HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

Size: px
Start display at page:

Download "HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006"

Transcription

1 MIT OpenCourseWare HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit:

2 HST.583: Functional Magnetic Resonance Imaging: Data Acquisition and Analysis, Fall 2006 Harvard-MIT Division of Health Sciences and Technology Course Director: Dr. Randy Gollub. Measuring Water Diffusion In Biological Systems Using Nuclear Magnetic Resonance Image removed due to copyright restrictions. "Diffusion-weighted axial image" Karl Helmer HST 583, 2006

3 Why Would We Want to Measure the Self - Diffusion Coefficient of Water In Biological Tissue?

4 Why Would We Want to Measure the Self - Diffusion Coefficient of Water In Biological Tissue? We Don t.

5 Why Would We Want to Measure the Self - Diffusion Coefficient of Water In Biological Tissue? We Don t. What we are really interested in is how what we measure for a diffusion-weighted signal reflects the structure of the sample.

6 Why Would We Want to Measure the Self - Diffusion Coefficient of Water? We Don t. What we are really interested in is how what we measure for a diffusion-weighted signal reflects the structure of the sample. So, what are we measuring???

7 How Can the Diffusion Coefficient Reflect Sample Structure? Self-diffusion in bulk samples is a wellunderstood random process - Displacement (z) has a Gaussian probability distribution <z 2 > 1/2 = (2nDt) 1/2 probability(t) Courtesy of InductiveLoad. D = Self-Diffusion Coefficient n = # of dimensions z

8 How Can We Measure the Diffusion Coefficient of Water Using NMR?

9 How Can We Measure the Diffusion Coefficient of Water Using NMR? We Can t.

10 How Can We Measure the Diffusion Coefficient of Water Using NMR? We Can t. Instead we measure the displacement of the ensemble of spins in our sample and infer the diffusion coefficient.

11 How can we measures the (mean) displacement of water molecules using NMR? g(z) is a magnetic field added to B 0 that varies with position. ω(z) = γ (B 0 + g(z) z)

12 How can we measures the (mean) displacement of water molecules using NMR? z = 0 Tagging the initial position using phase of M z Applying g(z) for a time δ results in a phase shift that depends upon location in z

13 Now, after waiting a time we apply an equal gradient, but with the opposite sign Apply -g(z) for a time δ z if no diffusion: signal = M 0

14 But, in reality, there is always diffusion so we find that: Apply -g(z) for a time δ z if diffusion: signal = M 0 e (-q2 Dt) (t = - δ/3) q = q(g)

15 DW Spin Echo Pulse Sequences π/2 π δ Δ δ = gradient duration Δ = separation of gradient leading edges

16 But what do we do with: signal = M = M 0 e (-q2 Dt)? One equation, but two unknowns (M 0, D) How do we get another equation?

17 Change the diffusion-sensitizing gradient to a different value and acquire more data. q 2 t b = q 2 t = 0 ln(m) Slope = D Intercept = ln(m 0 ) b = q 2 t 0

18 Unrestricted Diffusion r' r

19 Restricted Diffusion r r'

20 The effect of barriers to the free diffusion of water molecules is to modify their probability distribution. P(z) Diffusion coefficient decreases with increasing diffusion time

21 Determination of D? Slope = D t dif ln(m/m0) bead pack water -5-6 bulk water Slope = D 0 t dif q 2 x 10 7 [1/cm 2 ] a = 15.8 μm bead pack, t dif = 50 ms, δ = 1.5 ms, g(max) = 72.8 G/cm See Helmer, et al. NMR in Biomedicine 8 (1995):

22 Water Diffusion in an Ordered System High q 0-1 ln(m/m0) π/a q 2 k 2 x 10 7 [1/cm 2 ] a = 15.8 μm bead pack, t dif = 100 ms

23 Short diffusion times: Long diffusion times:

24 D (t dif ) gives information on different length scales 160 S/V T = tortuosity S/V = surface-to-volume ratio D (t) D(t) x 10-7 [cm 2 /sec] ] /T t 1/2 [sec 1/2 ] a = 15.8 μm bead pack t

25 DW-Weighted Tumor Data ln M(q,t)/M(0,t) q 2 [x10-9 m -2 ] 150 t dif = 42 ms 92 ms 192 ms 292 ms 492 ms D(t) Apparent Diffusion Coefficient (ADC)

26 ADC(t) for water in a RIF-1 Mouse Tumor D(t) 10 5 [cm 2 /s] Necrosis!! (t) 1/2 [s 1/2 ]

27 ADC for water in a RIF-1 Mouse Tumor Control Day 1 Day 2 Day 3 Day 4 > 255 x10-7 ADC cm 2 /sec 1 x 10-7 Tumor Volume 0.68 cm cm cm cm 3 Day 5 Day 6 Histology ADC Tumor Volume 1.70 cm cm 3

28 ADC for water in a RIF-1 Mouse Tumor Treatment, 100mg/kg 5-FU Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 ADC Tumor Volume 0.60 cm cm cm cm cm cm 3 > 255 x10-7 cm 2 /sec 1 x 10-7 ADC Day 7 Day 8 Day 9 Day 10 Day 11 Histology > 255 x10-7 cm 2 /sec 1 x 10-7 Tumor Volume 1.13 cm cm cm cm cm 3

29 ADC av Maps vs Post-Occlusion Time Rat Brain 30 min Occlusion See Fuhai Li, M. D., K. Helmer, et al. "Secondary Decline in Apparent Diffusion Coefficient and Neurological Outcomes after a Short Period of Focal Brain Ischemia in Rats." Ann Neurol 48, no. 2 (2000): 236. MCAO 2 hr 3 hr 4 hr 5 hr 6 hr 7 hr 8 hr 9 hr 10 hr 11 hr 12 hr ADC (x10-5 mm 2 /s) ROI Positions < 30 > 60

30 80 ADC av Maps vs Post-Occlusion Time Rat Brain 30 min Occlusion Temporal ADC Changes in the Caudoputamen: 30-minute Transient Occlusion (n = 4) ADC (x10-5 mm 2 /s) Rep Time (hours post reperfusion) Ipsilateral Contralateral See Fuhai Li, M. D., and K. Helmer, et al. "Secondary Decline in Apparent Diffusion Coefficient and Neurological Outcomes after a Short Period of Focal Brain Ischemia in Rats." Ann Neurol 48, no. 2 (2000): 236.

31 Issues with Interpreting DW Data In biological tissue, there are always restrictions. How then can we interpret the diffusion attenuation curve?

32 Biology-based Model: Intracellular and extracellular compartments D Biexponential Model with a distribution of cell sizes and shapes. Fast Exchange = f 1 D 1 + (1 f 1 ) D 2 S = S 0 ( f 1 e bd 1 + (1 f 1 ) e bd 2 ) Slow Exchange But real systems are rarely either/or.

33 DW-Weighted Tumor Data ln M(q,t)/M(0,t) q 2 [x10-9 m -2 ] 150 t dif = 42 ms 92 ms 192 ms 292 ms 492 ms What does non-monexponentiality tell us?

34 Fast and Slow Diffusion? 0 Slope = D fast t dif ln(m/m0) bulk water Slope = D slow t dif q 2 x 10 7 [1/cm 2 ] See Helmer, et al. NMR in Biomedicine 8 (1995):

35 Does Fast and Slow Mean Extracellular and Intracellular? No, because: 1)The same shape of curve can be found in the diffusion attenuation curve of single compartment systems (e.g., beads). 2) It gives almost exactly the opposite values for extra- and intracellular volume fractions (20/80 instead of 80/20 for IC/EC). Exchange?

36 What does fast and slow measure? Answer: It depends on range of b-values TE t dif sample structure sample tortuosity Fig 1 in Clark, C. A., et al. "In Vivo Mapping of the Fast and Slow Diffusion Tensors in Human Brain." Magn Reson Med 47, no. 4 (April 2002): doi: /mrm Copyright (c) 2002 Wiley-Liss Inc. Reprinted with permission of John Wiley & Sons., Inc.

37 D ave (fast) D ave (slow) FA(fast) FA(slow) Fig 1 in Clark, C. A., et al. "In Vivo Mapping of the Fast and Slow Diffusion Tensors in Human Brain." Magn Reson Med 47, no. 4 (April 2002): doi: /mrm Copyright (c) 2002 Wiley-Liss Inc. Reprinted with permission of John Wiley & Sons., Inc. slow restricted

38 Do We Get More Information by Using the Entire Diffusion Attenuation Curve? ln M(q,t)/M(0,t) q 2 [x10-9 m -2 ] 150

39 Practical Issues in DWI How do I choose my lowest b-value? 1)Diffusion gradients act like primer-crusher pairs. Therefore, slice profile of g = 0 image will be different from g 0 image. 2) Diffusion gradients also suppress flowing spins. Therefore, the use of a g = 0 image is discouraged.

40 Practical Issues in DWI How do I choose my highest b-value? 1. Greatest SNR in calculated ADC: bi D Ii = I0e I = true signal S i = σ = I i ε + ε 2 1/ 2 S = measured signal ε = noise

41 Practical Issues in DWI D = ln S ln b S 1 0, b = q 2 t σ 1 σ D ( ) (1 2 bd D σ σ1 = + e 2 2 b b I0 ) SNR D = D σ D = (1 + bd e 0 2bD 1/ 2 I ) I σ F( bd) SNR 0

42 Practical Issues in DWI How do I choose my highest b-value? 2. Greatest sensitivity to %ΔADC: I D max bd =1.0

43 Practical Issues in DWI How to distribute the b-values? q 2 t This or? ln(m)

44 Practical Issues in DWI How to distribute the b-values? q 2 t This or? ln(m)

45 Practical Issues in DWI How to distribute the b-values? q 2 t This? ln(m)

46 Multiple measurements of 2 b-values are better than multiple different b-values. If the number of measurements can be large, then N high-b = N low-b 3.6 Note that depending on N and how you estimate the error, you can get different numbers for the optimum values, but Δb opt ~ 1(+)/D and N high-b ~ N low-b 4

47 Diffusion Tensor Imaging What effect does the direction of the diffusionsensitizing gradient have upon what we measure? y x In the 1- dimensional case (we measure D x or D y ): D y D 0, the bulk value D x <(<) D 0 D / ADC is a scalar

48 What effect does the direction of the diffusion-sensitizing gradient have upon what we measure? y z x In the 3- dimensional case (we measure D x,d y and D z ): D y D 0, the bulk value D x = D z <(<) D 0 D = (D x, D y, D z )

49 Diffusion Tensor Imaging Why not stick with vectors? Because is not z x y

50 The ADC is greatest along White Matter fiber tracts. Taylor et al., Biol Psychiatry, 55, 201 (2004) Courtesy Elsevier, Inc., Used with permission.

51 1. There is nothing special about using tensors to characterize anisotropic diffusion. Rotate to principal frame to get eigenvalues.

52 Rotational Invariants for 3D Tensors. Table from: P.B. Kingsley, "Introduction to Diffusion Tensor Imaging Mathematics: Part I. Tensors, Rotations, and Eigenvectors." Concepts Magn Reson 28A no. 2 (2006): Copyright (c) 2006 Wiley-Liss Inc. Reprinted with permission of John Wiley & Sons., Inc. Eigenvalues = D1, D2, D3 or λ 1, λ 2, λ 3 D av = (D xx + D yy + D zz )/3

53 Trace Imaging and b-value Strength Set of three images with caption removed due to copyright restrictions. Figure 1 in Maier, S. E., et al. "Normal Brain and Brain Tumor: Multicomponent Apparent Diffusion Coefficient Line Scan Imaging." Radiology 219 (2001):

54 Distribution of Gradient Sampling Directions Need at least 6 different sampling directions Fig 2 image + caption, from: Le Bihan, D., et al. "Diffusion Tensor Imaging: Concepts and Applications." JMRI 13, no 4 (2001): Copyright (c) 2001 Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons., Inc.

55 Diffusion Tractography Follow Voxels With Largest Eigenvalues Being Continuous Between Two Regions of Interest Courtesy of Dr. Martha Shenton. Used with permission. Source: Shenton, M. E., M. Kubicki, and R. W. McCarley. "Diffusion Tensor Imaging: Image Acquisition and Processing Tools." SPL Technical Report 354, 2002.

DIFFUSION MAGNETIC RESONANCE IMAGING

DIFFUSION MAGNETIC RESONANCE IMAGING DIFFUSION MAGNETIC RESONANCE IMAGING from spectroscopy to imaging apparent diffusion coefficient ADC-Map anisotropy diffusion tensor (imaging) DIFFUSION NMR - FROM SPECTROSCOPY TO IMAGING Combining Diffusion

More information

Advanced Topics and Diffusion MRI

Advanced Topics and Diffusion MRI Advanced Topics and Diffusion MRI Slides originally by Karla Miller, FMRIB Centre Modified by Mark Chiew (mark.chiew@ndcn.ox.ac.uk) Slides available at: http://users.fmrib.ox.ac.uk/~mchiew/teaching/ MRI

More information

Diffusion Tensor Imaging (DTI): An overview of key concepts

Diffusion Tensor Imaging (DTI): An overview of key concepts Diffusion Tensor Imaging (DTI): An overview of key concepts (Supplemental material for presentation) Prepared by: Nadia Barakat BMB 601 Chris Conklin Thursday, April 8 th 2010 Diffusion Concept [1,2]:

More information

Diffusion Imaging II. By: Osama Abdullah

Diffusion Imaging II. By: Osama Abdullah iffusion Imaging II By: Osama Abdullah Review Introduction. What is diffusion? iffusion and signal attenuation. iffusion imaging. How to capture diffusion? iffusion sensitizing gradients. Spin Echo. Gradient

More information

Diffusion Tensor Imaging I: The basics. Jennifer Campbell

Diffusion Tensor Imaging I: The basics. Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Imaging MRI: many different sources of contrast T1W T2W PDW Perfusion BOLD DW

More information

Diffusion Magnetic Resonance Imaging Part 1: Theory & Methods

Diffusion Magnetic Resonance Imaging Part 1: Theory & Methods Diffusion Magnetic Resonance Imaging Part 1: Theory & Methods Benjamin M. Ellingson, Ph.D. Assistant Professor of Radiology, Biomedical Physics and Bioengineering Dept. of Radiological Sciences UCLA Neuro-Oncology

More information

The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps

The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps J. Biomedical Science and Engineering, 009,, 96-101 The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps Na Zhang 1, Zhen-Sheng Deng 1*, Fang Wang 1,

More information

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

Diffusion-Weighted MRI may be used to measure the apparent diffusion coefficient of water in tissue.

Diffusion-Weighted MRI may be used to measure the apparent diffusion coefficient of water in tissue. Specialty Area: MR Physics for Physicists Speaker: Jennifer A. McNab, Ph.D. Assistant Professor, Radiology, Stanford University () Highlights The Bloch-Torrey equation is a generalization of the Bloch

More information

Diffusion imaging of the brain: technical considerations and practical applications

Diffusion imaging of the brain: technical considerations and practical applications Diffusion imaging of the brain: technical considerations and practical applications David G. Norris FC Donders Centre for Cognitive Neuroimaging Nijmegen Sustaining the physiologist in measuring the atomic

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Lecture #7 In Vivo Water

Lecture #7 In Vivo Water Lecture #7 In Vivo Water Topics Hydration layers Tissue relaxation times Magic angle effects Magnetization Transfer Contrast (MTC) CEST Handouts and Reading assignments Mathur-De Vre, R., The NMR studies

More information

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Chunlei Liu, PhD Department of Electrical Engineering & Computer Sciences and Helen Wills Neuroscience Institute University

More information

Bayesian multi-tensor diffusion MRI and tractography

Bayesian multi-tensor diffusion MRI and tractography Bayesian multi-tensor diffusion MRI and tractography Diwei Zhou 1, Ian L. Dryden 1, Alexey Koloydenko 1, & Li Bai 2 1 School of Mathematical Sciences, Univ. of Nottingham 2 School of Computer Science and

More information

Basics of Diffusion Tensor Imaging and DtiStudio

Basics of Diffusion Tensor Imaging and DtiStudio Basics of Diffusion Tensor Imaging and DtiStudio DTI Basics 1 DTI reveals White matter anatomy Gray matter White matter DTI uses water diffusion as a probe for white matter anatomy Isotropic diffusion

More information

On Signal to Noise Ratio Tradeoffs in fmri

On Signal to Noise Ratio Tradeoffs in fmri On Signal to Noise Ratio Tradeoffs in fmri G. H. Glover April 11, 1999 This monograph addresses the question of signal to noise ratio (SNR) in fmri scanning, when parameters are changed under conditions

More information

Diffusion Tensor Imaging (DTI) e Neurite Orientation Dispersion and Density Imaging (NODDI)

Diffusion Tensor Imaging (DTI) e Neurite Orientation Dispersion and Density Imaging (NODDI) Diffusion Tensor Imaging (DTI) e Neurite Orientation Dispersion and Density Imaging (NODDI) Claudia AM Gandini Wheeler-Kingshott, PhD Prof. of MRI Physics Overview Diffusion and microstructure NODDI theoretical

More information

Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm

Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm Philipp Landgraf 1, Dorit Merhof 1, Mirco Richter 1 1 Institute of Computer Science, Visual Computing Group, University of Konstanz philipp.landgraf@uni-konstanz.de

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analsis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics.

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics. A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Kalai Arasu Muthusamy, D.Phil(Oxon) Senior Lecturer & Consultant Neurosurgeon. Division of Neurosurgery. University Malaya Medical Centre.

More information

Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials

Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials PIERS ONLINE, VOL. 5, NO. 1, 2009 81 Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials Eva Gescheidtova 1 and Karel Bartusek 2 1 Faculty of Electrical Engineering

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013 EE5E/BIOE65 Spring 013 Principles of MRI Miki Lustig This is the last homework in class. Enjoy it. Assignment 9 Solutions Due April 9th, 013 1) In class when we presented the spin-echo saturation recovery

More information

Medical Visualization - Tensor Visualization. J.-Prof. Dr. Kai Lawonn

Medical Visualization - Tensor Visualization. J.-Prof. Dr. Kai Lawonn Medical Visualization - Tensor Visualization J.-Prof. Dr. Kai Lawonn Lecture is partially based on the lecture by Prof. Thomas Schultz 2 What is a Tensor? A tensor is a multilinear transformation that

More information

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania III,, and Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania August 25, 2010 Copyright Page All material in this lecture, except as noted within the text,

More information

Application of diffusion MRI to cancer, heart and brain connectome imaging

Application of diffusion MRI to cancer, heart and brain connectome imaging Colloquium @ Department of Physics, NTU Application of diffusion MRI to cancer, heart and brain connectome imaging March 11, 2014 Wen-Yih Isaac Tseng MD, PhD Advanced Biomedical MRI Lab Center for Optoelectronic

More information

Effect of Bulk Tissue Motion on Quantitative Perfusion and Diffusion Magnetic Resonance Imaging *

Effect of Bulk Tissue Motion on Quantitative Perfusion and Diffusion Magnetic Resonance Imaging * MAGNETIC RESONANCE IN MEDICINE 19,261-265 (1991) Effect of Bulk Tissue Motion on Quantitative Perfusion and Diffusion Magnetic Resonance Imaging * THOMAS L. CHENEVERT AND JAMES G. PIPE University of Michigan

More information

Diffusion tensor imaging (DTI):

Diffusion tensor imaging (DTI): Diffusion tensor imaging (DTI): A basic introduction to data acquisition and analysis Matthew Cykowski, MD Postdoctoral fellow Research Imaging Center UTHSCSA Room 2.320 cykowski@uthscsa.edu PART I: Acquiring

More information

Cambridge University Press MRI from A to Z: A Definitive Guide for Medical Professionals Gary Liney Excerpt More information

Cambridge University Press MRI from A to Z: A Definitive Guide for Medical Professionals Gary Liney Excerpt More information Main glossary Aa AB systems Referring to molecules exhibiting multiply split MRS peaks due to spin-spin interactions. In an AB system, the chemical shift between the spins is of similar magnitude to the

More information

PROBING THE CONNECTIVITY BETWEEN PORES IN ROCK CORE SAMPLES

PROBING THE CONNECTIVITY BETWEEN PORES IN ROCK CORE SAMPLES SCA2007-42 1/6 PROBING THE CONNECTIVITY BETWEEN PORES IN ROCK CORE SAMPLES Geir Humborstad Sørland 1,3, Ketil Djurhuus 3, Hege Christin Widerøe 2, Jan R. Lien 3, Arne Skauge 3, 1 Anvendt Teknologi AS,

More information

Diffusion Weighted MRI. Zanqi Liang & Hendrik Poernama

Diffusion Weighted MRI. Zanqi Liang & Hendrik Poernama Diffusion Weighted MRI Zanqi Liang & Hendrik Poernama 1 Outline MRI Quick Review What is Diffusion MRI? Detecting Diffusion Stroke and Tumor Detection Presenting Diffusion Anisotropy and Diffusion Tensor

More information

Two-step Anomalous Diffusion Tensor Imaging

Two-step Anomalous Diffusion Tensor Imaging Two-step Anomalous Diffusion Tensor Imain Thomas R. Barrick 1, Matthew G. Hall 2 1 Centre for Stroke and Dementia, Division of Cardiac and Vascular Sciences, St. Geore s University of London, 2 Department

More information

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Spin Echo Imaging Hahn Spin Echo

More information

NIH Public Access Author Manuscript Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2009 December 10.

NIH Public Access Author Manuscript Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2009 December 10. NIH Public Access Author Manuscript Published in final edited form as: Conf Proc IEEE Eng Med Biol Soc. 2006 ; 1: 2622 2625. doi:10.1109/iembs.2006.259826. On Diffusion Tensor Estimation Marc Niethammer,

More information

Quantitative Metrics for White Matter Integrity Based on Diffusion Tensor MRI Data. Stephanie Lee

Quantitative Metrics for White Matter Integrity Based on Diffusion Tensor MRI Data. Stephanie Lee Quantitative Metrics for White Matter Integrity Based on Diffusion Tensor MRI Data Stephanie Lee May 5, 2005 Quantitative Metrics for White Matter Integrity Based on Diffusion Tensor MRI Data ABSTRACT

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

BNG/ECE 487 FINAL (W16)

BNG/ECE 487 FINAL (W16) BNG/ECE 487 FINAL (W16) NAME: 4 Problems for 100 pts This exam is closed-everything (no notes, books, etc.). Calculators are permitted. Possibly useful formulas and tables are provided on this page. Fourier

More information

醫用磁振學 MRM 擴散張量影像 擴散張量影像原理. 本週課程內容 MR Diffusion 擴散張量造影原理 擴散張量造影應用 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系

醫用磁振學 MRM 擴散張量影像 擴散張量影像原理. 本週課程內容   MR Diffusion 擴散張量造影原理 擴散張量造影應用 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系 本週課程內容 http://www.ym.edu.tw/~cflu 擴散張量造影原理 擴散張量造影應用 醫用磁振學 MRM 擴散張量影像 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系 alvin4016@ym.edu.tw MRI The Basics (3rd edition) Chapter 22: Echo Planar Imaging MRI in Practice, (4th edition)

More information

DWI acquisition schemes and Diffusion Tensor estimation

DWI acquisition schemes and Diffusion Tensor estimation DWI acquisition schemes and Diffusion Tensor estimation A simulation based study Santiago Aja-Fernández, Antonio Tristán-Vega, Pablo Casaseca-de-la-Higuera Laboratory of Image Processing L A B O R A T

More information

Quantification of water compartmentation in cell suspensions by diffusion-weighted and T 2 -weighted MRI

Quantification of water compartmentation in cell suspensions by diffusion-weighted and T 2 -weighted MRI Available online at www.sciencedirect.com Magnetic Resonance Imaging 26 (2008) 88 102 Quantification of water compartmentation in cell suspensions by diffusion-weighted and T 2 -weighted MRI Yiftach Roth

More information

Principles of Nuclear Magnetic Resonance Microscopy

Principles of Nuclear Magnetic Resonance Microscopy Principles of Nuclear Magnetic Resonance Microscopy Paul T. Callaghan Department of Physics and Biophysics Massey University New Zealand CLARENDON PRESS OXFORD CONTENTS 1 PRINCIPLES OF IMAGING 1 1.1 Introduction

More information

Magnetic Resonance Imaging. Qun Zhao Bioimaging Research Center University of Georgia

Magnetic Resonance Imaging. Qun Zhao Bioimaging Research Center University of Georgia Magnetic Resonance Imaging Qun Zhao Bioimaging Research Center University of Georgia The Nobel Prize in Physiology or Medicine 2003 "for their discoveries concerning magnetic resonance imaging" Paul C.

More information

Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters

Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters Songyuan Tang a, Yong Fan a, Hongtu Zhu b, Pew-Thian Yap a Wei Gao a, Weili Lin a, and Dinggang Shen a a Department

More information

An Analytical Model of Water Diffusion and Exchange in White Matter from Diffusion MRI and Its Application in Measuring Axon Radii

An Analytical Model of Water Diffusion and Exchange in White Matter from Diffusion MRI and Its Application in Measuring Axon Radii An Analytical Model of Water Diffusion and Exchange in White Matter from Diffusion MRI and Its Application in Measuring Axon Radii Wenjin Zhou, Student Member, IEEE, and David H. Laidlaw, Senior Member,

More information

MRI in Review: Simple Steps to Cutting Edge Part I

MRI in Review: Simple Steps to Cutting Edge Part I MRI in Review: Simple Steps to Cutting Edge Part I DWI is now 2 years old... Mike Moseley Radiology Stanford DWI, b = 1413 T2wt, 28/16 ASN 21 San Francisco + Disclosures: Funding NINDS, NCRR, NCI 45 minutes

More information

Magnetic Resonance Characterization of Porous Media Using Diffusion through Internal Magnetic Fields

Magnetic Resonance Characterization of Porous Media Using Diffusion through Internal Magnetic Fields Materials 01, 5, 590-616; doi:10.3390/ma5040590 Review OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Magnetic Resonance Characterization of Porous Media Using Diffusion through Internal

More information

Diffusion MR Imaging Analysis (Prac6cal Aspects)

Diffusion MR Imaging Analysis (Prac6cal Aspects) Diffusion MR Imaging Analysis (Prac6cal Aspects) Jeffry R. Alger Department of Neurology Department of Radiological Sciences Ahmanson- Lovelace Brain Mapping Center UCLA (jralger@ucla.edu) Acknowledgement

More information

MR Spectroscopy: The Physical Basis and Acquisition Strategies

MR Spectroscopy: The Physical Basis and Acquisition Strategies AAPM 2010 SAM Imaging Session MR Spectroscopy: The Physical Basis and Acquisition Strategies Edward F. Jackson, PhD Department of Imaging Physics Objectives Understand the physical basis of in vivo MRS

More information

Sensitivity of Diffusion Weighted Steady State Free Precession to Anisotropic Diffusion

Sensitivity of Diffusion Weighted Steady State Free Precession to Anisotropic Diffusion Magnetic Resonance in Medicine 60:405 413 (2008) Sensitivity of Diffusion Weighted Steady State Free Precession to Anisotropic Diffusion Jennifer A. McNab and Karla L. Miller Diffusion-weighted steady-state

More information

Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields

Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields Çağatay Demiralp and David H. Laidlaw Brown University Providence, RI, USA Abstract. We give a proof of concept

More information

Diffusion Tensor Imaging I. Jennifer Campbell

Diffusion Tensor Imaging I. Jennifer Campbell Diffusion Tensor Imaging I Jennifer Campbell Diffusion Imaging Molecular diffusion The diffusion tensor Diffusion weighting in MRI Alternatives to the tensor Overview of applications Diffusion Imaging

More information

Robust estimator framework in diffusion tensor imaging

Robust estimator framework in diffusion tensor imaging The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Robust estimator framework in diffusion tensor imaging Ivan I. Maximov 1,*, Farida Grinberg 1, and N. Jon

More information

Field trip: Tuesday, Feb 5th

Field trip: Tuesday, Feb 5th Pulse Sequences Field trip: Tuesday, Feb 5th Hardware tour of VUIIIS Philips 3T Meet here at regular class time (11.15) Complete MRI screening form! Chuck Nockowski Philips Service Engineer Reminder: Project/Presentation

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

Diffusion Tensor Imaging tutorial

Diffusion Tensor Imaging tutorial NA-MIC http://na-mic.org Diffusion Tensor Imaging tutorial Sonia Pujol, PhD Surgical Planning Laboratory Harvard University DTI tutorial This tutorial is an introduction to the advanced Diffusion MR capabilities

More information

The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging

The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging Phys. Med. Biol. 45 (2000) R97 R138. Printed in the UK PII: S0031-9155(00)99102-4 TOPICAL REVIEW The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging David

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

How does this work? How does this method differ from ordinary MRI?

How does this work? How does this method differ from ordinary MRI? 361-Lec41 Tue 18nov14 How does this work? How does this method differ from ordinary MRI? NEW kinds of MRI (magnetic resononance imaging (MRI) Diffusion Magnetic Resonance Imaging Tractographic reconstruction

More information

Chemical Exchange. Spin-interactions External interactions Magnetic field Bo, RF field B1

Chemical Exchange. Spin-interactions External interactions Magnetic field Bo, RF field B1 Chemical Exchange Spin-interactions External interactions Magnetic field Bo, RF field B1 Internal Interactions Molecular motions Chemical shifts J-coupling Chemical Exchange 1 Outline Motional time scales

More information

Tensor Visualization. CSC 7443: Scientific Information Visualization

Tensor Visualization. CSC 7443: Scientific Information Visualization Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its

More information

Anisotropic Interpolation of DT-MRI

Anisotropic Interpolation of DT-MRI Anisotropic Interpolation of DT-MRI Carlos A. Castaño-Moraga 1, Miguel A. Rodriguez-Florido 1, Luis Alvarez 2, Carl-Fredrik Westin 3, and Juan Ruiz-Alzola 1,3 1 Medical Technology Center, Signals & Communications

More information

A Riemannian Framework for Denoising Diffusion Tensor Images

A Riemannian Framework for Denoising Diffusion Tensor Images A Riemannian Framework for Denoising Diffusion Tensor Images Manasi Datar No Institute Given Abstract. Diffusion Tensor Imaging (DTI) is a relatively new imaging modality that has been extensively used

More information

1999 10 33 10 Chin J Radiol October 1999 Vol 33 No. 10 655 (MCAO) MR ; (DWI) 45 MR DWI T 1 WI T 2 WI (01536 ) (TTC) 8 MCAO 30 DWI 4912 % 3 (4715 %) 18 T 2 WI 2 (214 015) DWI T 2 WI DWI DWI TTC ( t t =

More information

Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors

Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors Magnetic Resonance in Medicine 51:924 937 (2004) Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors Chunlei Liu, 1,2 Roland Bammer, 1 Burak Acar, 3 and Michael E. Moseley 1 *

More information

New developments in Magnetic Resonance Spectrocopy and Diffusion MRI. Els Fieremans Steven Delputte Mahir Ozdemir

New developments in Magnetic Resonance Spectrocopy and Diffusion MRI. Els Fieremans Steven Delputte Mahir Ozdemir New developments in Magnetic Resonance Spectrocopy and Diffusion MRI Els Fieremans Steven Delputte Mahir Ozdemir Overview Magnetic Resonance Spectroscopy (MRS) Basic physics of MRS Quantitative MRS Pitfalls

More information

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229 Sequence Overview Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging 75 Pulse Sequences and k-space RF k y G z k x G x 3D k-space G y k y k z Acq. k x 76 Gradient

More information

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 May 19.

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 May 19. NIH Public Access Author Manuscript Published in final edited form as: Med Image Comput Comput Assist Interv. 2009 ; 12(0 1): 919 926. Bias of Least Squares Approaches for Diffusion Tensor Estimation from

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

Diffusion MRI. Outline. Biology: The Neuron. Brain connectivity. Biology: Brain Organization. Brain connections and fibers

Diffusion MRI. Outline. Biology: The Neuron. Brain connectivity. Biology: Brain Organization. Brain connections and fibers Outline Diffusion MRI Alfred Anwander Download of Slides: www.cbs.mpg.de/events/ teaching/brainsignals1112 password: mpi-brain CBSWIKI: Cornet/DiffusionMRI Neuroanatomy Diffusion MRI Diffusion Tensor Imaging

More information

Numerical simulation and macroscopic model formulation for diffusion magnetic resonance imaging in the brain

Numerical simulation and macroscopic model formulation for diffusion magnetic resonance imaging in the brain Numerical simulation and macroscopic model formulation for diffusion magnetic resonance imaging in the brain Jing-Rebecca Li Equipe DEFI, CMAP, Ecole Polytechnique Institut national de recherche en informatique

More information

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still

More information

7.3.A. The expression for signal recovery is similar to that derived under exercise 7.2 and is given by:

7.3.A. The expression for signal recovery is similar to that derived under exercise 7.2 and is given by: 7..A. Chemical shift difference 3..0. ppm, which equals 54.5 Hz at 3.0 T. Spatial displacement 54.5/00 0.87, which equals.03 cm along the 8 cm side and 0.77 cm along the 6 cm. The cm slice does not have

More information

Diffusion tensor imaging: brain pathway reconstruction

Diffusion tensor imaging: brain pathway reconstruction Neda Sepasian, Jan ten Thije Boonkkamp, Anna Vilanova Diffusion tensor imaging: brain pathway reconstruction NAW 5/6 nr. 4 december 205 259 Neda Sepasian Department of Biomedical Engineering Eindhoven

More information

Master of Science Thesis. Using q-space Diffusion MRI for Structural Studies of a Biological Phantom at a 3T Clinical Scanner

Master of Science Thesis. Using q-space Diffusion MRI for Structural Studies of a Biological Phantom at a 3T Clinical Scanner Master of Science Thesis Using q-space Diffusion MRI for Structural Studies of a Biological Phantom at a 3T Clinical Scanner Anna Rydhög Supervisor: Sara Brockstedt, Jimmy Lätt Medical Radiation Physics

More information

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging BMB 601 MRI Ari Borthakur, PhD Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging University of Pennsylvania School of Medicine A brief history

More information

NMR Advanced methodologies to investigate water diffusion in materials and biological systems

NMR Advanced methodologies to investigate water diffusion in materials and biological systems NMR Advanced methodologies to investigate water diffusion in materials and biological systems PhD Candidate _Silvia De Santis PhD Supervisors _dott. Silvia Capuani _prof. Bruno Maraviglia Outlook Introduction:

More information

NIH Public Access Author Manuscript J Magn Reson. Author manuscript; available in PMC 2012 June 1.

NIH Public Access Author Manuscript J Magn Reson. Author manuscript; available in PMC 2012 June 1. NIH Public Access Author Manuscript Published in final edited form as: J Magn Reson. 2011 June ; 210(2): 233 237. doi:10.1016/j.jmr.2011.03.012. Effect of gradient pulse duration on MRI estimation of the

More information

Dynamic Contrast Enhance (DCE)-MRI

Dynamic Contrast Enhance (DCE)-MRI Dynamic Contrast Enhance (DCE)-MRI contrast enhancement in ASL: labeling of blood (endogenous) for this technique: usage of a exogenous contras agent typically based on gadolinium molecules packed inside

More information

Magnetization Preparation Sequences

Magnetization Preparation Sequences Magnetization Preparation Sequences Acquisition method may not give desired contrast Prep block adds contrast (and/or encoding) MP-RAGE = Magnetization prepared rapid acquisition with gradient echo (Mugler,

More information

Introduction to MRI Acquisition

Introduction to MRI Acquisition Introduction to MRI Acquisition James Meakin FMRIB Physics Group FSL Course, Bristol, September 2012 1 What are we trying to achieve? 2 What are we trying to achieve? Informed decision making: Protocols

More information

IMPROVED IMAGING OF BRAIN WHITE MATTER USING DIFFUSION WEIGHTED MAGNETIC RESONANCE IMAGING HA-KYU JEONG. Dissertation. Submitted to the Faculty of the

IMPROVED IMAGING OF BRAIN WHITE MATTER USING DIFFUSION WEIGHTED MAGNETIC RESONANCE IMAGING HA-KYU JEONG. Dissertation. Submitted to the Faculty of the IMPROVED IMAGING OF BRAIN WHITE MATTER USING DIFFUSION WEIGHTED MAGNETIC RESONANCE IMAGING By HA-KYU JEONG Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial

More information

MOLECULAR, CELLULAR, & TISSUE BIOMECHANICS

MOLECULAR, CELLULAR, & TISSUE BIOMECHANICS MOLECULAR, CELLULAR, & TISSUE BIOMECHANICS Spring 2015 Problem Set #6 - Cytoskeleton mechanics Distributed: Wednesday, April 15, 2015 Due: Thursday, April 23, 2015 Problem 1: Transmigration A critical

More information

H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida

H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida Tractography in the CST using an Intrinsic Unscented Kalman Filter H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida Outline Introduction Method Pre-processing Fiber

More information

Rician Noise Removal in Diffusion Tensor MRI

Rician Noise Removal in Diffusion Tensor MRI Rician Noise Removal in Diffusion Tensor MRI Saurav Basu, Thomas Fletcher, and Ross Whitaker University of Utah, School of Computing, Salt Lake City, UT 84112, USA Abstract. Rician noise introduces a bias

More information

The Measure of Diffusion Skewness and Kurtosis in Magnetic Resonance Imaging

The Measure of Diffusion Skewness and Kurtosis in Magnetic Resonance Imaging The Measure of Diffusion Skewness and Kurtosis in Magnetic Resonance Imaging Xinzhen Zhang, Chen Ling, Liqun Qi, and Ed Xuekui Wu April 19, 008, Revised on September 4, 008 This paper is dedicated to the

More information

Shape Anisotropy: Tensor Distance to Anisotropy Measure

Shape Anisotropy: Tensor Distance to Anisotropy Measure Shape Anisotropy: Tensor Distance to Anisotropy Measure Yonas T. Weldeselassie, Saba El-Hilo and M. Stella Atkins Medical Image Analysis Lab, School of Computing Science, Simon Fraser University ABSTRACT

More information

Basic Pulse Sequences I Saturation & Inversion Recovery UCLA. Radiology

Basic Pulse Sequences I Saturation & Inversion Recovery UCLA. Radiology Basic Pulse Sequences I Saturation & Inversion Recovery Lecture #5 Learning Objectives Explain what the most important equations of motion are for describing spin systems for MRI. Understand the assumptions

More information

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner The physics of medical imaging US, CT, MRI Prof. Peter Bogner Clinical radiology curriculum blocks of lectures and clinical practice (7x2) Physics of medical imaging Neuroradiology Head and neck I. Head

More information

Improved Correspondence for DTI Population Studies via Unbiased Atlas Building

Improved Correspondence for DTI Population Studies via Unbiased Atlas Building Improved Correspondence for DTI Population Studies via Unbiased Atlas Building Casey Goodlett 1, Brad Davis 1,2, Remi Jean 3, John Gilmore 3, and Guido Gerig 1,3 1 Department of Computer Science, University

More information

PROTEIN NMR SPECTROSCOPY

PROTEIN NMR SPECTROSCOPY List of Figures List of Tables xvii xxvi 1. NMR SPECTROSCOPY 1 1.1 Introduction to NMR Spectroscopy 2 1.2 One Dimensional NMR Spectroscopy 3 1.2.1 Classical Description of NMR Spectroscopy 3 1.2.2 Nuclear

More information

Research Article Thalamus Segmentation from Diffusion Tensor Magnetic Resonance Imaging

Research Article Thalamus Segmentation from Diffusion Tensor Magnetic Resonance Imaging Biomedical Imaging Volume 2007, Article ID 90216, 5 pages doi:10.1155/2007/90216 Research Article Thalamus Segmentation from Diffusion Tensor Magnetic Resonance Imaging Ye Duan, Xiaoling Li, and Yongjian

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

Understanding brain micro-structure using diffusion magnetic resonance imaging (dmri)

Understanding brain micro-structure using diffusion magnetic resonance imaging (dmri) Understanding brain micro-structure using diffusion magnetic resonance imaging (dmri) Jing-Rebecca Li Equipe DEFI, CMAP, Ecole Polytechnique Institut national de recherche en informatique et en automatique

More information

Department of Radiology. University of Virginia. Wilson Miller SPIN October 7

Department of Radiology. University of Virginia. Wilson Miller SPIN October 7 Medical Imaging of Hyperpolarized Gases Wilson Miller University of Virginia Department of Radiology October 7 SPIN 2008 p Nuclear Magnetic Resonance Net alignment Excitation RF pulse p p p p B p p Magnetization

More information

Chapter 1 Pulsed Field Gradient NMR Sequences

Chapter 1 Pulsed Field Gradient NMR Sequences Chapter 1 Pulsed Field Gradient NMR Sequences Abstract The mechanism via which an NMR signal is generated and how diffusion can be measured from solving the equation of motion of the nuclear spins is described.

More information

Assessment of Tissue Micro-structure with Diusion Weighted Magnetic Resonance Imaging

Assessment of Tissue Micro-structure with Diusion Weighted Magnetic Resonance Imaging Assessment of Tissue Micro-structure with Diusion Weighted Magnetic Resonance Imaging Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen

More information

Pulse Sequences: RARE and Simulations

Pulse Sequences: RARE and Simulations Pulse Sequences: RARE and Simulations M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.04.19 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Final project

More information

7.36/7.91 recitation CB Lecture #4

7.36/7.91 recitation CB Lecture #4 7.36/7.91 recitation 2-19-2014 CB Lecture #4 1 Announcements / Reminders Homework: - PS#1 due Feb. 20th at noon. - Late policy: ½ credit if received within 24 hrs of due date, otherwise no credit - Answer

More information