Introductory MRI Physics

Size: px
Start display at page:

Download "Introductory MRI Physics"

Transcription

1 C HAPR 18 Introductory MRI Physics Aaron Sodickson EXRNAL MAGNETIC FIELD, PROTONS AND EQUILIBRIUM MAGNETIZATION Much of the bulk of the magnetic resonance imaging (MRI) scanner apparatus is dedicated to producing an extremely strong magnetic field, denoted as B 0. Common present day whole-body clinical systems operate at field strengths of 1.5 Tesla ( times the strength of the earth s magnetic field), although both lower and higher field strength systems are in use. The great majority of clinical MRI applications image protons, present in vast numbers throughout the body in all molecules containing hydrogen nuclei. These protons have a physical characteristic, the nuclear spin, which imparts magnetic properties to the nucleus and which is vital to MR image formation. When placed into the strong B 0 magnetic field, a small excess of the nuclear spins align along rather than opposed to the field direction and their microscopic magnetizations sum into a net equilibrium magnetization vector denoted M 0 (Figure 18.1). The strength of M 0 (and subsequently the maximum available signal strength) scales with the size of B 0, providing the primary motivation for the development and use of higher B 0 field strength systems. LARMOR PRECESSION AND MRI SIGNAL Once M 0 is perturbed away from its equilibrium z-axis, it behaves as a classical bar magnet and precesses about B 0 at a characteristic frequency, the Larmor frequency ω 0 γb 0. This precession frequency scales with the strength of the external magnetic field B 0, with a proportionality constant, the gyromagnetic ratio γ, that is an intrinsic property of the nucleus being interrogated and is the same for all protons throughout the body. At typical clinical MRI field strengths, the proton Larmor frequency is in the megahertz (MHz) or radiofrequency range. When surrounded by a loop of wire, the coil, the timevarying magnetic field created by the precessing magnetization vector induces a current, the signal, which forms the basis for image formation in MRI (Figure 18.2). B 0 Z M 0 B 0 ω 0 M L M ω 0 Y M T X FIG The direction of the external static magnetic field B 0 defines the z-axis, or longitudinal axis of the MRI apparatus. The perpendicular x-y plane is often denoted the transverse plane. A vector sum of the microscopic nuclear spin magnetizations yields the net equilibrium magnetization vector M 0 oriented along the z-axis. FIG Precessing magnetization vector M, separated into its longitudinal component M L which remains fixed along the z-axis and its transverse component M T which precesses about the z-axis in the x-y plane. The time varying magnetic field produced by the precessing magnetization induces an oscillating current in the coil surrounding the magnetization vector. 128

2 RELAXATION 129 RADIOFREQUENCY ENERGY AND RESONANCE In order to precess and induce a signal, M 0 must first be tilted away from its equilibrium longitudinal z-axis orientation and into the transverse x-y plane. In fact, the magnetization vector may best be thought of in terms of its longitudinal component M L which remains fixed along the z-axis and its transverse component M T which precesses about B 0 in the x-y plane (see Figure 18.2). MRI relies on the use of radiofrequency or RF magnetic fields, denoted B 1, to convert longitudinal magnetization into transverse magnetization, or equivalently, to tilt the magnetization vector into the transverse plane. The weak B 1 magnetic fields are aligned in the transverse plane, perpendicular to the z-axis. By its nature, M 0 will precess about any externally applied magnetic field, so this B 1 field will tilt the magnetization away from its equilibrium z-axis. However, the strength of the applied B 1 field is so tiny in comparison to B 0 that if its direction remained fixed, it would have a negligible net effect due to the rapid precession of the magnetization vector about the z-axis. MRI works in this setting by rotating the axis of the B 1 field about the z-axis exactly in concert with the precessing magnetization vector. When the direction of the applied B 1 field is altered in step with the Larmor precession of M 0, the effect of the weak B 1 field can accumulate over time and cause a net tilting of M 0 towards the transverse plane (Figure 18.3). This precise matching of the two frequencies is the resonance criterion from which MRI borrows its name and it sets the B 1 frequency in the megahertz radiofrequency range. Resonant radiofrequency energy is typically applied as RF-pulses, whose combination of amplitude and duration produces a predictable net tilting of the magnetization vector away from the z-axis by a prescribed angle. A 90º pulse takes M 0 from the z-axis fully into the transverse plane, while a 180º pulse produces an excursion from z to the z axis (Figure 18.3). A B C 180 FIG (A) In the presence of the RF field, the magnetization vector spirals down from the z-axis into the transverse plane. (B) Net effect of a 90º RF-pulse. (C) Net effect of a 180º RF-pulse. 90 RELAXATION T1 and T2 Relaxation After the net magnetization vector has been perturbed away from equilibrium, it will eventually return to its equilibrium state, with restoration of M 0 along the z-axis. This occurs through simultaneous recovery of the longitudinal magnetization component M L along the z-axis via T1 relaxation, and disappearance of the transverse magnetization component M T via T2 relaxation. The two relaxation rates, denoted T1 and T2, are intrinsic features of the underlying tissue (related to tissue structure and microscopic proton motion) and vary with tissue type. Figure 18.4 demonstrates the relaxation curves of the longitudinal and transverse magnetization components following a 90º RF pulse. The 90º pulse converts all of the longitudinal magnetization into transverse magnetization, leaving no residual M L, and a maximal value of M T. M L then re-grows from zero to its equilibrium value M 0 along z, recovering most rapidly for fat and most slowly for CSF. M T decays away to zero at the T2 relaxation rate, with loss of M T (and thus signal strength) occurring most rapidly for fat and most slowly for CSF. T2* Relaxation Signal strength actually decays at the T2 relaxation rate only in an idealized situation in which all spins experience exactly the same external magnetic field. In reality, any source of inhomogeneity in this field causes nearby spins to precess at different frequencies and to dephase more rapidly, resulting in more rapid signal loss with a shortened relaxation time, T2*. Common sources of these inhomogeneities A M 0 M L FAT T1 relaxation WM Time GM CSF B M T FAT T2 relaxation Time CSF GM WM FIG (A) T1-relaxation curves describing recovery of longitudinal magnetization towards equilibrium following a 90º RF pulse. (B) T2-relaxation curves describing the decay of transverse magnetization towards zero following a 90º RF pulse. In sequence from shortest to longest relaxation times (fastest to slowest relaxation rates): fat, white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). As T1 relaxation represents recovery of longitudinal magnetization towards M 0, while T2 relaxation represents decay of transverse magnetization towards zero, the directions of the curves are reversed from (A) to (B).

3 130 CHAPR 18 INODUCTORY MRI PHYSICS include the inability to engineer an absolutely uniform magnetic field and susceptibility effects in which differences in the magnetic properties of nearby materials (air, metal, blood products) distort the magnetic field. IMAGE CONAST MECHANISMS Basic Pulse Sequence and Imaging Parameters and Figure 18.5 outlines a simplified pulse sequence diagram and defines two key variables, and, that may be adjusted to alter image contrast. The echo time,, may be thought of as the delay after the RF pulse during which the signal is gathered. The repetition time,, denotes the time interval between subsequent excitations by RF pulses. The process of creating an image requires numerous repetitions of this basic building block (see below). During each, longitudinal magnetization is allowed to grow back along z, to a degree depending on the tissue s T1 relaxation rate. Adjusting in this pulse sequence thus controls the extent of T1-weighted contrast introduced into the image (see below). Immediately following the subsequent RF pulse, each tissue has its maximal amount of transverse magnetization. This transverse magnetization then decays towards zero during, to a degree depending on the tissue s T2 relaxation rate. Adjusting the length of the delay before collecting the induced signal thus controls the extent of T2- weighted contrast introduced into the image (see below). A Proton-Density, T1-Weighted and T2-Weighted Images The proton density refers to the number of hydrogen nuclei per unit volume. A region with a greater number of spins will contribute more magnetization and thus more signal than an equivalent region containing fewer spins. Proton density images are designed to show purely this underlying density variation. T1- and T2-weighted images then superimpose additional image contrast based on the differing relaxation times of the tissues, to degrees depending on the and values chosen for the scan. It must be emphasized that T1 and T2 are fixed parameters reflecting physical characteristics of the tissue, while and are imaging variables that are adjusted at the MR scanner to accentuate image contrast between tissues. The magnitude of the signal collected for a given tissue type is determined by multiplying the underlying proton density distribution by the values of the T1 and T2 relaxation curves of Figure 18.5 for each particular tissue at the chosen and times. The appropriate choices of and values are contained in Table 18.1 and discussed below. Proton-Density Images Proton density images rely on a very long value to eliminate T1-weighted contrast and a very short value to eliminate T2-weighted contrast. The long allows recovery of full equilibrium magnetization for all tissues. The next RF pulse transfers these magnetizations to the transverse plane, where they precess and induce the signal that is recorded immediately (at a very short ) before significant T2 relaxation can take place. The resulting image then reflects the spatial distribution of proton density across the patient, without additional T1- or T2-weighted contrast. B M 0 M L T1W C M T T2W T1-Weighted Images T1-weighted images rely on relatively short values of to introduce T1-weighted contrast and very short values to eliminate T2-weighting. The short value of establishes differences in longitudinal magnetization values for different tissue types (see Figure 18.5B). Following the subsequent RF pulse to transfer this magnetization to the transverse plane, the induced signal is collected rapidly FIG (A) Schematic pulse sequence diagram. (B) T1 relaxation occurs during each repetition time () between subsequent 90º RF pulses. Choice of thus determines the extent of T1 weighting in the image. (C) T2 relaxation occurs during each echo time (), which defines the timing of signal collection after each RF pulse. Choice of thus determines the amount of T2 weighting in the image. and ranges to produce T1-weighted and T2-weighted images are bracketed in (B) and (C). T ABLE 18-1 Appropriate choices of and to create T1-weighted, T2-weighted and proton density images Proton density T1-weighted T2-weighted As long as Relatively As long as possible short possible As short as As short as Relatively possible possible long

4 IMAGE CONAST MECHANISMS 131 (at short ) to minimize T2-weighting. This combination produces a T1-weighted image while eliminating the confounding effects of T2-weighting. T2-Weighted Images T2-weighted images rely on a very long value to eliminate T1-weighting and a relatively long value to introduce T2-weighted contrast by creating differences in transverse magnetization between different tissue types. The long allows recovery of full equilibrium magnetization for all tissues. Following the subsequent RF pulse to transfer this magnetization to the transverse plane, signal is not collected until enough time has passed to highlight differences in transverse magnetization based on T2-relaxation differences (see Figure 18.5C). This combination produces a T2-weighted image while eliminating the confounding effects of T1-weighting. Figure 18.6 shows examples of the different image types, achieved by appropriate adjustment of and. Inversion Recovery Inversion recovery sequences add an additional 180º RF pulse to the basic pulse sequence building block of Figure Following this pulse, there is a delay time τ before the subsequent 90º pulse and signal collection at (Figure 18.7). and are chosen to produce T2-weighted images, but the additional τ imaging variable provides a mechanism to use T1 relaxation differences to uniformly suppress signal from a tissue of interest (water in FLAIR images and fat in STIR images). FLAIR In FLAIR (fluid attenuated inversion recovery) images, τ is chosen to correspond to the zero-crossing point in the T1 relaxation curve of water. The 90º RF pulse is applied at just the moment that the longitudinal magnetization of cerebrospinal fluid crosses through zero, so that there is no formation of transverse magnetization to produce signal from the CSF. Other tissue types with faster T1 relaxation A B C D E FIG Different types of image contrast in a patient with melanoma metastases. (A) Proton density, (B) T2-weighted, (C) FLAIR, (D) T1-weighted and (E) T1-weighted following intravenous gadolinium administration. Note the slightly lower signal intensity of white matter relative to gray matter on the T2-weighted and FLAIR images, as opposed to its slightly higher relative intensity on the T1-weighted image. In (E), the metastases enhance due to the T1-shortening effect of gadolinium in regions where it enters tissues across a disrupted blood brain barrier. The shorter T1 time leads to greater recovery of longitudinal magnetization during each and produces greater signal after the subsequent RF pulse. In (C) the FLAIR image eliminates the signal from CSF, while continuing to demonstrate the vasogenic edema surrounding the metastases.

5 132 CHAPR 18 INODUCTORY MRI PHYSICS B ω τ 90 B 0 ω 0 x x M 0 M L have recovered significant portions of their equilibrium magnetization, so the 90º pulse does produce transverse magnetization and MR signal for these tissues. Figure 18.6C provides a sample image. STIR τ STIR FAT CSF τ FLAIR In STIR (short tau inversion recovery) images, τ is chosen to match the zero-crossing point in the T1 relaxation curve of fat. As a result, STIR provides a robust method of uniform fat suppression and is particularly helpful in accentuating soft tissue edema within fat-containing tissues such as bone marrow. MAKING AN IMAGE Spatial Localization by Magnetic Field Gradients τ FIG Immediately following the 180º inversion pulse, all of the equilibrium magnetization has been flipped to the z axis. The longitudinal magnetization recovers from z to z at the characteristic T1 relaxation rates of the different tissues. Appropriate selection of τ eliminates subsequent signal production from water in FLAIR images and from fat in STIR images. Spatial localization in MR images is primarily achieved through magnetic field gradients. These gradients, G, are spatially varying magnetic fields whose strength increases linearly with position along a given direction and are applied in addition to the uniform B 0 field that is present at baseline. For example, when an x-axis gradient G x is applied, the total magnetic field strength is slightly weaker on one side of the imaging volume ( x locations) and stronger on the other ( x locations) (Figure 18.8). Because the Larmor precession frequency is directly proportional to magnetic field strength, the result is that signal from one FIG In the presence of the magnetic field gradient, magnetic field strength B varies linearly with position. As a result, corresponding precession frequencies vary linearly with position. side of the patient oscillates at slightly slower frequencies than signal from the other side of the patient. All of these signal components are simultaneously detected in the surrounding coil, but may be separated into the individual frequency components through use of the Fourier transform. The amount of signal oscillating at a given frequency corresponds to the amount of magnetization precessing at the corresponding magnetic field strength, which determines the spatial location of that magnetization along the gradient direction. In this way, magnetic field gradients create a mapping of frequency to position, a property which is crucial to MR image formation. k-space The concept of frequency-to-position mapping produced by magnetic field gradients is most intuitive in a single dimension, but is more challenging to conceptualize in multidimensional images. The k-space formalism is a convenient way to describe gradient encoding along one or more dimensions. Magnetic Field Gradients, Spatial Frequencies and k-space As magnetic field gradients establish different precession frequencies across the imaging volume, evolution in a gradient over a specified time creates a spatial distribution of magnetization that varies along the gradient direction. Greater amounts of evolution in the gradient produce progressively tighter spatial oscillations across the patient, or oscillations of progressively higher spatial frequency (Figure 18.9A). The basic tenet of Fourier transform mathematics is that any given shape may be defined as an appropriate combination of spatially oscillating distributions. k-space tabulates the contributions of these spatial frequency components. It is the mathematical domain in which MRI signal is collected and is in fact related to the actual image by means of Fourier transformation. Each data point of collected signal occupies a particular location in k-space and contains information about

6 MAKING AN IMAGE 133 A B C D k 0 ±1 ±2 ±3 G freq G phase k phase FIG (A) Creation of spatial distributions via gradient evolution. Relative to the center position, rightward magnetizations precess at increasing clockwise rates, leftward magnetization at increasing counterclockwise rates. The top row is a uniform distribution of magnetization prior to gradient evolution, lower rows show the spatial distribution after progressive steps of gradient evolution. (B) Corresponding spatial distributions and k-space values. (C) and (D) Equivalent gradient evolution steps: (C) frequency encoding approach, with fixed gradient strength and increasing evolution time intervals; (D) phase encoding approach, with fixed evolution times, but increasing gradient strengths. the corresponding spatial frequency of magnetization distributed across the imaging volume. The k 0 data point represents magnetization uniformly distributed across the imaging volume. The k 1 data points describe distributions of magnetization with a single cycle of oscillation from one end of the imaging volume to the other, k 2 with two cycles of oscillation, and so on (Figure 18.9B). A complete set of these data points specifies the amount of each spatial frequency component and uniquely determines the true spatial map of magnetization. This k-space map of spatial-frequencies is converted via the Fourier transform to the spatial domain to produce the image. Each spatial frequency component is interrogated by creating the appropriate spatial oscillation via increasing intervals or steps of gradient evolution. In practice, this may be done by allowing evolution for longer time intervals under a gradient of fixed strength the frequency encoding approach (Figure 18.9C), or by producing evolution for a fixed time interval under gradients of increasing strength the phase encoding approach (Figure 18.9D). The signal produced by each gradient evolution step reflects the size of the corresponding spatial frequency component and fills the corresponding k-space position. Frequency Encoding During the signal collection phase of the pulse sequence, a frequency-encoding gradient or readout gradient is applied. This gradient maps precession frequency to spatial position. Fourier transformation decomposes the collected signal into its component frequencies, whose magnitudes correspond to the amount of magnetization at each position, and yield a one-dimensional image. In the k-space description, gradient evolution steps are defined by successive time intervals under a readout gradient of fixed strength. Each associated signal data point fills the corresponding k-space position (Figure 18.10). All of the data points needed to fill the complete line of k-space may be acquired after a single RF pulse and Fourier transformation yields a one-dimensional image. Phase Encoding Phase encoding is used to encode spatial information in the second dimension and uses a gradient along an axis perpendicular to the frequency encoding direction. Unlike frequency encoding, phase-encoding steps are achieved via stepwise changes in the strength of the phase-encoding gradient, with the evolution interval remaining fixed (see Figure 18.10). Phase encoding is otherwise entirely analogous to frequency encoding, as each encoding step provides information about a different spatial frequency component and fills the corresponding position in k-space. Each phase encoding evolution step must be performed after a new RF pulse, which requires numerous repetitions of the pulse sequence building block in order to collect all of the required signal data. Data collected after a full set of frequency and phase encoding steps then fills a full plane of k-space, which may be Fourier transformed into a two-dimensional image. Slice Selection k freq FIG Spatial encoding technique combining frequency and phase encoding. Signal collected during each frequency encoding gradient fills a horizontal line in k-space (straight arrows). Each phase encoding gradient step toggles to the next vertical k-space position (curved arrows). After a complete set of phase encode steps, a full plane of k-space data is filled, allowing 2D image reconstruction. In order to spatially encode the third dimension, a slice selection step is often employed, in which the RF pulses are applied in the presence of a slice-selection magnetic field gradient. The RF pulses contain an adjustable range of frequencies. As discussed in the section on radiofrequency

7 134 CHAPR 18 INODUCTORY MRI PHYSICS energy and resonance, the RF excitation frequency must match the spin precession frequency in order to tilt magnetization into the transverse plane. As a result, each RF pulse only excites spins with a matching range of precession frequencies, which corresponds to a predictable range of locations along the gradient direction (Figure 18.11). Expanded Pulse Sequence Diagram and 2D Versus 3D Imaging Techniques Figure contains a simplified schematic pulse sequence diagram for two-dimensional imaging, in which slice selection, phase encoding and frequency encoding extract spatial information along each of the three perpendicular axes. For each slice selection step, in-plane spatial encoding is performed with a combination of phase RF frequencies Gradient Frequency Slice Position FIG Slice selection. The position of the slice is determined by the center frequency of the RF pulse and the slope of the magnetic field gradient, while the slice thickness is determined by the range of frequencies in the RF pulse and by the slope of the gradient. G freq G phase G slice FIG Schematic two-dimensional imaging pulse sequence diagram (several practical details omitted). The slice-selection gradient is applied during the RF pulses. The phase encoding gradients step in amplitude during successive repetitions. The frequency encoding gradients are applied during signal readout. and frequency encoding. Each slice requires a full set of phase encoding steps, each of which in turn requires its own. It is primarily this need to repeat numerous excitations with different slice-selection and phase-encoding steps that accounts for the lengthy scan times of MRI (although in reality data acquisition from different slices may be interleaved to save some time). Rather than performing slice selection as above, threedimensional imaging techniques instead add an additional nested phase-encoding cycle to spatially encode the third dimension, again requiring repetition through multiple excitations. Echoes In actual practice, it is generally necessary to acquire signal data from both positive and negative sides of k-space. In order to do this, data are collected during symmetric echoes, with the center point of the echo corresponding to k 0. There are two general techniques to do this, called, respectively, spin echo and gradient echo. Spin Echoes Spin echoes are formed by placing a 180º pulse in the center of the time (left out of the pulse sequence diagrams for simplicity). This additional 180º pulse has the effect of refocusing any dephasing of transverse magnetization caused by persistent magnetic field inhomogeneities as discussed above. The result is an echo height determined by T2 rather than T2*, which not only produces greater signal strength, but also better reflects intrinsic tissue properties. A commonly used analogy is to visualize runners on a track, who run in one direction for /2 before the sound of a whistle (the 180º pulse) causes them all to reverse directions but to maintain their individual speeds. After the second /2, they all rejoin one another in an echo at the starting line before again beginning to de-phase around the track in the other direction. Gradient Echoes Gradient echoes do not use any additional RF pulses during. Instead, the strength of the frequency encoding readout gradient is reversed to form an echo. The track runner analogy to a gradient echo is that after running for a length of time, the whistle (the gradient reversal) causes the fastest and slowest runners each to adopt the other s previous running speed. After an equivalent time interval, the two again meet, coming momentarily back in phase with one another. Because fixed magnetic field inhomogeneities are not corrected by gradient echo sequences, such sequences are more prone to susceptibility effects. These may be intended, as with use of gradient echo sequences to improve

8 REFERENCES 135 detectability of subtle foci of hemorrhage, or undesired, in the form of susceptibility artifacts arising from dental or surgical metal, or from air/tissue interfaces in diffusion weighted images. CONCLUSION This chapter has introduced many of the key conceptual underpinnings of MRI physics. Several good references contain extensive sections that expand further upon these crucial concepts and typical imaging methods [1 4]. A basic understanding of these principles is vital to a firm grasp of clinical MR image content and forms the foundation for understanding more advanced MR imaging techniques. REFERENCES 1. Stark DD, Bradley WG (1999). Magnetic Resonance Imaging, 3rd edn. Mosby, St Louis. 2. Edelman RR, Hesselink JR, Zlatkin M (2005). Clinical Magnetic Resonance Imaging, 3rd edn. Saunders, Philadelphia. 3. Hornak JP The Basics of MRI htbooks/mri/ 4. Higgins CB, Hricak H, Helms CA (1996). Magnetic Resonance Imaging of the Body, 3rd edn. Lippincott-Raven, Philadelphia.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

Basis of MRI Contrast

Basis of MRI Contrast Basis of MRI Contrast MARK A. HORSFIELD Department of Cardiovascular Sciences University of Leicester Leicester LE1 5WW UK Tel: +44-116-2585080 Fax: +44-870-7053111 e-mail: mah5@le.ac.uk 1 1.1 The Magnetic

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

Field trip: Tuesday, Feb 5th

Field trip: Tuesday, Feb 5th Pulse Sequences Field trip: Tuesday, Feb 5th Hardware tour of VUIIIS Philips 3T Meet here at regular class time (11.15) Complete MRI screening form! Chuck Nockowski Philips Service Engineer Reminder: Project/Presentation

More information

RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES

RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES 1. What are potential consequences to patients and personnel should there be a release of gaseous

More information

Part III: Sequences and Contrast

Part III: Sequences and Contrast Part III: Sequences and Contrast Contents T1 and T2/T2* Relaxation Contrast of Imaging Sequences T1 weighting T2/T2* weighting Contrast Agents Saturation Inversion Recovery JUST WATER? (i.e., proton density

More information

MRI Physics I: Spins, Excitation, Relaxation

MRI Physics I: Spins, Excitation, Relaxation MRI Physics I: Spins, Excitation, Relaxation Douglas C. Noll Biomedical Engineering University of Michigan Michigan Functional MRI Laboratory Outline Introduction to Nuclear Magnetic Resonance Imaging

More information

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging G16.4426 Medical Imaging Physics of Magnetic Resonance Imaging Riccardo Lattanzi, Ph.D. Assistant Professor Department of Radiology, NYU School of Medicine Department of Electrical and Computer Engineering,

More information

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons Fundamental MRI Principles Module 2 N S 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons positively charged neutrons no significant charge electrons negatively charged Protons

More information

Outlines: (June 11, 1996) Instructor:

Outlines: (June 11, 1996) Instructor: Magnetic Resonance Imaging (June 11, 1996) Instructor: Tai-huang Huang Institute of Biomedical Sciences Academia Sinica Tel. (02) 2652-3036; Fax. (02) 2788-7641 E. mail: bmthh@ibms.sinica.edu.tw Reference:

More information

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) Magnetic Resonance Imaging Introduction The Components The Technology (MRI) Physics behind MR Most slides taken from http:// www.slideworld.org/ viewslides.aspx/magnetic- Resonance-Imaging- %28MRI%29-MR-Imaging-

More information

NMR and MRI : an introduction

NMR and MRI : an introduction Intensive Programme 2011 Design, Synthesis and Validation of Imaging Probes NMR and MRI : an introduction Walter Dastrù Università di Torino walter.dastru@unito.it \ Introduction Magnetic Resonance Imaging

More information

Fundamental MRI Principles Module Two

Fundamental MRI Principles Module Two Fundamental MRI Principles Module Two 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons neutrons electrons positively charged no significant charge negatively charged Protons

More information

Biomedical Imaging Magnetic Resonance Imaging

Biomedical Imaging Magnetic Resonance Imaging Biomedical Imaging Magnetic Resonance Imaging Charles A. DiMarzio & Eric Kercher EECE 4649 Northeastern University May 2018 Background and History Measurement of Nuclear Spins Widely used in physics/chemistry

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x ) Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 5 GE Medical Systems 2003 Gibbs Artifact Apodization rect(k ) Hanning Window h(k )=1/2(1+cos(2πk ) 256256 image 256128

More information

Chapter 14:Physics of Magnetic Resonance

Chapter 14:Physics of Magnetic Resonance Chapter 14:Physics of Magnetic Resonance Slide set of 141 slides based on the chapter authored by Hee Kwon Song of the publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Relaxation times in nuclear magnetic resonance

Relaxation times in nuclear magnetic resonance Relaxation times in TEP Related topics Nuclear spins, atomic nuclei with a magnetic moment, precession movement of the nuclear spins, Landau-Lifshitz equation, Bloch equation, magnetisation, resonance

More information

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1 Chapter 1 Production of Net Magnetization Magnetic resonance (MR) is a measurement technique used to examine atoms and molecules. It is based on the interaction between an applied magnetic field and a

More information

Basic p rinciples COPYRIGHTED MATERIAL. Introduction. Atomic s tructure

Basic p rinciples COPYRIGHTED MATERIAL. Introduction. Atomic s tructure 1 Basic p rinciples Introduction 1 Atomic structure 1 Motion in the atom 2 MR active nuclei 2 The hydrogen nucleus 4 Alignment 4 Precession 8 The Larmor equation 9 Introduction The basic principles of

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

MRI in Review: Simple Steps to Cutting Edge Part I

MRI in Review: Simple Steps to Cutting Edge Part I MRI in Review: Simple Steps to Cutting Edge Part I DWI is now 2 years old... Mike Moseley Radiology Stanford DWI, b = 1413 T2wt, 28/16 ASN 21 San Francisco + Disclosures: Funding NINDS, NCRR, NCI 45 minutes

More information

Tissue Characteristics Module Three

Tissue Characteristics Module Three Tissue Characteristics Module Three 1 Equilibrium State Equilibrium State At equilibrium, the hydrogen vector is oriented in a direction parallel to the main magnetic field. Hydrogen atoms within the vector

More information

The physics US and MRI. Prof. Peter Bogner

The physics US and MRI. Prof. Peter Bogner The physics US and MRI Prof. Peter Bogner Sound waves mechanical disturbance, a pressure wave moves along longitudinal wave compression rarefaction zones c = nl, (c: velocity, n: frequency, l: wavelength

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Simon Lacoste-Julien Electromagnetic Theory Project 198-562B Department of Physics McGill University April 21 2003 Abstract This paper gives an elementary introduction

More information

Magnetic resonance imaging MRI

Magnetic resonance imaging MRI Magnetic resonance imaging MRI Introduction What is MRI MRI is an imaging technique used primarily in medical settings that uses a strong magnetic field and radio waves to produce very clear and detailed

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

NMR/MRI examination (8N080 / 3F240)

NMR/MRI examination (8N080 / 3F240) NMR/MRI examination (8N080 / 3F240) Remarks: 1. This test consists of 3 problems with at total of 26 sub-questions. 2. Questions are in English. You are allowed to answer them in English or Dutch. 3. Please

More information

BASIC MRI PHYSICS SPIN GYMNASTICS Don Plewes PhD, Walter Kucharczyk MD

BASIC MRI PHYSICS SPIN GYMNASTICS Don Plewes PhD, Walter Kucharczyk MD BASIC MRI PHYSICS SPIN GYMNASTICS Don Plewes PhD, Walter Kucharczyk MD Introduction To understand MRI, it is first necessary to understand the physics of proton Nuclear Magnetic Resonance (NMR). The most

More information

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner The physics of medical imaging US, CT, MRI Prof. Peter Bogner Clinical radiology curriculum blocks of lectures and clinical practice (7x2) Physics of medical imaging Neuroradiology Head and neck I. Head

More information

Advanced Topics and Diffusion MRI

Advanced Topics and Diffusion MRI Advanced Topics and Diffusion MRI Slides originally by Karla Miller, FMRIB Centre Modified by Mark Chiew (mark.chiew@ndcn.ox.ac.uk) Slides available at: http://users.fmrib.ox.ac.uk/~mchiew/teaching/ MRI

More information

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaxation Bloch Equation 1 Spin Intrinsic angular momentum of

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

FREQUENCY SELECTIVE EXCITATION

FREQUENCY SELECTIVE EXCITATION PULSE SEQUENCES FREQUENCY SELECTIVE EXCITATION RF Grad 0 Sir Peter Mansfield A 1D IMAGE Field Strength / Frequency Position FOURIER PROJECTIONS MR Image Raw Data FFT of Raw Data BACK PROJECTION Image Domain

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Enseignant-chercheur Equipe IMAGES - Télécom ParisTech pietro.gori@telecom-paristech.fr September 20, 2017 P. Gori BIOMED 20/09/2017 1 / 76

More information

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar.

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar. 1 Doppler echocardiography & Magnetic Resonance Imaging History: - Langevin developed sonar. - 1940s development of pulse-echo. - 1950s development of mode A and B. - 1957 development of continuous wave

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Jeffrey A. Fessler EECS Department The University of Michigan NSS-MIC: Fundamentals of Medical Imaging Oct. 20, 2003 NMR-0 Background Basic physics 4 magnetic fields

More information

Nuclear Magnetic Resonance Log

Nuclear Magnetic Resonance Log Objective The development of the nuclear magnetic resonance (NMR) log was fueled by the desire to obtain an estimate of permeability from a continuous measurement. Previous work had relied on empirical

More information

Exam 8N080 - Introduction to MRI

Exam 8N080 - Introduction to MRI Exam 8N080 - Introduction to MRI Friday April 10 2015, 18.00-21.00 h For this exam you may use an ordinary calculator (not a graphical one). In total there are 5 assignments and a total of 50 points can

More information

Introduction to MRI Acquisition

Introduction to MRI Acquisition Introduction to MRI Acquisition James Meakin FMRIB Physics Group FSL Course, Bristol, September 2012 1 What are we trying to achieve? 2 What are we trying to achieve? Informed decision making: Protocols

More information

Nuclei, Excitation, Relaxation

Nuclei, Excitation, Relaxation Outline 4.1 Principles of MRI uclei, Excitation, Relaxation Carolyn Kaut Roth, RT (R)(MR)(CT)(M)(CV) FSMRT CEO Imaging Education Associates www.imaginged.com candi@imaginged.com What nuclei are MR active?

More information

Physical fundamentals of magnetic resonance imaging

Physical fundamentals of magnetic resonance imaging Physical fundamentals of magnetic resonance imaging Stepan Sereda University of Bonn 1 / 26 Why? Figure 1 : Full body MRI scan (Source: [4]) 2 / 26 Overview Spin angular momentum Rotating frame and interaction

More information

Me myself and MRI: adventures in not understanding nuclear physics.

Me myself and MRI: adventures in not understanding nuclear physics. Me myself and MRI: adventures in not understanding nuclear physics. Thomas E. Gladwin August 28, 2007 Contents 1 Introduction 2 2 Nuclei 2 2.1 Precession............................... 2 2.2 Spin-up and

More information

Basic MRI physics and Functional MRI

Basic MRI physics and Functional MRI Basic MRI physics and Functional MRI Gregory R. Lee, Ph.D Assistant Professor, Department of Radiology June 24, 2013 Pediatric Neuroimaging Research Consortium Objectives Neuroimaging Overview MR Physics

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Spin Echo Imaging Hahn Spin Echo

More information

Magnetic Resonance Imaging

Magnetic Resonance Imaging http://www.qldxray.com.au/filelibrary/mri_cardiovascular_system_ca_0005.jpg Magnetic Resonance Imaging 1 Overview 1. The magnetic properties of nuclei, and how they behave in strong magnetic fields. 2.

More information

Introduction to the Physics of NMR, MRI, BOLD fmri

Introduction to the Physics of NMR, MRI, BOLD fmri Pittsburgh, June 13-17, 2011 Introduction to the Physics of NMR, MRI, BOLD fmri (with an orientation toward the practical aspects of data acquisition) Pittsburgh, June 13-17, 2001 Functional MRI in Clinical

More information

The Theory of Nuclear Magnetic Resonance Behind Magnetic Resonance Imaging. Catherine Wasko Physics 304 Physics of the Human Body May 3, 2005

The Theory of Nuclear Magnetic Resonance Behind Magnetic Resonance Imaging. Catherine Wasko Physics 304 Physics of the Human Body May 3, 2005 The Theory of Nuclear Magnetic Resonance Behind Magnetic Resonance Imaging Catherine Wasko Physics 304 Physics of the Human Body May 3, 2005 Magnetic resonance imaging (MRI) is a tool utilized in the medical

More information

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR MRI in Practice Third edition Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK and Carolyn Kaut RothRT(R) (MR) (CT) (M) (CV) Fellow SMRT (Section for Magnetic

More information

Correction Gradients. Nov7, Reference: Handbook of pulse sequence

Correction Gradients. Nov7, Reference: Handbook of pulse sequence Correction Gradients Nov7, 2005 Reference: Handbook of pulse sequence Correction Gradients 1. Concomitant-Field Correction Gradients 2. Crusher Gradients 3. Eddy-Current Compensation 4. Spoiler Gradients

More information

Basic principles COPYRIGHTED MATERIAL. Introduction. Introduction 1 Precession and precessional

Basic principles COPYRIGHTED MATERIAL. Introduction. Introduction 1 Precession and precessional 1 Basic principles Introduction 1 Precession and precessional Atomic structure 2 (Larmor) frequency 10 Motion in the atom 2 Precessional phase 13 MR-active nuclei 4 Resonance 13 The hydrogen nucleus 5

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 11 pages Written test, 9 December 2010 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: none. "Weighting": All problems weight equally.

More information

NMR course at the FMP: NMR of organic compounds and small biomolecules - II -

NMR course at the FMP: NMR of organic compounds and small biomolecules - II - NMR course at the FMP: NMR of organic compounds and small biomolecules - II - 16.03.2009 The program 2/76 CW vs. FT NMR What is a pulse? Vectormodel Water-flip-back 3/76 CW vs. FT CW vs. FT 4/76 Two methods

More information

Spin Echo Review. Static Dephasing: 1/T2 * = 1/T2 + 1/T2 Spin echo rephases magnetization Spin echoes can be repeated. B.Hargreaves - RAD 229

Spin Echo Review. Static Dephasing: 1/T2 * = 1/T2 + 1/T2 Spin echo rephases magnetization Spin echoes can be repeated. B.Hargreaves - RAD 229 Spin-Echo Sequences Spin Echo Review Echo Trains Applications: RARE, Single-shot, 3D Signal and SAR considerations Hyperechoes 1 Spin Echo Review Static Dephasing: 1/T2 * = 1/T2 + 1/T2 Spin echo rephases

More information

Lecture 12 February 11, 2016

Lecture 12 February 11, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winter 2016 Elements of Modern Signal Processing Lecture 12 February 11, 2016 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long, Edited by E. Bates 1 Outline

More information

Basic Pulse Sequences I Saturation & Inversion Recovery UCLA. Radiology

Basic Pulse Sequences I Saturation & Inversion Recovery UCLA. Radiology Basic Pulse Sequences I Saturation & Inversion Recovery Lecture #5 Learning Objectives Explain what the most important equations of motion are for describing spin systems for MRI. Understand the assumptions

More information

Magnetic Resonance Imaging in a Nutshell

Magnetic Resonance Imaging in a Nutshell Magnetic Resonance Imaging in a Nutshell Oliver Bieri, PhD Department of Radiology, Division of Radiological Physics, University Hospital Basel Department of Biomedical Engineering, University of Basel,

More information

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229 Sequence Overview Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging 75 Pulse Sequences and k-space RF k y G z k x G x 3D k-space G y k y k z Acq. k x 76 Gradient

More information

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2005 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaation Bloch Equation Spin Intrinsic angular momentum of elementary

More information

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees Rad Tech 4912 MRI Registry Review Outline of the Registry Exam: Category: # of questions: A. Patient Care 30 B. Imaging Procedures 62 C. Data Acquisition and Processing 65 D. Physical Principles of Image

More information

MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS

MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS 1. A MR spectrum can identify many metabolites other than water by: Locating the peak(s) determined by a characteristic chemical shift (ppm) resulting from

More information

MR Advance Techniques. Flow Phenomena. Class I

MR Advance Techniques. Flow Phenomena. Class I MR Advance Techniques Flow Phenomena Class I Flow Phenomena In this class we will explore different phenomenona produced from nuclei that move during the acquisition of data. Flowing nuclei exhibit different

More information

Lecture k-space. k-space illustrations. Zeugmatography 3/7/2011. Use of gradients to make an image echo. K-space Intro to k-space sampling

Lecture k-space. k-space illustrations. Zeugmatography 3/7/2011. Use of gradients to make an image echo. K-space Intro to k-space sampling Lecture 21-3-16 K-space Intro to k-space sampling (chap 3) Frequenc encoding and Discrete sampling (chap 2) Point Spread Function K-space properties K-space sampling principles (chap 3) Basic Contrast

More information

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229.

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229. Background II Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging 1 SNR: Signal-to-Noise Ratio Signal: Desired voltage in coil Noise: Thermal, electronic Noise Thermal

More information

How does this work? How does this method differ from ordinary MRI?

How does this work? How does this method differ from ordinary MRI? 361-Lec41 Tue 18nov14 How does this work? How does this method differ from ordinary MRI? NEW kinds of MRI (magnetic resononance imaging (MRI) Diffusion Magnetic Resonance Imaging Tractographic reconstruction

More information

Spin Echo Imaging Sequence

Spin Echo Imaging Sequence 1 MRI In Stereotactic Procedures Edward F. Jackson, Ph.D. The University of Texas M.D. Anderson Cancer Center Houston, Texas 2 RF G slice G phase G freq Signal k-space Spin Echo Imaging Sequence TE 1st

More information

Topics. The History of Spin. Spin. The concept of spin Precession of magnetic spin Relaxation

Topics. The History of Spin. Spin. The concept of spin Precession of magnetic spin Relaxation Topics Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2008 MRI Lecture 1 The concept of spin Precession of magnetic spin Relaation Spin The History of Spin Intrinsic angular momentum

More information

With that first concept in mind, it is seen that a spinning nucleus creates a magnetic field, like a bar magnet

With that first concept in mind, it is seen that a spinning nucleus creates a magnetic field, like a bar magnet NMR SPECTROSCOPY This section will discuss the basics of NMR (nuclear magnetic resonance) spectroscopy. Most of the section will discuss mainly 1H or proton spectroscopy but the most popular nuclei in

More information

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Lecture #7 In Vivo Water

Lecture #7 In Vivo Water Lecture #7 In Vivo Water Topics Hydration layers Tissue relaxation times Magic angle effects Magnetization Transfer Contrast (MTC) CEST Handouts and Reading assignments Mathur-De Vre, R., The NMR studies

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

Magnets, Spins, and Resonances An introduction to the basics of Magnetic Resonance

Magnets, Spins, and Resonances An introduction to the basics of Magnetic Resonance Magnets, Spins, and Resonances An introduction to the basics of Magnetic Resonance A short excursion through MR Physics 19 About spin relaxation and echoes 63 MR Highlights 1 From the signal to the image

More information

NMR BMB 173 Lecture 16, February

NMR BMB 173 Lecture 16, February NMR The Structural Biology Continuum Today s lecture: NMR Lots of slides adapted from Levitt, Spin Dynamics; Creighton, Proteins; And Andy Rawlinson There are three types of particles in the universe Quarks

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 9 Magnetic Resonance Imaging (imaging) Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ 1 Schedule 1. Introduction, Spatial Resolution,

More information

MRI in Clinical Practice

MRI in Clinical Practice MRI in Clinical Practice MRI in Clinical Practice Gary Liney With 62 Figures Gary Liney, PhD MRI Lecturer University of Hull Centre for MR Investigations Hull Royal Infirmary Hull UK British Library Cataloguing

More information

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013 EE5E/BIOE65 Spring 013 Principles of MRI Miki Lustig This is the last homework in class. Enjoy it. Assignment 9 Solutions Due April 9th, 013 1) In class when we presented the spin-echo saturation recovery

More information

ELECTRON SPIN RESONANCE & MAGNETIC RESONANCE TOMOGRAPHY

ELECTRON SPIN RESONANCE & MAGNETIC RESONANCE TOMOGRAPHY ELECTRON SPIN RESONANCE & MAGNETIC RESONANCE TOMOGRAPHY 1. AIM OF THE EXPERIMENT This is a model experiment for electron spin resonance, for clear demonstration of interaction between the magnetic moment

More information

NMR, the vector model and the relaxation

NMR, the vector model and the relaxation NMR, the vector model and the relaxation Reading/Books: One and two dimensional NMR spectroscopy, VCH, Friebolin Spin Dynamics, Basics of NMR, Wiley, Levitt Molecular Quantum Mechanics, Oxford Univ. Press,

More information

Pulse Sequences: RARE and Simulations

Pulse Sequences: RARE and Simulations Pulse Sequences: RARE and Simulations M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.04.19 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Final project

More information

MRI Homework. i. (0.5 pt each) Consider the following arrangements of bar magnets in a strong magnetic field.

MRI Homework. i. (0.5 pt each) Consider the following arrangements of bar magnets in a strong magnetic field. MRI Homework 1. While x-rays are used to image bones, magnetic resonance imaging (MRI) is used to examine tissues within the body by detecting where hydrogen atoms (H atoms) are and their environment (e.g.

More information

Lab 2: Magnetic Resonance Imaging

Lab 2: Magnetic Resonance Imaging EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Developed by: Galen Reed and Miki Lustig Lab 2: Magnetic Resonance Imaging Introduction In this lab, we will get some hands-on experience with an

More information

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance A Hands on Introduction to NMR 22.920 Lecture #1 Nuclear Spin and Magnetic Resonance Introduction - The aim of this short course is to present a physical picture of the basic principles of Nuclear Magnetic

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analsis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

I Basic Spin Physics. 1. Nuclear Magnetism

I Basic Spin Physics. 1. Nuclear Magnetism I Basic Spin Physics Lecture notes by Assaf Tal The simplest example of a magnetic moment is the refrigerator magnet. We ll soon meet other, much smaller and weaker magnetic moments, when we discuss the

More information

BNG/ECE 487 FINAL (W16)

BNG/ECE 487 FINAL (W16) BNG/ECE 487 FINAL (W16) NAME: 4 Problems for 100 pts This exam is closed-everything (no notes, books, etc.). Calculators are permitted. Possibly useful formulas and tables are provided on this page. Fourier

More information

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft MR Fundamentals 26 October 2010 Mitglied der Helmholtz-Gemeinschaft Mitglied der Helmholtz-Gemeinschaft Nuclear Spin Nuclear Spin Nuclear magnetic resonance is observed in atoms with odd number of protons

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 10 pages Written test, 12 December 2012 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: None. Pocket calculator not allowed "Weighting":

More information

NMR Imaging in porous media

NMR Imaging in porous media NMR Imaging in porous media What does NMR give us. Chemical structure. Molecular structure. Interactions between atoms and molecules. Incoherent dynamics (fluctuation, rotation, diffusion). Coherent flow

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Relaxation & Multidimensional Spectrocopy Vrije Universiteit Brussel 9th December 2011 Outline 1 Relaxation 2 Principles 3 Outline 1 Relaxation 2 Principles 3 Establishment of Thermal Equilibrium As previously

More information

On Signal to Noise Ratio Tradeoffs in fmri

On Signal to Noise Ratio Tradeoffs in fmri On Signal to Noise Ratio Tradeoffs in fmri G. H. Glover April 11, 1999 This monograph addresses the question of signal to noise ratio (SNR) in fmri scanning, when parameters are changed under conditions

More information

MRI Physics (Phys 352A)

MRI Physics (Phys 352A) MRI Physics (Phys 352A) Manus J. Donahue: mj.donahue@vanderbilt.edu Department of Radiology, Neurology, Physics, and Psychiatry Office: Vanderbilt University Institute of Imaging Science (VUIIS) AAA-3115

More information

Bioengineering 278" Magnetic Resonance Imaging" Winter 2010" Lecture 1! Topics:! Review of NMR basics! Hardware Overview! Quadrature Detection!

Bioengineering 278 Magnetic Resonance Imaging Winter 2010 Lecture 1! Topics:! Review of NMR basics! Hardware Overview! Quadrature Detection! Bioengineering 278" Magnetic Resonance Imaging" Winter 2010" Lecture 1 Topics: Review of NMR basics Hardware Overview Quadrature Detection Boltzmann Distribution B 0 " = µ z $ 0 % " = #h$ 0 % " = µ z $

More information

Navigator Echoes. BioE 594 Advanced Topics in MRI Mauli. M. Modi. BioE /18/ What are Navigator Echoes?

Navigator Echoes. BioE 594 Advanced Topics in MRI Mauli. M. Modi. BioE /18/ What are Navigator Echoes? Navigator Echoes BioE 594 Advanced Topics in MRI Mauli. M. Modi. 1 What are Navigator Echoes? In order to correct the motional artifacts in Diffusion weighted MR images, a modified pulse sequence is proposed

More information