A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics.

Size: px
Start display at page:

Download "A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics."

Transcription

1 A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Kalai Arasu Muthusamy, D.Phil(Oxon) Senior Lecturer & Consultant Neurosurgeon. Division of Neurosurgery. University Malaya Medical Centre. Diffusion weighted MRI (DWI) Diffusion MR images measure water proton displacements at the cellular level. Diffusion weighted MRI (DWI) generated considerable enthusiasm because of its high sensitivity for detecting acute ischemia. Currently, DWI is becoming more widely used because it is highly sensitive to the microstructural properties of the tissue. The introduction of DTI made possible the estimation of fiber directionality in fibrous tissue such as white matter and subsequently the estimation of white matter connectivity using WMT. Diffusion Tensor MRI (DTI) The tensor is simply a matrix of numbers derived from diffusion measurements in several different directions, from which one can estimate the diffusivity in any arbitrary direction, or determine the direction of maximum diffusion. This tensor is called a diffusion tensor. In general, a tensor is a rather abstract mathematic entity having specific properties that enable complex physical phenomena to be quantified. Background and Relevant Physics Molecular diffusion, or brownian motion, was first formally described by Einstein in 1905 (1). The term molecular diffusion refers to the notion that any type of molecule in a fluid (eg, water) is randomly displaced as the molecule is agitated by thermal energy (Fig 1). In a glass of water, the motion of the water molecules is completely random and is limited only by the boundaries of the container. Relevant Physics DTI measures the diffusion of water in different regions of the brain and after subsequent processing, calculates a principal direction of diffusion for water in each imaging voxel. Diffusion direction varies with tissue environment, for example water in white matter tracts has anisotropic diffusion due to the orientational structure of cells. This anisotropic motion of water in white matter tracts allows determination of their anatomical course within the human brain (Conturo et al., 1999; Basser et al.,000). This enables us to see physical connections between functionally localised brain regions to improve our understanding of brain networks. DTI can therefore predict possible relationships between cortical and subcortical areas using diffusion weighted data Relevant Physics DT MRI measures the molecular diffusion of water in brain s WM and estimates a direction of the fastest diffusivity. The water diffusion reflects microstructural organization of the tissue. In WM the diffusion is fastest along fiber direction. Fiber tracking, also called White Matter Tractography (WMT) or diffusion tensor tractography (DTT), uses the directional information of diffusion tensor maps to estimate connection pathways in brain s WM

2 Diffusion in 3 D: White Matter Anisotropic Diffusion in WM Fibers X Z Y Water in an Oriented Tissue Diffusion Ellipse Water Motion Mean Diffusivitiy Diffusion Anisotropy λ λ 3 λ 1 The tensor matrix may be easily visualized as an ellipsoid whose diameter in any direction estimates the diffusion in that direction and whose major principle axis is oriented in the direction of maximum diffusion Mean Diffusivity is the average of the diffusion in the different directions λ1 DT = MD= 3 ( λ + λ + λ ) 1 0 λ λ 3 3 Anisotropy is normalized standard deviation of diffusion measurements in different directions FA and RA most common Range from 0 to 1 RA= ( λ MD) + ( λ MD) + ( λ MD) 1 3 6MD RA=0 RA<1 Color Diffusion Brain Connectivity DT data provides a directional tensor field in the brain, used to map neuronal fibers. Diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique the mapping of apparent diffusion coefficient values to the more complex, such as diffusion tensor imaging, q ball imaging, diffusion spectrum imaging, and tractography. The type of structural information obtained differs according to the technique used. This has found numerous research and clinical applications Previously could only be done using cadavers or invasive studies in primates

3 Streamline Tracking Streamline DTI Advantages: Conceptually and computationally simple Was the first to be developed Disadvantages: Limited to high anisotropy, high signal areas Can only produce one track Can t handle track splitting Has the greatest difficulty with crossing fibers Probabilistic DTT Behrens et al. MRM : Advantages: Better accounts for experimental errors More robust tracking results Better deals with crossing fibers, low SNR Disadvantages: Computationally intense Probabilities will be modified by crossing fibers Probabilistic Tracking Each pixel is independent in this model Example Probabilistic DTT End zone Start zone

4 Technique FMRIB's Diffusion Toolbox DWI Analysis and Tractography (FDT) using FSL software Medtronic stelt DTI software. Steps. Tracts threshold to 50% Summary of the tracts.

5 DTT application in neurosurgery DTT used mainly in : Pre surgical planning Post operative results Neuroscience interest in functional and development of networks of brain Diagnostic such as development abnormality, Aging and Neurodegenerative Disease, Psychiatric Disease, Demyelinating Disease, Ischemic Disease, Epilepsy & Neoplasms WHITE MATTER PATHOLOGY AND SURGICAL PLANNING White matter tracts displaced by a tumor can retain their anisotropy and remain identifiable in their new location or orientation on a fiber orientation color map. Edematous or tumor-infiltrated tracts may lose anisotropy, but still retain enough orientation organization to remain identifiable on a color map. Or white matter tracts might be destroyed or disrupted to the point where directional and anisotropy organization is lost completely. Jellison, AJNR, 004 Pre op Neurosurgical Application Applications: Anatomy Jellison AJNR 5:356 DTI of the newborn brain with pathology Follow up brain development DTI can reveal detailed anatomy of white matter development. Characterization of normal axonal growth of the white matter tracts. Understanding the extensive inhomogeneity of white matter injuries (e.g., hypoxic- ischemic regions) Reference standards for diagnostic radiology of premature newborns. Early detection can improve treatment How does brain fibers develop?

6 Pitfalls and Limitations of DTI First, it is not possible to differentiate afferent from efferent pathways, anterograde and retrograde pathways, inhibitory and excitatory connections, and direct versus indirect route in diffusion data. Second, tractography picks up mainly large fiber pathways; smaller pathways, or those through regions of fiber crossing or interrupted by synapses may not be detected. The probability of tracing a pathway between two points will be influenced by factors other than the true existence of an anatomical connection for example, longer or more tortuous paths are less likely to be traced. The DTI results will further need to be validated by neuroanatomical studies. Infant vs Adult brain Acquisition Difference with Adults: Fibers are less myelinated less anisotropy lower signal intensity. Motion artifacts can play a larger role (scan within 4 minutes full-term newborns) The size of the pre-term (and neonatal) brain is smaller than of an adult. Voxel contains more structures than in an adult. The signal strength decreases if the voxel size decreases. Thank You

Diffusion Tensor Imaging I: The basics. Jennifer Campbell

Diffusion Tensor Imaging I: The basics. Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Imaging MRI: many different sources of contrast T1W T2W PDW Perfusion BOLD DW

More information

DIFFUSION MAGNETIC RESONANCE IMAGING

DIFFUSION MAGNETIC RESONANCE IMAGING DIFFUSION MAGNETIC RESONANCE IMAGING from spectroscopy to imaging apparent diffusion coefficient ADC-Map anisotropy diffusion tensor (imaging) DIFFUSION NMR - FROM SPECTROSCOPY TO IMAGING Combining Diffusion

More information

Diffusion MRI. Outline. Biology: The Neuron. Brain connectivity. Biology: Brain Organization. Brain connections and fibers

Diffusion MRI. Outline. Biology: The Neuron. Brain connectivity. Biology: Brain Organization. Brain connections and fibers Outline Diffusion MRI Alfred Anwander Download of Slides: www.cbs.mpg.de/events/ teaching/brainsignals1112 password: mpi-brain CBSWIKI: Cornet/DiffusionMRI Neuroanatomy Diffusion MRI Diffusion Tensor Imaging

More information

Advanced Topics and Diffusion MRI

Advanced Topics and Diffusion MRI Advanced Topics and Diffusion MRI Slides originally by Karla Miller, FMRIB Centre Modified by Mark Chiew (mark.chiew@ndcn.ox.ac.uk) Slides available at: http://users.fmrib.ox.ac.uk/~mchiew/teaching/ MRI

More information

Diffusion Tensor Imaging (DTI) e Neurite Orientation Dispersion and Density Imaging (NODDI)

Diffusion Tensor Imaging (DTI) e Neurite Orientation Dispersion and Density Imaging (NODDI) Diffusion Tensor Imaging (DTI) e Neurite Orientation Dispersion and Density Imaging (NODDI) Claudia AM Gandini Wheeler-Kingshott, PhD Prof. of MRI Physics Overview Diffusion and microstructure NODDI theoretical

More information

Diffusion Weighted MRI. Zanqi Liang & Hendrik Poernama

Diffusion Weighted MRI. Zanqi Liang & Hendrik Poernama Diffusion Weighted MRI Zanqi Liang & Hendrik Poernama 1 Outline MRI Quick Review What is Diffusion MRI? Detecting Diffusion Stroke and Tumor Detection Presenting Diffusion Anisotropy and Diffusion Tensor

More information

New developments in Magnetic Resonance Spectrocopy and Diffusion MRI. Els Fieremans Steven Delputte Mahir Ozdemir

New developments in Magnetic Resonance Spectrocopy and Diffusion MRI. Els Fieremans Steven Delputte Mahir Ozdemir New developments in Magnetic Resonance Spectrocopy and Diffusion MRI Els Fieremans Steven Delputte Mahir Ozdemir Overview Magnetic Resonance Spectroscopy (MRS) Basic physics of MRS Quantitative MRS Pitfalls

More information

Diffusion Tensor Imaging (DTI): An overview of key concepts

Diffusion Tensor Imaging (DTI): An overview of key concepts Diffusion Tensor Imaging (DTI): An overview of key concepts (Supplemental material for presentation) Prepared by: Nadia Barakat BMB 601 Chris Conklin Thursday, April 8 th 2010 Diffusion Concept [1,2]:

More information

醫用磁振學 MRM 擴散張量影像 擴散張量影像原理. 本週課程內容 MR Diffusion 擴散張量造影原理 擴散張量造影應用 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系

醫用磁振學 MRM 擴散張量影像 擴散張量影像原理. 本週課程內容   MR Diffusion 擴散張量造影原理 擴散張量造影應用 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系 本週課程內容 http://www.ym.edu.tw/~cflu 擴散張量造影原理 擴散張量造影應用 醫用磁振學 MRM 擴散張量影像 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系 alvin4016@ym.edu.tw MRI The Basics (3rd edition) Chapter 22: Echo Planar Imaging MRI in Practice, (4th edition)

More information

Diffusion Tensor Imaging I. Jennifer Campbell

Diffusion Tensor Imaging I. Jennifer Campbell Diffusion Tensor Imaging I Jennifer Campbell Diffusion Imaging Molecular diffusion The diffusion tensor Diffusion weighting in MRI Alternatives to the tensor Overview of applications Diffusion Imaging

More information

Tensor Visualization. CSC 7443: Scientific Information Visualization

Tensor Visualization. CSC 7443: Scientific Information Visualization Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its

More information

Medical Visualization - Tensor Visualization. J.-Prof. Dr. Kai Lawonn

Medical Visualization - Tensor Visualization. J.-Prof. Dr. Kai Lawonn Medical Visualization - Tensor Visualization J.-Prof. Dr. Kai Lawonn Lecture is partially based on the lecture by Prof. Thomas Schultz 2 What is a Tensor? A tensor is a multilinear transformation that

More information

Quantitative Metrics for White Matter Integrity Based on Diffusion Tensor MRI Data. Stephanie Lee

Quantitative Metrics for White Matter Integrity Based on Diffusion Tensor MRI Data. Stephanie Lee Quantitative Metrics for White Matter Integrity Based on Diffusion Tensor MRI Data Stephanie Lee May 5, 2005 Quantitative Metrics for White Matter Integrity Based on Diffusion Tensor MRI Data ABSTRACT

More information

The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps

The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps J. Biomedical Science and Engineering, 009,, 96-101 The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps Na Zhang 1, Zhen-Sheng Deng 1*, Fang Wang 1,

More information

Diffusion Imaging II. By: Osama Abdullah

Diffusion Imaging II. By: Osama Abdullah iffusion Imaging II By: Osama Abdullah Review Introduction. What is diffusion? iffusion and signal attenuation. iffusion imaging. How to capture diffusion? iffusion sensitizing gradients. Spin Echo. Gradient

More information

From Diffusion Data to Bundle Analysis

From Diffusion Data to Bundle Analysis From Diffusion Data to Bundle Analysis Gabriel Girard gabriel.girard@epfl.ch Computational Brain Connectivity Mapping Juan-les-Pins, France 20 November 2017 Gabriel Girard gabriel.girard@epfl.ch CoBCoM2017

More information

Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm

Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm Philipp Landgraf 1, Dorit Merhof 1, Mirco Richter 1 1 Institute of Computer Science, Visual Computing Group, University of Konstanz philipp.landgraf@uni-konstanz.de

More information

Basics of Diffusion Tensor Imaging and DtiStudio

Basics of Diffusion Tensor Imaging and DtiStudio Basics of Diffusion Tensor Imaging and DtiStudio DTI Basics 1 DTI reveals White matter anatomy Gray matter White matter DTI uses water diffusion as a probe for white matter anatomy Isotropic diffusion

More information

Diffusion Tensor Imaging tutorial

Diffusion Tensor Imaging tutorial NA-MIC http://na-mic.org Diffusion Tensor Imaging tutorial Sonia Pujol, PhD Surgical Planning Laboratory Harvard University DTI tutorial This tutorial is an introduction to the advanced Diffusion MR capabilities

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

An Anisotropic Material Model for Image Guided Neurosurgery

An Anisotropic Material Model for Image Guided Neurosurgery An Anisotropic Material Model for Image Guided Neurosurgery Corey A. Kemper 1, Ion-Florin Talos 2, Alexandra Golby 2, Peter M. Black 2, Ron Kikinis 2, W. Eric L. Grimson 1, and Simon K. Warfield 2 1 Massachusetts

More information

A Riemannian Framework for Denoising Diffusion Tensor Images

A Riemannian Framework for Denoising Diffusion Tensor Images A Riemannian Framework for Denoising Diffusion Tensor Images Manasi Datar No Institute Given Abstract. Diffusion Tensor Imaging (DTI) is a relatively new imaging modality that has been extensively used

More information

Diffusion Tensor Processing and Visualization

Diffusion Tensor Processing and Visualization NA-MIC National Alliance for Medical Image Computing http://na-mic.org Diffusion Tensor Processing and Visualization Guido Gerig University of Utah NAMIC: National Alliance for Medical Image Computing

More information

Measuring the invisible using Quantitative Magnetic Resonance Imaging

Measuring the invisible using Quantitative Magnetic Resonance Imaging Measuring the invisible using Quantitative Magnetic Resonance Imaging Paul Tofts Emeritus Professor University of Sussex, Brighton, UK Formerly Chair in Imaging Physics, Brighton and Sussex Medical School,

More information

Improving White Matter Tractography by Resolving the Challenges of Edema

Improving White Matter Tractography by Resolving the Challenges of Edema Improving White Matter Tractography by Resolving the Challenges of Edema Jérémy Lecoeur, Emmanuel Caruyer, Luke Macyszyn, Ragini Verma To cite this version: Jérémy Lecoeur, Emmanuel Caruyer, Luke Macyszyn,

More information

Diffusion Tensor Imaging quality control : artifacts assessment and correction. A. Coste, S. Gouttard, C. Vachet, G. Gerig. Medical Imaging Seminar

Diffusion Tensor Imaging quality control : artifacts assessment and correction. A. Coste, S. Gouttard, C. Vachet, G. Gerig. Medical Imaging Seminar Diffusion Tensor Imaging quality control : artifacts assessment and correction A. Coste, S. Gouttard, C. Vachet, G. Gerig Medical Imaging Seminar Overview Introduction DWI DTI Artifact Assessment Artifact

More information

Diffusion tensor imaging (DTI):

Diffusion tensor imaging (DTI): Diffusion tensor imaging (DTI): A basic introduction to data acquisition and analysis Matthew Cykowski, MD Postdoctoral fellow Research Imaging Center UTHSCSA Room 2.320 cykowski@uthscsa.edu PART I: Acquiring

More information

The Diffusion Tensor Imaging Toolbox

The Diffusion Tensor Imaging Toolbox 7418 The Journal of Neuroscience, May 30, 2012 32(22):7418 7428 Toolbox Editor s Note: Toolboxes are intended to describe and evaluate methods that are becoming widely relevant to the neuroscience community

More information

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs)

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Yonas T. Weldeselassie (Ph.D. Candidate) Medical Image Computing and Analysis Lab, CS, SFU DT-MR Imaging Introduction

More information

Diffusion tensor imaging: brain pathway reconstruction

Diffusion tensor imaging: brain pathway reconstruction Neda Sepasian, Jan ten Thije Boonkkamp, Anna Vilanova Diffusion tensor imaging: brain pathway reconstruction NAW 5/6 nr. 4 december 205 259 Neda Sepasian Department of Biomedical Engineering Eindhoven

More information

Diffusion imaging of the brain: technical considerations and practical applications

Diffusion imaging of the brain: technical considerations and practical applications Diffusion imaging of the brain: technical considerations and practical applications David G. Norris FC Donders Centre for Cognitive Neuroimaging Nijmegen Sustaining the physiologist in measuring the atomic

More information

DWI acquisition schemes and Diffusion Tensor estimation

DWI acquisition schemes and Diffusion Tensor estimation DWI acquisition schemes and Diffusion Tensor estimation A simulation based study Santiago Aja-Fernández, Antonio Tristán-Vega, Pablo Casaseca-de-la-Higuera Laboratory of Image Processing L A B O R A T

More information

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging 1, Chunlei Liu, Ph.D. 1 Brain Imaging and Analysis Center Department of Radiology Duke University, Durham, NC, USA 1 Magnetization

More information

1 Diffusion Tensor. x 1, , x n

1 Diffusion Tensor. x 1, , x n Tensor Field Visualization Tensor is the extension of concept of scalar and vector, it is the language of mechanics. Therefore, tensor field visualization is a challenging issue for scientific visualization.

More information

Magnetic Resonance Spectroscopy. Saurabh Bhaskar Shaw Dwip Shah

Magnetic Resonance Spectroscopy. Saurabh Bhaskar Shaw Dwip Shah Magnetic Resonance Spectroscopy By Saurabh Bhaskar Shaw Dwip Shah What is Magnetic Resonance Spectroscopy? [1] Non invasive method to look at concentration of metabolites invivo. 2 Basics of MRS Physics

More information

Quantitative Analysis of Diffusion Tensor Orientation: Theoretical Framework

Quantitative Analysis of Diffusion Tensor Orientation: Theoretical Framework Quantitative Analysis of Diffusion Tensor Orientation: Theoretical Framework Yu-Chien Wu, 1,2 Aaron S. Field, 3 Moo K. Chung, 2,4,5 Benham Badie, 6 and Andrew L. Alexander 1,2,7 * Magnetic Resonance in

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Application of diffusion MRI to cancer, heart and brain connectome imaging

Application of diffusion MRI to cancer, heart and brain connectome imaging Colloquium @ Department of Physics, NTU Application of diffusion MRI to cancer, heart and brain connectome imaging March 11, 2014 Wen-Yih Isaac Tseng MD, PhD Advanced Biomedical MRI Lab Center for Optoelectronic

More information

Improved Correspondence for DTI Population Studies via Unbiased Atlas Building

Improved Correspondence for DTI Population Studies via Unbiased Atlas Building Improved Correspondence for DTI Population Studies via Unbiased Atlas Building Casey Goodlett 1, Brad Davis 1,2, Remi Jean 3, John Gilmore 3, and Guido Gerig 1,3 1 Department of Computer Science, University

More information

Two-tensor streamline tractography through white matter intra-voxel fiber crossings: assessed by fmri

Two-tensor streamline tractography through white matter intra-voxel fiber crossings: assessed by fmri Two-tensor streamline tractography through white matter intra-voxel fiber crossings: assessed by fmri Arish A.Qazi 1,2, Gordon Kindlmann 1, Lauren O Donnell 1, Sharon Peled 1, Alireza Radmanesh 1, Stephen

More information

Deformation Morphometry: Basics and Applications

Deformation Morphometry: Basics and Applications Deformation Morphometry: Basics and Applications Valerie Cardenas Nicolson, Ph.D. Assistant Adjunct Professor NCIRE, UCSF, SFVA Center for Imaging of Neurodegenerative Diseases VA Challenge Clinical studies

More information

Diffusion MRI for Brain Connectivity Mapping and Analysis

Diffusion MRI for Brain Connectivity Mapping and Analysis Diffusion MRI for Brain Connectivity Mapping and Analysis Brian G. Booth and Ghassan Hamarneh Contents 1 Diffusion Weighted Image Acquision 2 1.1 Biological Basis for Diffusion MRI..........................

More information

Shape Anisotropy: Tensor Distance to Anisotropy Measure

Shape Anisotropy: Tensor Distance to Anisotropy Measure Shape Anisotropy: Tensor Distance to Anisotropy Measure Yonas T. Weldeselassie, Saba El-Hilo and M. Stella Atkins Medical Image Analysis Lab, School of Computing Science, Simon Fraser University ABSTRACT

More information

Building connectomes using diffusion MRI: Why, how and but

Building connectomes using diffusion MRI: Why, how and but Building connectomes using diffusion MRI: Why, how and but Stamatios N Sotiropoulos 1,2 & Andrew Zalesky 3 1 Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences,

More information

From Pixels to Brain Networks: Modeling Brain Connectivity and Its Changes in Disease. Polina Golland

From Pixels to Brain Networks: Modeling Brain Connectivity and Its Changes in Disease. Polina Golland From Pixels to Brain Networks: Modeling Brain Connectivity and Its Changes in Disease Polina Golland MIT Computer Science and Artificial Intelligence Laboratory Joint work with Archana Venkataraman C.-F.

More information

Artefact Correction in DTI

Artefact Correction in DTI Artefact Correction in DTI (ACID) Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London Siawoosh Mohammadi Motivation High-end DTI: tractography Potential problems

More information

Quantitative Neuro-Anatomic and Functional Image Assessment Recent progress on image registration and its applications

Quantitative Neuro-Anatomic and Functional Image Assessment Recent progress on image registration and its applications Quantitative Neuro-Anatomic and Functional Image Assessment Recent progress on image registration and its applications Guido Gerig Sarang Joshi Tom Fletcher Applications of image registration in neuroimaging

More information

Diffusion-Tensor MR Imaging of Gray and White Matter Development during Normal Human Brain Maturation

Diffusion-Tensor MR Imaging of Gray and White Matter Development during Normal Human Brain Maturation AJNR Am J Neuroradiol 23:1445 1456, October 2002 Diffusion-Tensor MR Imaging of Gray and White Matter Development during Normal Human Brain Maturation Pratik Mukherjee, Jeffrey H. Miller, Joshua S. Shimony,

More information

Fast grim angular structure development based streamline tractography

Fast grim angular structure development based streamline tractography Volume 9 No. 08, 649-649 ISSN: 34-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Fast grim angular structure development based streamline tractography Chintalapati Sai Sita Sri, Ramya Laksmi

More information

CIND Pre-Processing Pipeline For Diffusion Tensor Imaging. Overview

CIND Pre-Processing Pipeline For Diffusion Tensor Imaging. Overview CIND Pre-Processing Pipeline For Diffusion Tensor Imaging Overview The preprocessing pipeline of the Center for Imaging of Neurodegenerative Diseases (CIND) prepares diffusion weighted images (DWI) and

More information

Tensor Visualisation

Tensor Visualisation Tensor Visualisation Computer Animation and Visualisation Lecture 16 Taku Komura tkomura@ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics 1 Tensor Visualisation What is tensor

More information

How Many Gradients are Sufficient in High-Angular Resolution Diffusion Imaging (HARDI)?

How Many Gradients are Sufficient in High-Angular Resolution Diffusion Imaging (HARDI)? How Many Gradients are Sufficient in High-Angular Resolution Diffusion Imaging (HARDI)? Liang Zhan 1, Ming-Chang Chiang 1, Alex D. Leow 1, Siwei Zhu 2, Marina Barysheva 1, Arthur W. Toga 1, Katie L. McMahon

More information

Spatial normalization of diffusion models and tensor analysis

Spatial normalization of diffusion models and tensor analysis University of Iowa Iowa Research Online Theses and Dissertations Summer 2009 Spatial normalization of diffusion models and tensor analysis Madhura Aditya Ingalhalikar University of Iowa Copyright 2009

More information

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Chunlei Liu, PhD Department of Electrical Engineering & Computer Sciences and Helen Wills Neuroscience Institute University

More information

Monitoring neurite morphology and synapse formation in primary neurons for neurotoxicity assessments and drug screening

Monitoring neurite morphology and synapse formation in primary neurons for neurotoxicity assessments and drug screening APPLICATION NOTE ArrayScan High Content Platform Monitoring neurite morphology and synapse formation in primary neurons for neurotoxicity assessments and drug screening Suk J. Hong and Richik N. Ghosh

More information

Predictive Diagnosis of Alzheimer s Disease using Diffusion MRI

Predictive Diagnosis of Alzheimer s Disease using Diffusion MRI Predictive Diagnosis of Alzheimer s Disease using Diffusion MRI by Syeda Maryam A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

Rician Noise Removal in Diffusion Tensor MRI

Rician Noise Removal in Diffusion Tensor MRI Rician Noise Removal in Diffusion Tensor MRI Saurav Basu, Thomas Fletcher, and Ross Whitaker University of Utah, School of Computing, Salt Lake City, UT 84112, USA Abstract. Rician noise introduces a bias

More information

Extracting Quantitative Measures from EAP: A Small Clinical Study using BFOR

Extracting Quantitative Measures from EAP: A Small Clinical Study using BFOR Extracting Quantitative Measures from EAP: A Small Clinical Study using BFOR A. Pasha Hosseinbor, Moo K. Chung, Yu-Chien Wu, John O. Fleming, Aaron S. Field, and Andrew L. Alexander University of Wisconsin-Madison,

More information

Bayesian multi-tensor diffusion MRI and tractography

Bayesian multi-tensor diffusion MRI and tractography Bayesian multi-tensor diffusion MRI and tractography Diwei Zhou 1, Ian L. Dryden 1, Alexey Koloydenko 1, & Li Bai 2 1 School of Mathematical Sciences, Univ. of Nottingham 2 School of Computer Science and

More information

Quantitative MRI of the human brain at 7 tesla

Quantitative MRI of the human brain at 7 tesla Quantitative MRI of the human brain at 7 tesla COLOFON ISBN: 978 908 8915 18 5 This thesis was written and typeset in Microsoft Word 2003 using the Palatino Linotype, Baskerville Old Face, and Gaudi Old

More information

H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida

H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida Tractography in the CST using an Intrinsic Unscented Kalman Filter H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida Outline Introduction Method Pre-processing Fiber

More information

Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions

Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 11, NUMBER 1, WINTER 2010 Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions

More information

Diffusion. CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror

Diffusion. CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror Diffusion CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror 1 Outline How do molecules move around in a cell? Diffusion as a random walk (particle-based perspective) Continuum view of diffusion

More information

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania III,, and Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania August 25, 2010 Copyright Page All material in this lecture, except as noted within the text,

More information

Connectomics analysis and parcellation of the brain based on diffusion-weighted fiber tractography

Connectomics analysis and parcellation of the brain based on diffusion-weighted fiber tractography Connectomics analysis and parcellation of the brain based on diffusion-weighted fiber tractography Alfred Anwander Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany What is the

More information

Diffusion and cellular-level simulation. CS/CME/BioE/Biophys/BMI 279 Nov. 7 and 9, 2017 Ron Dror

Diffusion and cellular-level simulation. CS/CME/BioE/Biophys/BMI 279 Nov. 7 and 9, 2017 Ron Dror Diffusion and cellular-level simulation CS/CME/BioE/Biophys/BMI 279 Nov. 7 and 9, 2017 Ron Dror 1 Outline How do molecules move around in a cell? Diffusion as a random walk (particle-based perspective)

More information

Tensor Visualisation

Tensor Visualisation Tensor Visualisation Computer Animation and Visualisation Lecture 18 tkomura@ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Tensors 1 Reminder : Attribute Data Types Scalar

More information

NEURONAL FIBER TRACKING IN DT-MRI

NEURONAL FIBER TRACKING IN DT-MRI NEURONAL FIBER TRACKING IN DT-MRI By TIM E. MCGRAW A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

More information

Diffusion-Weighted MRI may be used to measure the apparent diffusion coefficient of water in tissue.

Diffusion-Weighted MRI may be used to measure the apparent diffusion coefficient of water in tissue. Specialty Area: MR Physics for Physicists Speaker: Jennifer A. McNab, Ph.D. Assistant Professor, Radiology, Stanford University () Highlights The Bloch-Torrey equation is a generalization of the Bloch

More information

IMA Preprint Series # 2298

IMA Preprint Series # 2298 RELATING FIBER CROSSING IN HARDI TO INTELLECTUAL FUNCTION By Iman Aganj, Neda Jahanshad, Christophe Lenglet, Arthur W. Toga, Katie L. McMahon, Greig I. de Zubicaray, Margaret J. Wright, Nicholas G. Martin,

More information

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner The physics of medical imaging US, CT, MRI Prof. Peter Bogner Clinical radiology curriculum blocks of lectures and clinical practice (7x2) Physics of medical imaging Neuroradiology Head and neck I. Head

More information

Statistical Models for Diffusion Weighted MRI Data

Statistical Models for Diffusion Weighted MRI Data Team Background Diffusion Anisotropy and White Matter Connectivity Interpolation and Smoothing of Diffusion Tensors Non-Euclidean metrics on Ω (SPDMs) Models for raw data and DT estimation References Statistical

More information

Research Article Thalamus Segmentation from Diffusion Tensor Magnetic Resonance Imaging

Research Article Thalamus Segmentation from Diffusion Tensor Magnetic Resonance Imaging Biomedical Imaging Volume 2007, Article ID 90216, 5 pages doi:10.1155/2007/90216 Research Article Thalamus Segmentation from Diffusion Tensor Magnetic Resonance Imaging Ye Duan, Xiaoling Li, and Yongjian

More information

Two-step Anomalous Diffusion Tensor Imaging

Two-step Anomalous Diffusion Tensor Imaging Two-step Anomalous Diffusion Tensor Imain Thomas R. Barrick 1, Matthew G. Hall 2 1 Centre for Stroke and Dementia, Division of Cardiac and Vascular Sciences, St. Geore s University of London, 2 Department

More information

The diffusion tensor is derived from diffusion-weighted

The diffusion tensor is derived from diffusion-weighted Increased Anisotropy in Acute Stroke A Possible Explanation Hadrian A.L. Green, MB ChB; Alonso Peña, PhD; Christopher J. Price, BSc, MRCP; Elizabeth A. Warburton, MRCP, DM; John D. Pickard, MS, FRCS, FMedSci;

More information

What Visualization Researchers Should Know About HARDI Models

What Visualization Researchers Should Know About HARDI Models What Visualization Researchers Should Know About HARDI Models Thomas Schultz October 26, 2010 The Diffusion MRI (dmri) Signal ADC Modeling Diffusion Propagator Fiber Models Diffusion

More information

Robust estimator framework in diffusion tensor imaging

Robust estimator framework in diffusion tensor imaging The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Robust estimator framework in diffusion tensor imaging Ivan I. Maximov 1,*, Farida Grinberg 1, and N. Jon

More information

Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters

Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters Songyuan Tang a, Yong Fan a, Hongtu Zhu b, Pew-Thian Yap a Wei Gao a, Weili Lin a, and Dinggang Shen a a Department

More information

Advanced MRI: Diffusion MRI 1: DTI and k-space

Advanced MRI: Diffusion MRI 1: DTI and k-space k y Advanced MRI: Diffusion MRI 1: DTI and k-space k X Eric Sigmund, PhD February 26th, 2013 LECTURE 1 Neuro Diffusion MRI 3-5 m White matter axons Body 15 m Renal medulla Musculoskeletal 50 m Skeletal

More information

Cortical diffusion imaging

Cortical diffusion imaging Cortical diffusion imaging Alard Roebroeck Maastricht Brain Imaging Center (MBIC) Dept. of Cognitive Neuroscience Faculty of Psychology & Neuroscience Maastricht University Diffusion MRI In vivo & Ex vivo

More information

Noise considerations in the determination of diffusion tensor anisotropy

Noise considerations in the determination of diffusion tensor anisotropy Magnetic Resonance Imaging () 659 669 Noise considerations in the determination of diffusion tensor anisotropy Stefan Skare a,b, *, Tie-Qiang Li c, Bo Nordell a,b, Martin Ingvar a a MR Center, Karolinska

More information

Imaging Brain Structure and Function

Imaging Brain Structure and Function Imaging Brain Structure and Function Thomas J. Grabowski, Jr., MD Professor, Radiology and Neurology (joint) Director, UW Integrated Brain Imaging Center Director, UW Alzheimer s Disease Research Center

More information

Human Brain Networks. Aivoaakkoset BECS-C3001"

Human Brain Networks. Aivoaakkoset BECS-C3001 Human Brain Networks Aivoaakkoset BECS-C3001" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml enrico.glerean@aalto.fi" Why?" 1. WHY BRAIN NETWORKS?"

More information

Magnetic Resonance Spectroscopy: Basic Principles and Selected Applications

Magnetic Resonance Spectroscopy: Basic Principles and Selected Applications Magnetic Resonance Spectroscopy: Basic Principles and Selected Applications Sridar Narayanan, PhD Magnetic Resonance Spectroscopy Unit McConnell Brain Imaging Centre Dept. of Neurology and Neurosurgery

More information

Anisotropic Interpolation of DT-MRI

Anisotropic Interpolation of DT-MRI Anisotropic Interpolation of DT-MRI Carlos A. Castaño-Moraga 1, Miguel A. Rodriguez-Florido 1, Luis Alvarez 2, Carl-Fredrik Westin 3, and Juan Ruiz-Alzola 1,3 1 Medical Technology Center, Signals & Communications

More information

How is it different from conventional MRI? What is MR Spectroscopy? How is it different from conventional MRI? MR Active Nuclei

How is it different from conventional MRI? What is MR Spectroscopy? How is it different from conventional MRI? MR Active Nuclei What is MR Spectroscopy? MR-Spectroscopy (MRS) is a technique to measure the (relative) concentration of certain chemical or biochemical molecules in a target volume. MR-Spectroscopy is an in vivo (in

More information

TECHNICAL REPORT NO June 20, Anisotropic Kernel Smoothing in Diffusion Tensor Imaging: Theoretical Framework

TECHNICAL REPORT NO June 20, Anisotropic Kernel Smoothing in Diffusion Tensor Imaging: Theoretical Framework DEPARTMENT OF STATISTICS University of Wisconsin 1210 West Dayton St. Madison, WI 53706 TECHNICAL REPORT NO. 1104 June 20, 2005 Anisotropic Kernel Smoothing in Diffusion Tensor Imaging: Theoretical Framework

More information

Understanding brain micro-structure using diffusion magnetic resonance imaging (dmri)

Understanding brain micro-structure using diffusion magnetic resonance imaging (dmri) Understanding brain micro-structure using diffusion magnetic resonance imaging (dmri) Jing-Rebecca Li Equipe DEFI, CMAP, Ecole Polytechnique Institut national de recherche en informatique et en automatique

More information

PhD THESIS. prepared at INRIA Sophia Antipolis

PhD THESIS. prepared at INRIA Sophia Antipolis PhD THESIS prepared at INRIA Sophia Antipolis and presented at the University of Nice-Sophia Antipolis Graduate School of Information and Communication Sciences A dissertation submitted in partial satisfaction

More information

Tensor Visualisation

Tensor Visualisation Tensor Visualisation Computer Animation and Visualisation Lecture 15 Taku Komura tkomura@ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics 1 Overview Tensor Visualisation What

More information

An Analytical Model of Water Diffusion and Exchange in White Matter from Diffusion MRI and Its Application in Measuring Axon Radii

An Analytical Model of Water Diffusion and Exchange in White Matter from Diffusion MRI and Its Application in Measuring Axon Radii An Analytical Model of Water Diffusion and Exchange in White Matter from Diffusion MRI and Its Application in Measuring Axon Radii Wenjin Zhou, Student Member, IEEE, and David H. Laidlaw, Senior Member,

More information

Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors

Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors Magnetic Resonance in Medicine 51:924 937 (2004) Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors Chunlei Liu, 1,2 Roland Bammer, 1 Burak Acar, 3 and Michael E. Moseley 1 *

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

Improved Correspondence for DTI Population Studies Via Unbiased Atlas Building

Improved Correspondence for DTI Population Studies Via Unbiased Atlas Building Improved Correspondence for DTI Population Studies Via Unbiased Atlas Building Casey Goodlett 1,BradDavis 1,2,RemiJean 3, John Gilmore 3, and Guido Gerig 1,3 1 Department of Computer Science, University

More information

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling Name: AP Biology Mr. Croft Section 1 1. What is a neuron? Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling 2. Neurons can be placed into three groups, based on their location and function.

More information

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Enseignant-chercheur Equipe IMAGES - Télécom ParisTech pietro.gori@telecom-paristech.fr September 20, 2017 P. Gori BIOMED 20/09/2017 1 / 76

More information

Tensorlines: Advection-Diffusion based Propagation through Diffusion Tensor Fields

Tensorlines: Advection-Diffusion based Propagation through Diffusion Tensor Fields Tensorlines: Advection-Diffusion based Propagation through Diffusion Tensor Fields David Weinstein, Gordon Kindlmann, Eric Lundberg Center for Scientific Computing and Imaging Department of Computer Science

More information

Spatial normalization of diffusion tensor MRI using multiple channels

Spatial normalization of diffusion tensor MRI using multiple channels Spatial normalization of diffusion tensor MRI using multiple channels The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Diffusion Tensor Imaging in Humans: Practical Implications for Neuroanatomy

Diffusion Tensor Imaging in Humans: Practical Implications for Neuroanatomy Diffusion Tensor Imaging in Humans: Practical Implications for Neuroanatomy Collaborators Center for Morphometric Analysis: Nikos Makris Andy Worth Verne S. Caviness George Papadimitriou MGH-NMR Center

More information