omplt, mximl, o rii omposition o C. Tn C is o rii i n only i ( ) S Aj o ( (C i )) D, S Q wr (rll) D is t numr o os o rii oy, n Aj-o(C i ) is itr t numr o os (ntion o nsity) o C i i C i is trivil; or simply D i C i is nontrivil. Not tt i Cs ols, tn C is utomtilly o rii - in t, t irst proprty o Q is runnt. C i S 7

8 t t t s 0 0 s s 0 * Fiur 5: From Lt. Constrint rp G wit wit istriution. D is ssum to 0 (systm ix in oorint systm); A orrsponin low in iprtit G. Anotr possil low. Initil low ssinmnt tt rquirs ristriution T nxt lmm xplins t trtility o tis mto o trminin o riiity. Lmm. I C is not o rii, tn only Cs in t Dinition pplis. Furtrmor, Cs implis tt no pir o C i intrst on mor tn trivil surp. Tus (usin simpl Rmsy torti rumnt), m is t most O(n ), wr n is t numr o vrtis C. Furtrmor, t omputtion o t inlusion-xlusion ormul in Lmm. tks O(n ) tim. Tis ls to roust proprty o DR-plns usin wi t rtriztion n trnslt to n loritm. A o DR-pln P or omtri onstrint rp G is o omplt i t st Q o il lustrs o vry o lustr C in P is omplt, mximl, o rii omposition o C. Prtil o omplt DR-plns r in nloously s in Stion., n just s or, ny prtil o-omplt) DR-pln or onstrint rp G n xtn to o-omplt) DR-pln or G. T Frontir Vrtx DR-pln (FA DR-pln) Not. Trouout tis stion, unlss otrwis mntion, lustr mns o lustr, rii mns o rii, n DR-pln mns o DR-pln. Intuitivly, n FA DR-pln is uilt y ollowin two stps rptly:. Isolt lustr C in t urrnt rp G i (wi is lso ll t lustr rp or low rp or rsons tt will lr low). Ck n nsur omplt, mximl, o rii omposition o C.. Simpliy C into T (C), trnsormin G i into t nxt lustr rp G i+ = T (G i ) (t romintion stp)... Isoltin Clustrs T isoltion loritm, irst ivn in [, ] is moii inrmntl ntwork mximum low loritm. T ky routin is t istriution o n (s t DR-plnnr psuoo in t Appnix o Prt II) in t onstrint rp G. For, w try to istriut t wit w() + D + to on or ot o its npoints s low witout xin tir wits, rrr to s istriutin t. S DistriutE in t psuoo in Prt II, Appnix. Tis is st illustrt on orrsponin iprtit rp G : vrtis in on o its prts rprsnt s in G n vrtis in t son prt rprsnt vrtis in G; s in G rprsnt inin in G. As illustrt y Fiur 5, w my n to ristriut (in n umntin pt). I w r l to istriut ll s, tn t rp is not ns. I no ns surp xists, tn t low s loritm will trmint in O(n(m + n)) stps n nnoun tis t. I tr is ns surp, tn tr is n wos wit plus D + nnot istriut (s r istriut in som orr, or xmpl y onsirin vrtis in som orr n istriutin ll s onntin nw vrtx to ll t vrtis onsir so r). It n sown tt t sr or t umntin pt wil istriutin tis mrks t rquir ns rp. It n lso sown tt i t oun surp is not ovronstrin, tn it is in t miniml. I it is ovronstrin, [, ] iv n iint loritm to in miniml (non-trivil, i on xists) o lustr insi it. Tn [] ivs mto to nsur omplt, mximl, o rii omposition o C. 8

9 7 i C 0 9 C C Fiur 6: From lt: FA s simpliition o rp ivin DR-pln in Fiur ; lustrs r simplii in tir numr orr: C is simplii or C7 t... Clustr Simpliition Tis simpliition ws ivn in [7, 5]. T oun lustr C intrts wit t rst o t onstrint rp trou its rontir vrtis; i.., t vrtis o t lustr tt r jnt to vrtis not in t lustr. T vrtis o C tt r not rontir, ll t intrnl vrtis, r ontrt into sinl or vrtx. Tis or is onnt to rontir vrtx v o t simplii lustr T (C) y n wos wit is t t sum o t wits o t oriinl s onntin intrnl vrtis to v. Hr, t wits o t rontir vrtis n o t s onntin tm rmin unn. T wit o t or vrtx is osn so tt t nsity o t simplii lustr is D, wr D is t omtry-pnnt onstnt. Tis is importnt or provin mny proprtis o t FA DR-pln: vn i C is ovronstrin, T (C) s ovrll wit is tt o wllonstrin rp, (unlss C is rottionlly symmtri n trivil, in wi s, it rtins its o or wit). Tnilly, T (C) my not wllonstrin in t pris sns: it my ontin n ovronstrin surp onsistin only o rontir vrtis n s, ut its ovrll o ount is tt o wllonstrin rp. Fiur 6 illustrts tis itrtiv simpliition pross nin in t inl DR-pln o Fiur.. T Frontir Vrtx Aloritm (FA DR-plnnr) T lln mt y FA is tt it provly mts svrl omptin rquirmnts. Spiilly, it ivs o omplt DR-pln. T rp trnsormtion prorm y t FA lustr simpliition is sri ormlly in [7, 5] tt provi t voulry or provin rtin proprtis o FA tt ollow irtly rom tis simpliition. Howvr, otr proprtis o FA rquir tils o t tul DR-plnnr tt nsurs tm, n r rily skt r. Not: til psuoo o t FA DR-plnnr (t xistin vrsion, s wll s inorportin t moul-riity loritm o tis ppr) n oun in [5], [8]. T psuoo s n implmnt s prt o t ownlol, opnsour FRONTIER omtri onstrint solvr [], [5], [8], [9]. T si FA loritm is s on n xtnsion o t istriut routin or s (xplin ov) to vrtis n lustrs in orr or t isoltion loritm to work t n ritrry st o t plnnin pross, i., in t lustr or low rp G i. First, w rily sri tis si loritm. Nxt, w skt t prts o t loritm tt nsur ruil, intr-rlt proprtis o t output DR-pln: () nsurin o ompltnss; () or unronstrin rps: outputin omplt st o mximl lustrs s sours o t DR-pln; () ontrollin wit o t DR-pln to nsur polynomil tim loritm. Tr tstruturs r mintin. T urrnt low or lustr rp, G i t urrnt DR-pln (tis inormtion is stor ntirly in t irril strutur o lustrs t t top lvl o t DR-pln), n 9

10 lustr quu, wi is t top-lvl lustrs o t DR-pln tt v not n istriut so r, in t orr tt ty wr oun (s low or n xplntion o ow lustrs r istriut). W strt wit t oriinl rp (wi srvs s t lustr or low rp initilly, wr t lustrs r sinlton vrtis). T DR-pln onsists o t l or sink nos wi r ll t vrtis. T lustr quu onsists o ll t vrtis in n ritrry orr. T mto DistriutVrtx (s psuoo o Prt II, Appnix) istriuts ll s (lls DistriutE) onntin t urrnt vrtx to ll t vrtis onsir so r. Wn on o t s nnot istriut n miniml ns lustr C is isovr, its simpliition T (C) (sri ov) trnsorms t low rp. T lows on t intrnl s n t or vrtx r inrit rom t ol lows on t intrnl s n intrnl vrtis. Noti tt unistriut wits on t intrnl s simply isppr. T unistriut wits on t rontir s r istriut (witin t lustr) s wll s possil. Howvr, unistriut wits on t rontir s (s twn rontir vrtis) my still rmin i t rontir portion o t lustr is svrly ovronstrin. Ts v to lt wit rully. (S isussion on lin wit t prolms us y ovronstrints low.) T nw lustr is introu into t DR-pln n t lustr quu. Now w sri t mto DistriutClustr Assum ll t vrtis in t lustr quu v n istriut (itr ty wr inlu in ir lvl lustr in t DR-pln, or ty il to us t ormtion o lustr n ontinu to top lvl no o t DR-pln, ut v isppr rom t lustr quu). Assum urtr tt t DR-pln is not omplt, i.., its top lvl lustrs r not mximl. T nxt lvl o lustrs r oun y istriutin t lustrs urntly in t lustr quu. Tis is on y illin up t ols or t vill rs o rom o lustr C in istriut y D units o low. T PusOutSi mto sussivly onsirs inint on t lustr wit npoint outsi t lustr. It istriuts ny unistriut wit on ts s + xtr wit unit on o ts s. It n sown tt i C is ontin insi lrr lustr, tn tlst on su lustr will oun y tis mto on ll t lustrs urrntly in t lustr quu v n istriut. T nw lustr oun is simplii to iv nw low rp, n ts in t lustr quu, n t DR-pln s sri ov. Evntully, wn t lustr quu is mpty, i., ll oun lustrs v n istriut, t DR-pln s top lvl lustrs r urnt to t omplt st o mximl o rii surps o t input onstrint rp. S [] or orml proos. Not: Trouout, in t intrst o orml lrity, w lv out o, ut ily tiv uristis tt in simpl lustrs y voiin ull-l low. On su xmpl is ll squntil xtnsions wi utomtilly rts lrr lustr ontinin lustr C n vrtx v provi tr r tlst D s twn C n v. Ts n sily inorport into t low s loritm, provi rtin si invrints out istriut s is mintin (s low). Tis omplts t sription o t kon o t si FA DR-plnnr. Nxt w onsir som tils nsurin t proprtis () () ov... Ensurin o ompltnss First w intuitivly xplin wy o ompltnss is ruil proprty. In Fiur 7, tr C n C r oun, wn C is istriut, C n C woul pik up s lustr, ltou ty o not orm lustr. T prolm is tt t ovronstrin surp W intrsts C on trivil lustr, n W itsl s not n oun. H W n oun or C ws istriut, W woul v n simplii into wllonstrin surp n tis mislssiition woul not v ourr. It s n sown in [] tt tis typ o mislssiition n voi (W n or to oun tr C is oun), y mintinin tr invrints. T irst two r sri r. T tir is ily rlt to proprty () n is sri in t nxt sustion. T irst is t ollowin invrint: lwys istriut ll unistriut s onntin nw oun lustr C (or t lst istriut vrtx tt us C to oun), to ll t vrtis istriut so r tt r outsi t lustr C. Unistriut wit on s insi C r lss ruil: i ty om intrnl s o t lustr, tn tis unistriut wit ispprs wn C is simplii into wllonstrin lustr; tr is lso simpl mto o trtin unistriut wit on rontir s so tt ty lso o not us prolms - t mto n proo n oun in []). T son invrint tt is usul or nsurin o ompltnss is tt or ny lustr in t DR-pln, no 0

11 W W C C i j Fiur 7: Finin W irst will prvnt o mislssiition: Lt D xmpl, Rit D xmpl. C C C C C C C C C C C C C C, Fiur 8: Ensurin Clustr Minimlity: E is st o ssntil lustrs tt must prsnt in ny sust o t ilrn o C tt orm lustr. In tis s, E itsl orms lustr. C is lustr m up o propr sust o t lst o C s ilrn propr sust o tlst o its il lustrs orms lustr. W ll tis proprty lustr minimlity. FA nsurs tis usin nrliztion o t mto Miniml o [, ] wi ins miniml ns surp insi ns surp lot y DistriutVrtx n DistriutE. S Fiur 8. On lustr C is lot n s ilrn C,..., C k, or k, rursiv mto lusmin rmovs on lustr C i t tim (rplin rlir rmovls) rom C n ros t low insi t low rp rstrit to C, or C s simpliition. I propr sust o tlst C j s orms lustr C, tn t lusmin loritm is rpt insi C n trtr in C in, rplin t st o il lustrs o C tt r insi C y sinl il lustr C. I inst no su lustr is oun, tn t rmov lustr C i t ssntil. I.., it lons to vry sust o C s ilrn tt orms lustr. Wn t st o lustrs itsl orms lustr E (usin o ount), tn lusmin is ll on C in wit nw il lustr E rplin ll o C s ilrn insi E... () Finin omplt st o mximl lustrs in unronstrin rps Wil t DR-plnnr sri so r urnts tt t trmintion, top lvl lustrs o t DR-pln r mximl. It lso urnts tt t oriinl rp is o unronstrin only i tr is mor tn on top lvl lustr in t DR-pln. Howvr, in orr to urnt tt ll t mximl lustrs o n unronstrin rp ppr s top lvl lustrs o t DR-pln, w us t osrvtion tt ny pir o su lustrs intrst on surp tt rus (on inin onstrints r rsolv) into trivil surp ( sinl point in D or sinl in D). Tis ouns t totl numr o su lustrs n ivs simpl mto or inin ll o tm. On t DR-plnnr trmints wit st o mximl lustrs, otr mximl lustrs r oun y simply prormin Pusoutsi o units on vry vrtx (in D) or vry vrtx n (in D), n ontinuin wit t oriinl DR-plnnin pross until it trmints wit lrr st o mximl lustrs. Tis is prorm or vrtx in D n in D wi urnts tt ll mximl lustrs will oun. S [] or proos... () Controllin wit o t DR-pln FA ivs linr oun on DR-pln wit y mintinin t ollowin invrint o t lustr or low rp: vry pir o lustrs in t low rp (top lvl o t DR-pln) t ny st intrst on t most trivil

12 C C5 i C C i Fiur 9: Prvnt umultion o lustrs surp. FA os tis y rptly prormin oprtions tim nw potntil lustr is isolt. T irst is n nlrmnt o t oun lustr. In nrl, nw oun lustr N is nlr y ny lustr D urrntly in t low rp, i tir nonmpty intrstion is not rottionlly symmtri or trivil surp. In tis s, N nitr ntrs t lustr rp nor t DR-Pln. Only N D ntrs t DR-pln, s prnt o ot D n t otr ilrn o N. It is sy to s tt t sizs o t susystms orrsponin to ot N D n N r t sm, sin D woul lry solv. For t xmpl in Fiur 9, wn t DR-pln ins t lustr C tr C, t DR-plnnr will in tt C n nlr y C T DR-plnnr orms nw lustr C s on C n C n puts C into t lustr quu, inst o puttin C to lustr quu. T son oprtion is to itrtivly omin N D wit ny lustrs D, D,... s on nonmpty ovrlp tt is not rottionlly symmtri or trivil. In tis s, N D D, N D D D t. ntr t DR-pln s stirs, or in, ut only t sinl lustr N D D D..... ntrs t lustr rp tr rmovin D, D, D.... Oours, ot o ts prosss r istint rom t oriinl low istriution pross tt lots lustrs. Moul-Riiity: Crtriztion n Aloritm W iv rursiv inition o D moul-riiity (lon wit inition o moul-omplt DR-plns) n sow tt it is nturl n roust rtriztion. Tn w skt n xtnsion o t FA loritm in orr to trmin moul-riiity y onstrutin moul-omplt DR-plns. W ollow wit numr o xmpls o rps tt r o rii ut not moul-rii. Lt C D istn onstrint rp. Lt E, C,..., C k propr surps o C. W sy tt C,..., C k r,c E (r: implis riiity o) i y mkin C,..., C m omplt rps (y in itionl s), E oms rii. Anloously, w in n m y ssrtin o riiity n moul-riiity (to in low) s t rit n si o t implition, rsptivly. Lt C D istn onstrint rp. C is moul-rii i: Bs s: it is trivil n o rii. Or t ollowin ols. Lt Q = {C,..., C m } ny omplt, mximl, moul omposition o C. Tis is in s ollows. Lt φ m,c, t trnsitiv losur o t mpty st unr m,c, i.., i tr is propr surp E o C s.t. itr it is moul-rii, or tr is som st o moul-rii propr surps C,..., C k o C s.t. C,..., C k m,c, E, tn E lons to φ m,c,. Lt Q ny sust {C,..., C m } o φ m,c, s.t. Cs : m = ; C n C intrst on nontrivil surp n tir union inus ll o C. Or, t ollowin ols. Cs : Any mximl surp in φ m,c, must ontin on o t C i in Q. E o t C i s is nrly mximl wit rspt to t st Q in t ollowin sns: t only lmnts o φ m,c, tt stritly ontin C i intrst ll t otr surps C j, j i on nontrivil surps.

13 Tn C is moul-rii i ( ) S Aj o ( (C i )) D, S Q wr (rll) D is t numr o os o rii oy, n Aj-o(C i ) is itr t numr o os (ntion o nsity) o C i i C i is trivil; or simply D i C i is nontrivil. Osrvtion. Evry moul-rii rp is o rii; n vry rii rp is moul-rii. C i S T nxt lmm sows t trtility o t ov rtriztion. Lmm. Lt Q = {C,..., C m } ny st o propr surps o C tt orm omplt, mximl, moul omposition o C. Tis implis tt i m >, tn no pir o C i intrst on mor tn trivil surp. Tus m is t most O(n ), wr n is t numr o vrtis C. Tus, t omputtion o t inlusion-xlusion ormul in Dinition tks O(n ) tim. Usin t ov lmm, t ollowin inition sows t us o so-ll moul-omplt DR-plns to iintly trmin moul riiity. A moul DR-pln P or D istn onstrint rp G is prtil orr wr no rprsnts surp in φ m,g, or G itsl, i G is moul rii. T orrin is y ontinmnt. Ts nos r ll moul lustrs (to ruilly irntit rom moul-rii surps o G, wi w ll inrnt moul lustrs). T lvs r t oriinl vrtis o G. E no in t sudr-pln root t no C rprsnts surp in φ m,c, or C itsl, i C is moul-rii, or n inrnt moul lustr. I G is moul-rii, tr is sinl sour lustr; i G is not moul-rii, t roots or sours orm is omplt, mximl, moul omposition o G. A prtil moul DR-pln os not v to stisy t onitions on t roots or sours. A moul DR-Pln is moul-omplt i t st Q o il lustrs o vry moul lustr C in P is omplt, mximl, moul omposition o C. A moul DR-pln is typilly in to ontin itionl inormtion y inorportin notr prtil orr ll t solvin priority orr, wi is onsistnt wit t moul DR-pln s DAG orr, ut oul mor rin. T intnt is tt moul-riiity o moul lustrs tt ppr ltr in t orr pn on lustrs tt ppr rlir. I.., t orrin rlts t numr o pplitions o m rquir to in moul lustr. T nxt torm sows tt moul-riiity is roust. I.., t orr o ottom-up onstrution o moul(- omplt) DR-plns is immtril, typ o Cur-Rossr proprty. Torm. I rp G is moul-rii, tn vry prtil, moul(-omplt) DR-pln or G n xtn to moul(-omplt) DR-pln. Moiition o FA to trmin moul riiity T ov isussion tivly lys out trtl mto or trminin moul-riiity y omputin moul-omplt DR-plns ottom up. Tis is on y xtnin t o-omplt DR-plnnr FA ivn in t prvious stion s ollows. First not tt y usin FA w urnt no ls ntivs, sin moul-rii implis o-rii. W now skt ow to limintin o-rii rps tt r not moul-rii. T FA DRplnnr runnin on n input rp G uss DistriutClustr (low) on t urrnt st S o o rii lustrs to isolt o lustr nit C, n trtr onstruts omplt, mximl, o rii omposition o it, tr wi it is wtr nw o-rii lustr C s n oun, usin t o-rii rtriztion o Stion. Tis is t ky point o xtnsion. W us t nloy twn tis o-rii rtriztion n t moul-rii rtriztion t t innin o tis Stion. Inutivly, w n ssum tt t urrnt st S onsists o moul-rii surps o G or inrnt moul lustrs. T mto o onstrution o omplt, mximl, moul omposition Q o t nit (inrnt moul) lustr C n on witout onstrutin φ m,c,, y onstrutin squn o Q i s o wi stisis t ov onitions on Q, ut wit rspt to φ m,c,i (i., losur wit rspt to i pplitions o t m oprtion). Tis squn rs ix point t Q. W iv xmpls tt illustrt t us o moul-riiity.

14 j C i C5 C C C C C C6 C C C5 C C C Fiur 0: Exmpls wr moul-riiity ts o riiity. S txt or xplntion. In Fiur 0 Top Lt: t rp is o rii, ut not moul-rii, s sn y t omplt mximl moul omposition sown. Top Rit: moul-rii, ut no pir o inrnt moul lustrs sown orms moulrii surp, ty o orm o-rii surps. Bottom: not moul-rii ut o rii; omplt mximl moul omposition n solvin priority orrs s ollows: t pir C, C is n inrnt moul lustr C 5 ut tt C 5 n solv only tr C is solv; I.., or t virtul (, ) is, C n C woul not pik up totr s lustr nit. Similrly, it will lso trmin tt C 5, C orm lustr C 6, ut solvin priority orr sown. Bottom Rit: moul-omplt DR-pln or lt onstrint systm wit sours or roots: C 6 n C. Fiur sows lssi rp rom [, 5], wit ins, wi is not moul-rii ut is o rii. A omplt mximl, moul omposition is sown. T mil lustr C is not n inrnt moul lustr, ltou C n C r. Opn Prolm A qustion tt immitly riss is to rlt t rtriztion ivn r to riiity mtrois n stnr onjturs on omintoril riiity rtriztions or D [8]. Rrns [] S. Ait-Aoui, R. Jou, n D. Milui. Rution o onstrint systms. In Compurpis, ps 8 9, 99. [] B. Brurlin. Construtin tr-imnsionl omtri ojt in y onstrints. In ACM SIG- GRAPH. Cpl Hill, 986.

15 i C j C k. Fiur : Clssi Hin xmpl: not moul-rii, ut o rii [] D. Cox, J. Littl, n D. O S. Usin lri omtry. Sprinr-Vrl, 998. [] Hnry Crpo. Struturl riiity. Struturl Topoloy, :6 5, 979. [5] Hnry Crpo. T ttrrl-otrl truss. Struturl Topoloy, 7:5 6, 98. [6] I. Fuos. Gomtri Constrint Solvin. PD tsis, Puru Univrsity, Dpt o Computr Sin, 995. [7] I. Fuos n C. M. Homnn. A rp-onstrutiv ppro to solvin systms o omtri onstrints. ACM Trnstions on Grpis, 6:79 6, 997. [8] Jk E. Grvr, Briitt Srvtius, n Hrmn Srvtius. Comintoril Riiity. Grut Stuis in Mt., AMS, 99. [9] B. Hnrikson. Conitions or uniqu rp rliztions. SIAM J. Comput., :65 8, 99. [0] C Homn, M Sitrm, n B Yun. Mkin onstrint solvrs mor usl: t ovronstrint prolm. to ppr in CAD, 00. [] C. M. Homnn, A. Lomonosov, n M. Sitrm. Finin solvl susts o onstrint rps. In Smolk G., itor, Sprinr LNCS 0, ps 6 77, 997. [] C. M. Homnn, A. Lomonosov, n M. Sitrm. Gomtri onstrint omposition. In Brurlin B. n Rollr D., itors, Gomtri Constr Solvin n Appl, ps 70 95, 998. [] Cristop M. Homnn, Anrw Lomonosov, n Mr Sitrm. Finin solvl susts o onstrint rps. In Constrint Prormmin 97 Ltur Nots in Computr Sin 0, G. Smolk E., Sprinr Vrl, Linz, Austri, 997. [] Cristop M. Homnn, Anrw Lomonosov, n Mr Sitrm. Gomtri onstrint omposition. In Brurlin n Rollr E.s, itors, Gomtri Constrint Solvin. Sprinr-Vrl,

16 [5] Cristop M. Homnn, Anrw Lomonosov, n Mr Sitrm. Plnnin omtri onstrint ompositions vi rp trnsormtions. In AGTIVE 99 (Grp Trnsormtions wit Inustril Rlvn), Sprinr ltur nots, LNCS 779, s Nl, Surr, Mun, ps 09, 999. [6] Cristop M. Homnn, Anrw Lomonosov, n Mr Sitrm. Domposition o omtri onstrints systms, prt i: prormn msurs. Journl o Symoli Computtion, (), 00. [7] Cristop M. Homnn, Anrw Lomonosov, n Mr Sitrm. Domposition o omtri onstrints systms, prt ii: nw loritms. Journl o Symoli Computtion, (), 00. [8] G. Krmr. Solvin Gomtri Constrint Systms. MIT Prss, 99. [9] G. Lmn. On rps n riiity o pln skltl struturs. J. Enr. Mt., : 0, 970. [0] R. Ltm n A. Milit. Conntivity nlysis: tool or prossin omtri onstrints. Computr Ai Dsin, 8:97 98, 996. [] Anrw Lomonosov n Mr Sitrm. Grp loritms or omtri onstrint solvin. In sumitt, 00. [] A. Milit n C. R. A krnl or omtri turs. In ACM/SIGGRAPH Symposium on Soli Molin Fountions n CAD/CAM Applitions. ACM prss, 997. [] J. J. Oun, M. Sitrm, B. Moro, n A. Arr. Frontir: ully nlin omtri onstrints or tur s sin n ssmly. In strt in Proins o t ACM Soli Molin onrn, 00. [] J. Own. In D-u ommril omtri onstrint solvin sotwr. [5] J. Own. Alri solution or omtry rom imnsionl onstrints. In ACM Symp. Foun. o Soli Molin, ps 97 07, Austin, Tx, 99. [6] J. Own. Constrints on simpl omtry in two n tr imnsions. In Tir SIAM Conrn on Gomtri Dsin. SIAM, Novmr 99. To ppr in Int J o Computtionl Gomtry n Applitions. [7] J.A. Pon. Molin mto or sortin pnnis mon omtri ntitis. In US Stts Ptnt 5,5,90, Ot 99. [8] M Sitrm. Frontir, n opnsour omtri onstrint solvr: loritms n rittur. monorp, in prprtion, 00. [9] M Sitrm. Grp s omtri onstrint solvin: prolms, prorss n irtions. In Dutt, Jnrn, n Smi, itors, AMS-DIMACS volum on Computr Ai Dsin, 00. [0] M Sitrm n M Anj-Mknn. A omtry n tnsrity s virus ssmly ptwy mol. sumitt, vill upon rqust, 00. [] M Sitrm, A Arr, Y Zou, n N Korswrn. Solution mnmnt n nvition or omtri onstrint systms. sumitt, vill upon rqust, 00. [] M Sitrm, J Oun, n A Arr. Eiint unronstrin ompltions, upts n on lin solution o nrl omtri onstrint rps. sumitt, vill upon rqust, 00. [] M Sitrm, J Ptrs, n Y Zou. Solvin miniml, wllonstrin, omtri onstrint systms: omintoril optimiztion o lri omplxity. sumitt to ADG 00, vill upon rqust, 00. [] M Sitrm n Y Zou. Mixin turs n vritionl onstrints in. sumitt, vill upon rqust, 00. [5] Mr Sitrm. Frontir, opnsour nu omtri onstrint solvr: Vrsion (00) or nrl systms; vrsion (00) or n som systms; vrsion (00) or nrl n systms. In ttp:// sitrm, ttp://

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Geometric constraints within Feature Hierarchies

Geometric constraints within Feature Hierarchies Gomtri onstrints witin Ftur Hirris Mr Sitrm Jin-Jun Oun Yon Zou Am Arr April 8, 005 Astrt W stuy t prolm o nlin nrl D n D vritionl onstrint rprsnttion to us in onjuntion wit tur irry rprsnttion, wr som

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Revisiting Decomposition Analysis of Geometric Constraint Graphs

Revisiting Decomposition Analysis of Geometric Constraint Graphs Rvisitin Domposition Anlysis o Gomtri Constrint Grps R. Jon-Arinyo A. Soto-Rir S. Vil-Mrt J. Vilpln-Pstó Univrsitt Politèni Ctluny Dprtmnt Llnuts i Sistms Inormàtis Av. Dionl 647, 8, E 08028 Brlon [rort,

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014 Grp Aloritms n Comintoril Optimiztion Dr. R. Cnrskrn Prsntrs: Bnjmin Frrll n K. Alx Mills My 7t, 0 Mtroi Intrstion In ts ltur nots, w mk us o som unonvntionl nottion or st union n irn to kp tins lnr. In

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures 1 (4, )-oosility o plnr rps wit orin struturs 4 5 Znr Brikkyzy 1 Cristopr Cox Mil Diryko 1 Kirstn Honson 1 Moit Kumt 1 Brnr Liiký 1, Ky Mssrsmit 1 Kvin Moss 1 Ktln Nowk 1 Kvin F. Plmowski 1 Drrik Stol

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then:

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then: Assinmnts: DFA Minimiztion CMPU 24 Lnu Tory n Computtion Fll 28 Assinmnt 3 out toy. Prviously: Computtionl mols or t rulr lnus: DFAs, NFAs, rulr xprssions. Toy: How o w in t miniml DFA or lnu? Tis is t

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Physics 222 Midterm, Form: A

Physics 222 Midterm, Form: A Pysis 222 Mitrm, Form: A Nm: Dt: Hr r som usul onstnts. 1 4πɛ 0 = 9 10 9 Nm 2 /C 2 µ0 4π = 1 10 7 tsl s/c = 1.6 10 19 C Qustions 1 5: A ipol onsistin o two r point-lik prtils wit q = 1 µc, sprt y istn

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

STRUCTURAL GENERAL NOTES

STRUCTURAL GENERAL NOTES UILIN OS: SIN LOS: RUTURL NRL NOTS NRL NOTS: US ROUP: - SSMLY USS INTN OR PRTIIPTION IN OR VIWIN OUTOOR TIVITIS PR MIIN UILIN O STION. SSONL. T UNTION O TIS ILITY IS NOT OR QUIPP OR OUPNY URIN WINTR/ TIN

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 0, No. 0, pp. 000 000 2009 Soity or Inustril n Appli Mtmtis THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS HAL KIERSTEAD, BOJAN MOHAR, SIMON ŠPACAPAN, DAQING

More information

MCS100. One can begin to reason only when a clear picture has been formed in the imagination.

MCS100. One can begin to reason only when a clear picture has been formed in the imagination. 642 ptr 10 Grps n Trs 46. Imin tt t irmsown low is mp wit ountris ll. Is it possil to olor t mp wit only tr olors so tt no two jnt ountris v t sm olor? To nswr tis qustion, rw n nlyz rp in wi ountry is

More information

VLSI Testing Assignment 2

VLSI Testing Assignment 2 1. 5-vlu D-clculus trut tbl or t XOR unction: XOR 0 1 X D ~D 0 0 1 X D ~D 1 1 0 X ~D D X X X X X X D D ~D X 0 1 ~D ~D D X 1 0 Tbl 1: 5-vlu D-clculus Trut Tbl or t XOR Function Sinc 2-input XOR t wors s

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

Indices. Indices. Curriculum Ready ACMNA: 209, 210, 212,

Indices. Indices. Curriculum Ready ACMNA: 209, 210, 212, Inis Inis Curriulum Ry ACMNA: 09, 0,, 6 www.mtltis.om Inis INDICES Inis is t plurl or inx. An inx is us to writ prouts o numrs or pronumrls sily. For xmpl is tully sortr wy o writin #. T is t inx. Anotr

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms 0/0/ CS/ENGRD 0 Ojt- Orint Prormmin n Dt Strutur Fll 0 Dou Jm Ltur 9: DFS, BFS & Shortt Pth Toy Rhility Dpth-Firt Srh Brth-Firt Srh Shortt Pth Unwiht rph Wiht rph Dijktr lorithm Rhility Alorithm Dpth Firt

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Multi-criteria p-cycle network design

Multi-criteria p-cycle network design Multi-ritri p-yl ntwork sin Hmz Dri, Brnr Cousin, Smr Lou, Miklos Molnr To it tis vrsion: Hmz Dri, Brnr Cousin, Smr Lou, Miklos Molnr. Multi-ritri p-yl ntwork sin. r IEEE Conrn on Lol Computr Ntworks (LCN

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

CS150 Sp 98 R. Newton & K. Pister 1

CS150 Sp 98 R. Newton & K. Pister 1 Outin Cok Synronous Finit- Mins Lst tim: Introution to numr systms: sin/mnitu, ons ompmnt, twos ompmnt Rviw o ts, ip ops, ountrs Tis tur: Rviw Ts & Trnsition Dirms Impmnttion Usin D Fip-Fops Min Equivn

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

CMSC 451: Lecture 2 Graph Basics Thursday, Aug 31, 2017

CMSC 451: Lecture 2 Graph Basics Thursday, Aug 31, 2017 Dv Mount CMSC 45: Ltur Grph Bsis Thursy, Au, 07 Rin: Chpt. in KT (Klinr n Tros) n Chpt. in DBV (Dsupt, Ppimitriou, n Vzirni). Som o our trminoloy irs rom our txt. Grphs n Dirphs: A rph G = (V, E) is strutur

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Slide-and-swap permutation groups. Onyebuchi Ekenta, Han Gil Jang and Jacob A. Siehler. (Communicated by Joseph A. Gallian)

Slide-and-swap permutation groups. Onyebuchi Ekenta, Han Gil Jang and Jacob A. Siehler. (Communicated by Joseph A. Gallian) msp INVOLVE 7:1 (2014) x.oi.or/10.2140/involv.2014.7.41 Sli-n-swp prmuttion roups Onyui Eknt, Hn Gil Jn n Jo A. Silr (Communit y Josp A. Gllin) W prsnt simpl til-sliin m tt n ply on ny 3-rulr rp, nrtin

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Applications: The problem has several applications, for example, to compute periods of maximum net expenses for a design department.

Applications: The problem has several applications, for example, to compute periods of maximum net expenses for a design department. A Gntl Introution to Aloritms: Prt III Contnts o Prt I: 1. Mr: (to mr two sort lists into sinl sort list.). Bul Sort 3. Mr Sort: 4. T Bi-O, Bi-Θ, Bi-Ω nottions: symptoti ouns Contnts o Prt II: 5. Bsis

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

Module 2 Motion Instructions

Module 2 Motion Instructions Moul 2 Motion Instrutions CAUTION: Bor you strt this xprimnt, unrstn tht you r xpt to ollow irtions EXPLICITLY! Tk your tim n r th irtions or h stp n or h prt o th xprimnt. You will rquir to ntr t in prtiulr

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Yehuda Lindell Bar-Ilan University

Yehuda Lindell Bar-Ilan University Wintr Shool on Sur Computtion n iiny Br-Iln Unirsity, Isrl 3//2-/2/2 Br Iln Unirsity Dpt. o Computr Sin Yhu Linll Br-Iln Unirsity Br Iln Unirsity Dpt. o Computr Sin Protool or nrl sur to-prty omputtion

More information

Distributed community detection over dynamic networks using neighborhood similarity

Distributed community detection over dynamic networks using neighborhood similarity ERCIM SNA WG Aloritmi Aspts o Soil Ntwork Anlysis Guillum-Jn Hrit Mr, 11t 2010, UCD, Dulin Distriut ommunity ttion ovr ynmi ntworks usin nioroo similrity Rtionl or tis ppro 2 Rtionl or tis ppro In wirlss

More information

Round 7: Graphs (part I)

Round 7: Graphs (part I) Roun 7: Grphs (prt I) Tommi Junttil Alto Univrsity Shool o Sin Dprtmnt o Computr Sin CS-A40 Dt Struturs n Alorithms Autumn 207 Tommi Junttil (Alto Univrsity) Roun 7 CS-A40 / Autumn 207 / 55 Topis: Grphs

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Extnsions: Mtin Rsints to Hospitls CS 580: Aloritm Dsin n Anlysis Ex: Mn ospitls, Womn m sool rsints. Vrint 1. Som prtiipnts lr otrs s unptl. 1.2 Fiv Rprsnttiv Prolms Vrint 2. Unqul numr o mn n womn. rsint

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

Experiment # 3 Introduction to Digital Logic Simulation and Xilinx Schematic Editor

Experiment # 3 Introduction to Digital Logic Simulation and Xilinx Schematic Editor EE2L - Introution to Diitl Ciruits Exprimnt # 3 Exprimnt # 3 Introution to Diitl Loi Simultion n Xilinx Smti Eitor. Synopsis: Tis l introus CAD tool (Computr Ai Dsin tool) ll Xilinx Smti Eitor, wi is us

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work? E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit

More information