MRI in Review: Simple Steps to Cutting Edge Part I

Size: px
Start display at page:

Download "MRI in Review: Simple Steps to Cutting Edge Part I"

Transcription

1 MRI in Review: Simple Steps to Cutting Edge Part I DWI is now 2 years old... Mike Moseley Radiology Stanford DWI, b = 1413 T2wt, 28/16 ASN 21 San Francisco + Disclosures: Funding NINDS, NCRR, NCI 45 minutes post MCA- Magn Reson Med. 14, 199 B: igh field at 7T MR Essentials Coils in MRI ΔB: db/dt < 3T/s ethe main magnet B. Protons precess 42.6 Mz / T. B B The Gradient Coils alter B spatial localization or ΔB. Every electric field has a magnetic field... Any moving magnetic field generates an electrical current... Faraday s Law ydrogen nuclei are protons Protons have a positive net charge. This charge spins around the mass. 2. A moving magnetic field creates an electric field... S + Coil Spinning dipoles have local magnetic fields which will align with external magnetic fields. O A moving charge is an electrical current 1. Every electric field has a magnetic field The radiofrequency coil: 1. Creates B1 field with FM energy 2. Detects proton coherence in B - signal # protons aligned ~ Magnetic field strength (B). At 1.5Tesla, this is only 5 of every 1,,. 1 Tesla = 1, gauss. S N B + N

2 The proton spinning charge precesses or wobbles around the B axis due to Angular Momentum The tip of the axis is related to the magnetic gyric ratio (γ) The speed of the precession = Larmor Equation... f = (γ / 2π)B 42.6 Mz@1T Know B = know frequency... Know frequency= know B... B S + N B S + N electric field creates a B1 magnetic field which flips protons away from B... the "flip" is a perturbation... B So, ow Do We Get an MR Signal? e - B1 direction of applied electric field...b1 1. As protons relax, they re-align along B by. Voltage So, ow Do We Get an MR Signal? 4 sec 2. They also lose phase coherence by T2*. B 4 msec B Relaxation is the Process of Realignment 1. As protons relax, they re-align along B by. Voltage 4 sec 2. They also lose phase coherence by T2*. is the recovery of magnetization along the longitudinal axis. Each proton has a unique and 1 Tesla White matter Gray matter Muscle Fat Liver Renal Med. Renal Cor. Blood Tumor** T Signal Signal T2 4 sec 4 msec T2 is the decay of magnetization along the transverse axis. 4 msec

3 Recovery Brain T2 Decay The Spin-" Pulse Sequence: The loss of phase is reversed by Pulses Brain 9 The FID 18 The Spin- Repeat Time = Echo Time = is governed largely by protons interacting with membranes, lipids, cell walls, myelin...spin-lattice relaxation. More macromolecules = large # of stationary protons = shorter and shorter T2. T2 of protons is dominated by interactions with other water protons, etc. T2 is affected by diffusion, perfusion, water content... spin-spin relaxation. More water = large # mobile protons = less interaction = longer and longer T2. The spin- signal strength is related to T2 only... We collect this signal in SE imaging. 9 The Spin- forms at phase 18 The Determines the T2-weighting Longer = more T2 phase decay and less signal. Shorter = less phase loss and more signal. Longer = more T2-weighting. T2-weighted image will have a long to show long T2 tissues 2ms 9 phase 18 Brain 8ms Echo Time = 9 View of First and Second Echo phase Proton relaxation is a process of re-aligning with B. 1. As protons relax, they re-align along B by. Signal 2ms 4 sec is the recovery of magnetization along the longitudinal axis. Short 8ms Long 2. They also lose phase coherence by T2. The signal decay is the FID. Signal 4o msec T2 is the decay of magnetization along the transverse axis.

4 1 M z Longitudinal Magnetization Recovers by over Time Dictates ow Often is Applied WM The Determines the -weighting White matter Gray matter Muscle Fat Liver Renal Med. Renal Cor. Blood x 5 x T2 6 ms 24 ms Short Long The and Indicates the and T2-Weighting ms ms IR for Morphology TI 75 TI 55 Long Short proton density-weighting Short Short -weighting Long Long T2-weighting Short Long Not used!! 2D IR kz FOV2cm 4mm/2 256x192 NSA.5 4:5 cecilcoil TI 35 TI 15 Inversion Recovery Spin Echo Fluid Attenuated Inversion Recovery (FLAIR) 18 9 phase phase 18 TI ms TI ms Mz Mz FLAIR -Mz recovery curve -Mz recovery curve

5 Image Formation Magnitude Phase The MR Pulse Sequence. MR signals are encoded with frequency and phase Ny... -select 9 phaseencode -select encode : k-space --> image k-space time image Gy F Readout gradient encodes protons according to precessional frequency along X... Phase encoding gradient changes phase along Y at each frequency along X... Y X Gradient coils are built to create a magnetic field gradient (G/cm) Along the x, y, and z axes to correspond to 3-D space... The image orientation depends on which gradient is used for slice selection... Y Current passing thro gradient coils creates magnetic fields that add and subtract from B with no effect at isocenter. Z Y X SAGITTAL Z AXIAL X Y CORONAL Z X Current in Current out back isocenter front Subtracts from B No change Adds to B T 1.5 T 1.51 T 63.7 MZ 63.9 MZ 64.1 MZ f = γ / 2π (B + z )

6 To excite protons in the head, we would need an excitation frequency of 64.1 Mz. Other protons at other postions and frequencies, would not be excited (wrong frequency). -select selection uses both a pulse applied during a gradient pulse -select 18 slice position magnet Z gradient along Z 63.91Mhz 4 msec 63.91Mhz 4 msec frequency - z 63.7Mz T 63.9Mz 64.1Mz 1.5 T 1.51 T + z slice position corresponding to Mz.. The signal arises only from the slice phase Gy The MR Pulse Sequence. MR signals are encoded with frequency and phase Ny... -select 9 -select encode : k-space --> image k-space time image F Lower coil Time MR signal from coil Field Frequencies igher 1.499T 1.51T Lower frequencies igher frequencies coil The MR Pulse Sequence MR signals are encoded with frequency and phase Ny... Changing Phase is Another Way of Measuring! -select 9 phaseencode phaseencode -select encode : k-space --> image k-space time image Gy F Gy 9 18 k-space image F

7 Protons alter phase with gradient pulses! Gradient pulse strength Variable strength Mxy Phase change coil 3 3 coil 3 Time Time Time Sequencing Issues and k-space Resolution, Ny Bandwidth FOVx, FOVy 9 rf 18 rf Read A double spin- "pulse sequence": The phase loss can be repeatedly reversed... (as long as there is T2 signal left...) 9 pulse 18 pulse 18 pulse A Multiple Echo "pulse sequence": T2 loss over time The FID The Spin- Second The signal strength is related to T2 only... In Fast Spin Echo we may collect up to 128 es...

8 One week post-onset Single-Shot FSE b= average X, Y, Z FOV24 7.5/ mm no gating The New igh Field Physics 32 Ch. 7T head coil and transmit Coil 3D FSE sequences with long FSE readout (>2 es). Minimum spacing fast acquisition - no artifacts. Flip angle modulation during the readout keeps signal thru long train. Provides best SNR, low SAR at effective. Like CT, 3D allows for efficienct reformats. Sequence can be easily modified for contrast. The Gradient Echo Pulse Sequence. MR signals are encoded with frequency and phase Ny... Foundations of the Gradient Echo Apply a gradient for 1 ms... Time Reverse the gradient for 1 ms... -select 9 Time -encode : k-space --> image phaseencode Ny k-space the Gradient Echo image Ny Gy time 9 F

9 x128 igh-speed MRI -Today s Options GRE EPI What is Magnetic Susceptibility? The magnetic susceptibility is the difference of the magnetic field across a sample. Each substance in a magnetic field alters that field. Iron has a larger MS effect than water, e.g... SE EPI x128 Fe B eff = B (1-²X) Bone - water Air - water Iron - water small gradient across sample Cell large gradient across sample Iron - T2* shortening... Sequence Review Fe SE GRE Observed T2* Observed T2* Time Time Single- SE Multi- FSE Single- GRE Multi- EPI Single-Shot ssfse Multi-Shot FSE Single-Shot EPI Multi-Shot IEPI REWIND or REFOCUS 2D spine MPGR α 4 msec dephase sampling time Long T2* remains, but is in phase with next shot.

10 SPOIL 2D spine SPGR Contrast in GRE α 6 ms For long in GRE: 4 msec dephase sampling time Increase in adds T2-wting... and MS artifacts crush Long T2* crushed, by large gradient or by random. 3 ms 2 Flip 3 MPGR Contrast in GRE 5 o 45 o For long : Increase in flip adds -wting o 2 15 MPGR

Part III: Sequences and Contrast

Part III: Sequences and Contrast Part III: Sequences and Contrast Contents T1 and T2/T2* Relaxation Contrast of Imaging Sequences T1 weighting T2/T2* weighting Contrast Agents Saturation Inversion Recovery JUST WATER? (i.e., proton density

More information

FREQUENCY SELECTIVE EXCITATION

FREQUENCY SELECTIVE EXCITATION PULSE SEQUENCES FREQUENCY SELECTIVE EXCITATION RF Grad 0 Sir Peter Mansfield A 1D IMAGE Field Strength / Frequency Position FOURIER PROJECTIONS MR Image Raw Data FFT of Raw Data BACK PROJECTION Image Domain

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

Field trip: Tuesday, Feb 5th

Field trip: Tuesday, Feb 5th Pulse Sequences Field trip: Tuesday, Feb 5th Hardware tour of VUIIIS Philips 3T Meet here at regular class time (11.15) Complete MRI screening form! Chuck Nockowski Philips Service Engineer Reminder: Project/Presentation

More information

Nuclei, Excitation, Relaxation

Nuclei, Excitation, Relaxation Outline 4.1 Principles of MRI uclei, Excitation, Relaxation Carolyn Kaut Roth, RT (R)(MR)(CT)(M)(CV) FSMRT CEO Imaging Education Associates www.imaginged.com candi@imaginged.com What nuclei are MR active?

More information

Tissue Characteristics Module Three

Tissue Characteristics Module Three Tissue Characteristics Module Three 1 Equilibrium State Equilibrium State At equilibrium, the hydrogen vector is oriented in a direction parallel to the main magnetic field. Hydrogen atoms within the vector

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging G16.4426 Medical Imaging Physics of Magnetic Resonance Imaging Riccardo Lattanzi, Ph.D. Assistant Professor Department of Radiology, NYU School of Medicine Department of Electrical and Computer Engineering,

More information

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229 Sequence Overview Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging 75 Pulse Sequences and k-space RF k y G z k x G x 3D k-space G y k y k z Acq. k x 76 Gradient

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Jeffrey A. Fessler EECS Department The University of Michigan NSS-MIC: Fundamentals of Medical Imaging Oct. 20, 2003 NMR-0 Background Basic physics 4 magnetic fields

More information

Fundamental MRI Principles Module Two

Fundamental MRI Principles Module Two Fundamental MRI Principles Module Two 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons neutrons electrons positively charged no significant charge negatively charged Protons

More information

Introduction to the Physics of NMR, MRI, BOLD fmri

Introduction to the Physics of NMR, MRI, BOLD fmri Pittsburgh, June 13-17, 2011 Introduction to the Physics of NMR, MRI, BOLD fmri (with an orientation toward the practical aspects of data acquisition) Pittsburgh, June 13-17, 2001 Functional MRI in Clinical

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x ) Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 5 GE Medical Systems 2003 Gibbs Artifact Apodization rect(k ) Hanning Window h(k )=1/2(1+cos(2πk ) 256256 image 256128

More information

The physics US and MRI. Prof. Peter Bogner

The physics US and MRI. Prof. Peter Bogner The physics US and MRI Prof. Peter Bogner Sound waves mechanical disturbance, a pressure wave moves along longitudinal wave compression rarefaction zones c = nl, (c: velocity, n: frequency, l: wavelength

More information

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons Fundamental MRI Principles Module 2 N S 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons positively charged neutrons no significant charge electrons negatively charged Protons

More information

Advanced Topics and Diffusion MRI

Advanced Topics and Diffusion MRI Advanced Topics and Diffusion MRI Slides originally by Karla Miller, FMRIB Centre Modified by Mark Chiew (mark.chiew@ndcn.ox.ac.uk) Slides available at: http://users.fmrib.ox.ac.uk/~mchiew/teaching/ MRI

More information

NMR and MRI : an introduction

NMR and MRI : an introduction Intensive Programme 2011 Design, Synthesis and Validation of Imaging Probes NMR and MRI : an introduction Walter Dastrù Università di Torino walter.dastru@unito.it \ Introduction Magnetic Resonance Imaging

More information

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR MRI in Practice Third edition Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK and Carolyn Kaut RothRT(R) (MR) (CT) (M) (CV) Fellow SMRT (Section for Magnetic

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

Magnetization Preparation Sequences

Magnetization Preparation Sequences Magnetization Preparation Sequences Acquisition method may not give desired contrast Prep block adds contrast (and/or encoding) MP-RAGE = Magnetization prepared rapid acquisition with gradient echo (Mugler,

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

Chapter 14:Physics of Magnetic Resonance

Chapter 14:Physics of Magnetic Resonance Chapter 14:Physics of Magnetic Resonance Slide set of 141 slides based on the chapter authored by Hee Kwon Song of the publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

Basic MRI physics and Functional MRI

Basic MRI physics and Functional MRI Basic MRI physics and Functional MRI Gregory R. Lee, Ph.D Assistant Professor, Department of Radiology June 24, 2013 Pediatric Neuroimaging Research Consortium Objectives Neuroimaging Overview MR Physics

More information

Introductory MRI Physics

Introductory MRI Physics C HAPR 18 Introductory MRI Physics Aaron Sodickson EXRNAL MAGNETIC FIELD, PROTONS AND EQUILIBRIUM MAGNETIZATION Much of the bulk of the magnetic resonance imaging (MRI) scanner apparatus is dedicated to

More information

MRI Physics I: Spins, Excitation, Relaxation

MRI Physics I: Spins, Excitation, Relaxation MRI Physics I: Spins, Excitation, Relaxation Douglas C. Noll Biomedical Engineering University of Michigan Michigan Functional MRI Laboratory Outline Introduction to Nuclear Magnetic Resonance Imaging

More information

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaxation Bloch Equation 1 Spin Intrinsic angular momentum of

More information

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) Magnetic Resonance Imaging Introduction The Components The Technology (MRI) Physics behind MR Most slides taken from http:// www.slideworld.org/ viewslides.aspx/magnetic- Resonance-Imaging- %28MRI%29-MR-Imaging-

More information

Basic Pulse Sequences II - Spin Echoes. TE=12ms TE=47ms TE=106ms TE=153ms UCLA. Radiology

Basic Pulse Sequences II - Spin Echoes. TE=12ms TE=47ms TE=106ms TE=153ms UCLA. Radiology TE TR 90 180 90 Basic Pulse Sequences II - Spin Echoes TE=12ms TE=47ms TE=106ms TE=153ms TE=235ms Lecture #6 Summary B1(t) RF TR RF t ~M (1) (0 )= ~ M 0 = 2 4 0 0 M 0 3 5 Initial Condition ~M (1) (0 +

More information

Basic p rinciples COPYRIGHTED MATERIAL. Introduction. Atomic s tructure

Basic p rinciples COPYRIGHTED MATERIAL. Introduction. Atomic s tructure 1 Basic p rinciples Introduction 1 Atomic structure 1 Motion in the atom 2 MR active nuclei 2 The hydrogen nucleus 4 Alignment 4 Precession 8 The Larmor equation 9 Introduction The basic principles of

More information

Basic Pulse Sequences I Saturation & Inversion Recovery UCLA. Radiology

Basic Pulse Sequences I Saturation & Inversion Recovery UCLA. Radiology Basic Pulse Sequences I Saturation & Inversion Recovery Lecture #5 Learning Objectives Explain what the most important equations of motion are for describing spin systems for MRI. Understand the assumptions

More information

Physical fundamentals of magnetic resonance imaging

Physical fundamentals of magnetic resonance imaging Physical fundamentals of magnetic resonance imaging Stepan Sereda University of Bonn 1 / 26 Why? Figure 1 : Full body MRI scan (Source: [4]) 2 / 26 Overview Spin angular momentum Rotating frame and interaction

More information

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging BMB 601 MRI Ari Borthakur, PhD Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging University of Pennsylvania School of Medicine A brief history

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner The physics of medical imaging US, CT, MRI Prof. Peter Bogner Clinical radiology curriculum blocks of lectures and clinical practice (7x2) Physics of medical imaging Neuroradiology Head and neck I. Head

More information

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Fundamentals of MR Imaging

Fundamentals of MR Imaging Fundamentals of MR Imaging Shantanu Sinha. Department of Radiology UCSD School of Medicine, San Diego, CA-92103. E-mail: shsinha@ucsd.edu Background References: R.B.Lufkin, The MRI Manual (2nd Edition).

More information

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Spin Echo Imaging Hahn Spin Echo

More information

Pulse Sequences: RARE and Simulations

Pulse Sequences: RARE and Simulations Pulse Sequences: RARE and Simulations M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.04.19 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Final project

More information

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees Rad Tech 4912 MRI Registry Review Outline of the Registry Exam: Category: # of questions: A. Patient Care 30 B. Imaging Procedures 62 C. Data Acquisition and Processing 65 D. Physical Principles of Image

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

} B 1 } Coil } Gradients } FFT

} B 1 } Coil } Gradients } FFT Introduction to MRI Daniel B. Ennis, Ph.D. Requirements for MRI UCLA DCVI Requirements for MRI Dipoles to Images MR Active uclei e.g. 1 H in H20 Cryogen Liquid He and 2 Magnetic Field (B0) Polarizer ystem

More information

6/22/2011. RT 4912 Review. Rex T. Christensen MHA RT (R) (MR) (CT)

6/22/2011. RT 4912 Review. Rex T. Christensen MHA RT (R) (MR) (CT) RT 4912 Review Rex T. Christensen MHA RT (R) (MR) (CT) 1 Questions? ARRT Content Specifications: https://www.arrt.org/pdfs/disciplines/content-specification/mri- Content-Specification.pdf Tests Can take

More information

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229.

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229. Background II Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging 1 SNR: Signal-to-Noise Ratio Signal: Desired voltage in coil Noise: Thermal, electronic Noise Thermal

More information

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2005 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaation Bloch Equation Spin Intrinsic angular momentum of elementary

More information

Biomedical Imaging Magnetic Resonance Imaging

Biomedical Imaging Magnetic Resonance Imaging Biomedical Imaging Magnetic Resonance Imaging Charles A. DiMarzio & Eric Kercher EECE 4649 Northeastern University May 2018 Background and History Measurement of Nuclear Spins Widely used in physics/chemistry

More information

MRI at a Glance. Blackwell Science CATHERINE WESTBROOK. MSC DCRR CTC Director of Training and Education Lodestone Patient Care Ltd

MRI at a Glance. Blackwell Science CATHERINE WESTBROOK. MSC DCRR CTC Director of Training and Education Lodestone Patient Care Ltd MRI at a Glance MRI at a Glance CATHERINE WESTBROOK MSC DCRR CTC Director of Training and Education Lodestone Patient Care Ltd Blackwell Science 2002 by Blackwell Science Ltd, a Blackwell Publishing Company

More information

Basis of MRI Contrast

Basis of MRI Contrast Basis of MRI Contrast MARK A. HORSFIELD Department of Cardiovascular Sciences University of Leicester Leicester LE1 5WW UK Tel: +44-116-2585080 Fax: +44-870-7053111 e-mail: mah5@le.ac.uk 1 1.1 The Magnetic

More information

Topics. The History of Spin. Spin. The concept of spin Precession of magnetic spin Relaxation

Topics. The History of Spin. Spin. The concept of spin Precession of magnetic spin Relaxation Topics Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2008 MRI Lecture 1 The concept of spin Precession of magnetic spin Relaation Spin The History of Spin Intrinsic angular momentum

More information

Spin Echo Review. Static Dephasing: 1/T2 * = 1/T2 + 1/T2 Spin echo rephases magnetization Spin echoes can be repeated. B.Hargreaves - RAD 229

Spin Echo Review. Static Dephasing: 1/T2 * = 1/T2 + 1/T2 Spin echo rephases magnetization Spin echoes can be repeated. B.Hargreaves - RAD 229 Spin-Echo Sequences Spin Echo Review Echo Trains Applications: RARE, Single-shot, 3D Signal and SAR considerations Hyperechoes 1 Spin Echo Review Static Dephasing: 1/T2 * = 1/T2 + 1/T2 Spin echo rephases

More information

RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES

RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES 1. What are potential consequences to patients and personnel should there be a release of gaseous

More information

Magnetic Resonance Imaging in a Nutshell

Magnetic Resonance Imaging in a Nutshell Magnetic Resonance Imaging in a Nutshell Oliver Bieri, PhD Department of Radiology, Division of Radiological Physics, University Hospital Basel Department of Biomedical Engineering, University of Basel,

More information

NMR/MRI examination (8N080 / 3F240)

NMR/MRI examination (8N080 / 3F240) NMR/MRI examination (8N080 / 3F240) Remarks: 1. This test consists of 3 problems with at total of 26 sub-questions. 2. Questions are in English. You are allowed to answer them in English or Dutch. 3. Please

More information

Magnetic resonance imaging MRI

Magnetic resonance imaging MRI Magnetic resonance imaging MRI Introduction What is MRI MRI is an imaging technique used primarily in medical settings that uses a strong magnetic field and radio waves to produce very clear and detailed

More information

Lab 2: Magnetic Resonance Imaging

Lab 2: Magnetic Resonance Imaging EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Developed by: Galen Reed and Miki Lustig Lab 2: Magnetic Resonance Imaging Introduction In this lab, we will get some hands-on experience with an

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 9 Magnetic Resonance Imaging (imaging) Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ 1 Schedule 1. Introduction, Spatial Resolution,

More information

Introduction to MRI Acquisition

Introduction to MRI Acquisition Introduction to MRI Acquisition James Meakin FMRIB Physics Group FSL Course, Bristol, September 2012 1 What are we trying to achieve? 2 What are we trying to achieve? Informed decision making: Protocols

More information

Magnetic Resonance Imaging

Magnetic Resonance Imaging http://www.qldxray.com.au/filelibrary/mri_cardiovascular_system_ca_0005.jpg Magnetic Resonance Imaging 1 Overview 1. The magnetic properties of nuclei, and how they behave in strong magnetic fields. 2.

More information

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER PETER PAZMANY CATHOLIC UNIVERSITY SEMMELWEIS UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAZMANY

More information

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Enseignant-chercheur Equipe IMAGES - Télécom ParisTech pietro.gori@telecom-paristech.fr September 20, 2017 P. Gori BIOMED 20/09/2017 1 / 76

More information

Magnetic Resonance Imaging. Qun Zhao Bioimaging Research Center University of Georgia

Magnetic Resonance Imaging. Qun Zhao Bioimaging Research Center University of Georgia Magnetic Resonance Imaging Qun Zhao Bioimaging Research Center University of Georgia The Nobel Prize in Physiology or Medicine 2003 "for their discoveries concerning magnetic resonance imaging" Paul C.

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Simon Lacoste-Julien Electromagnetic Theory Project 198-562B Department of Physics McGill University April 21 2003 Abstract This paper gives an elementary introduction

More information

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10 CHEM / BCMB 490/690/889 Introductory NMR Lecture 0 - - CHEM 490/690 Spin-Echo The spin-echo pulse sequence: 90 - τ - 80 - τ(echo) Spins echoes are widely used as part of larger pulse sequence to refocus

More information

Overview Optimizing MR Imaging Procedures:

Overview Optimizing MR Imaging Procedures: Overview Optimizing MR Imaging Procedures: The Physicist as a Consultant Lisa C. Lemen, Radiology Department University of Cincinnati Image contrast in standard clinical sequences (pulse timing parameters)

More information

Spin Echo Imaging Sequence

Spin Echo Imaging Sequence 1 MRI In Stereotactic Procedures Edward F. Jackson, Ph.D. The University of Texas M.D. Anderson Cancer Center Houston, Texas 2 RF G slice G phase G freq Signal k-space Spin Echo Imaging Sequence TE 1st

More information

Outlines: (June 11, 1996) Instructor:

Outlines: (June 11, 1996) Instructor: Magnetic Resonance Imaging (June 11, 1996) Instructor: Tai-huang Huang Institute of Biomedical Sciences Academia Sinica Tel. (02) 2652-3036; Fax. (02) 2788-7641 E. mail: bmthh@ibms.sinica.edu.tw Reference:

More information

Basic Concepts of MR Imaging, Diffusion MR Imaging, and Diffusion Tensor Imaging

Basic Concepts of MR Imaging, Diffusion MR Imaging, and Diffusion Tensor Imaging Basic Concepts of MR Imaging, Diffusion MR Imaging, and Diffusion Tensor Imaging Eduardo H.M.S.G. de Figueiredo, BSc a, *, Arthur F.N.G. Borgonovi, BSc b,c, Thomas M. Doring, MSc d,e KEYWORDS Magnetic

More information

On Signal to Noise Ratio Tradeoffs in fmri

On Signal to Noise Ratio Tradeoffs in fmri On Signal to Noise Ratio Tradeoffs in fmri G. H. Glover April 11, 1999 This monograph addresses the question of signal to noise ratio (SNR) in fmri scanning, when parameters are changed under conditions

More information

Part II: Magnetic Resonance Imaging (MRI)

Part II: Magnetic Resonance Imaging (MRI) Part II: Magnetic Resonance Imaging (MRI) Contents Magnetic Field Gradients Selective Excitation Spatially Resolved Reception k-space Gradient Echo Sequence Spin Echo Sequence Magnetic Resonance Imaging

More information

M R I Physics Course

M R I Physics Course M R I Physics Course Some Body Techniques/Protocols Nathan Yanasak, Ph.D. Jerry Allison, Ph.D. Tom Lavin, M.S. Department of Radiology Medical College of Georgia References: 1) The Physics of Clinical

More information

Bioengineering 278" Magnetic Resonance Imaging" Winter 2010" Lecture 1! Topics:! Review of NMR basics! Hardware Overview! Quadrature Detection!

Bioengineering 278 Magnetic Resonance Imaging Winter 2010 Lecture 1! Topics:! Review of NMR basics! Hardware Overview! Quadrature Detection! Bioengineering 278" Magnetic Resonance Imaging" Winter 2010" Lecture 1 Topics: Review of NMR basics Hardware Overview Quadrature Detection Boltzmann Distribution B 0 " = µ z $ 0 % " = #h$ 0 % " = µ z $

More information

Pulse Sequences: EPG and Simulations

Pulse Sequences: EPG and Simulations Pulse Sequences: EPG and Simulations PBM229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2017.04.13 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Advanced topic

More information

Course Review. Midterm Review: EE369B Concepts Simulations with Bloch Matrices, EPG SNR. B.Hargreaves - RAD 229. Section F1

Course Review. Midterm Review: EE369B Concepts Simulations with Bloch Matrices, EPG SNR. B.Hargreaves - RAD 229. Section F1 Course Review Midterm Review: EE369B Concepts Simulations with Bloch Matrices, EPG SNR 1 Section F1 Bloch/Matrix Simulations M = [Mx My Mz] T RF and precession ~ 3x3 rotation matrices Relaxation ~ 3x3

More information

Neuroimaging and mathematical modelling Lesson 4: Basics of MRI

Neuroimaging and mathematical modelling Lesson 4: Basics of MRI Neuroimaging and mathematical modelling Lesson 4: Basics of MRI Nivedita Agarwal, MD Nivedita.agarwal@apss.tn.it Nivedita.agarwal@unitn.it Equipment 4T magnet RF Coil B0 gradient coil (inside) Magnet Gradient

More information

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal What is this? ` Principles of MRI Lecture 05 EE225E / BIO265 Instructor: Miki Lustig UC Berkeley, EECS The first NMR spectrum of ethanol 1951. 1 2 Today Last time: Linear systems, Fourier Transforms, Sampling

More information

Bloch Equations & Relaxation UCLA. Radiology

Bloch Equations & Relaxation UCLA. Radiology Bloch Equations & Relaxation MRI Systems II B1 I 1 I ~B 1 (t) I 6 ~M I I 5 I 4 Lecture # Learning Objectives Distinguish spin, precession, and nutation. Appreciate that any B-field acts on the the spin

More information

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft MR Fundamentals 26 October 2010 Mitglied der Helmholtz-Gemeinschaft Mitglied der Helmholtz-Gemeinschaft Nuclear Spin Nuclear Spin Nuclear magnetic resonance is observed in atoms with odd number of protons

More information

The Physical Basis of Nuclear Magnetic Resonance Part I ESMRMB. Jürgen R. Reichenbach

The Physical Basis of Nuclear Magnetic Resonance Part I ESMRMB. Jürgen R. Reichenbach The Physical Basis of Nuclear agnetic Resonance Part I Jürgen R. Reichenbach odule 1 October 17, 216 Outline of odule Introduction Spin and magnetic moment Spin precession, Larmor frequency agnetic properties

More information

Exam 8N080 - Introduction to MRI

Exam 8N080 - Introduction to MRI Exam 8N080 - Introduction to MRI Friday April 10 2015, 18.00-21.00 h For this exam you may use an ordinary calculator (not a graphical one). In total there are 5 assignments and a total of 50 points can

More information

2.1.1 A Brief History of NMR The conception of NMR sprouted after the Pauli s prediction of nuclear spin in

2.1.1 A Brief History of NMR The conception of NMR sprouted after the Pauli s prediction of nuclear spin in CHAPTER--2 BASICS OF NMR IMAGING AND SPECTROSCOPY 2.1 Introduction 2.1.1 A Brief History of NMR The conception of NMR sprouted after the Pauli s prediction of nuclear spin in 1924. Later Gorter (1936)

More information

Basic Principles of Magnetic Resonance Imaging

Basic Principles of Magnetic Resonance Imaging Basic Principles of Magnetic Resonance Imaging Joseph C. McGowan, PhD, PE a,b, * KEYWORDS MR imaging MR physics Magnetic resonance Spin echo Gradient echo K-space Fast spin echo Magnetic resonance (MR)

More information

Tissue Parametric Mapping:

Tissue Parametric Mapping: Tissue Parametric Mapping: Contrast Mechanisms Using SSFP Sequences Jongho Lee Department of Radiology University of Pennsylvania Tissue Parametric Mapping: Contrast Mechanisms Using bssfp Sequences Jongho

More information

Disclosures. MR Physics. Recipe to Creating Images without Radiation. MRI Physics. Vector Math. What s In an Image 12/21/2012. Siemens Medical Systems

Disclosures. MR Physics. Recipe to Creating Images without Radiation. MRI Physics. Vector Math. What s In an Image 12/21/2012. Siemens Medical Systems Disclosures MR Physics Joseph V. Fritz, PhD Dent Neurologic Institute Sunday, January 20, 2013 9:00 9:50 AM Siemens Medical Systems Research Agreement Philips Healthcare Research Agreement Toshiba Medical

More information

Relaxation times in nuclear magnetic resonance

Relaxation times in nuclear magnetic resonance Relaxation times in TEP Related topics Nuclear spins, atomic nuclei with a magnetic moment, precession movement of the nuclear spins, Landau-Lifshitz equation, Bloch equation, magnetisation, resonance

More information

BNG/ECE 487 FINAL (W16)

BNG/ECE 487 FINAL (W16) BNG/ECE 487 FINAL (W16) NAME: 4 Problems for 100 pts This exam is closed-everything (no notes, books, etc.). Calculators are permitted. Possibly useful formulas and tables are provided on this page. Fourier

More information

HY Ιατρική Απεικόνιση. Διδάσκων: Kώστας Μαριάς

HY Ιατρική Απεικόνιση. Διδάσκων: Kώστας Μαριάς HY 571 - Ιατρική Απεικόνιση Διδάσκων: Kώστας Μαριάς 11. MRI Τ1,Τ2, PD and physiological parameter imaging Summary and Clarifications Resonance is referred to as the property of an atom to absorb energy

More information

Physics in Clinical Magnetic Resonance Spins, Images, Spectra, and Dynamic Nuclear Polarization

Physics in Clinical Magnetic Resonance Spins, Images, Spectra, and Dynamic Nuclear Polarization Physics in linical Magnetic Resonance Spins, Images, Spectra, and Dynamic Nuclear Polarization Kevin M Koch, PhD GE Healthcare Applied Science Laboratory, MR Physics Group Outline linical Magnetic Resonance

More information

How is it different from conventional MRI? What is MR Spectroscopy? How is it different from conventional MRI? MR Active Nuclei

How is it different from conventional MRI? What is MR Spectroscopy? How is it different from conventional MRI? MR Active Nuclei What is MR Spectroscopy? MR-Spectroscopy (MRS) is a technique to measure the (relative) concentration of certain chemical or biochemical molecules in a target volume. MR-Spectroscopy is an in vivo (in

More information

BASIC MRI PHYSICS SPIN GYMNASTICS Don Plewes PhD, Walter Kucharczyk MD

BASIC MRI PHYSICS SPIN GYMNASTICS Don Plewes PhD, Walter Kucharczyk MD BASIC MRI PHYSICS SPIN GYMNASTICS Don Plewes PhD, Walter Kucharczyk MD Introduction To understand MRI, it is first necessary to understand the physics of proton Nuclear Magnetic Resonance (NMR). The most

More information

Correction Gradients. Nov7, Reference: Handbook of pulse sequence

Correction Gradients. Nov7, Reference: Handbook of pulse sequence Correction Gradients Nov7, 2005 Reference: Handbook of pulse sequence Correction Gradients 1. Concomitant-Field Correction Gradients 2. Crusher Gradients 3. Eddy-Current Compensation 4. Spoiler Gradients

More information

MRI in Clinical Practice

MRI in Clinical Practice MRI in Clinical Practice MRI in Clinical Practice Gary Liney With 62 Figures Gary Liney, PhD MRI Lecturer University of Hull Centre for MR Investigations Hull Royal Infirmary Hull UK British Library Cataloguing

More information

Bioengineering 278" Magnetic Resonance Imaging" " Winter 2011" Lecture 9! Time of Flight MRA!

Bioengineering 278 Magnetic Resonance Imaging  Winter 2011 Lecture 9! Time of Flight MRA! Bioengineering 278" Magnetic Resonance Imaging" " Winter 2011" Lecture 9 Motion Encoding using Longitudinal Magnetization: Magnetic Resonance Angiography Time of Flight Contrast Enhanced Arterial Spin

More information

Lecture 21. Nuclear magnetic resonance

Lecture 21. Nuclear magnetic resonance Lecture 21 Nuclear magnetic resonance A very brief history Stern and Gerlach atomic beam experiments Isidor Rabi molecular beam exp.; nuclear magnetic moments (angular momentum) Felix Bloch & Edward Purcell

More information

EE225E/BIOE265 Spring 2016 Principles of MRI. Assignment 4. Due Friday Feb 19st, 2016, Self Grading Due Monday Feb 22nd, 2016

EE225E/BIOE265 Spring 2016 Principles of MRI. Assignment 4. Due Friday Feb 19st, 2016, Self Grading Due Monday Feb 22nd, 2016 EE225E/BIOE265 Spring 2016 Principles of MRI Miki Lustig Assignment 4 Due Friday Feb 19st, 2016, Self Grading Due Monday Feb 22nd, 2016 1. Finish reading Nishimura Ch.4 and Ch. 5. 2. The following pulse

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analsis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013 EE5E/BIOE65 Spring 013 Principles of MRI Miki Lustig This is the last homework in class. Enjoy it. Assignment 9 Solutions Due April 9th, 013 1) In class when we presented the spin-echo saturation recovery

More information