Artefact Correction in DTI

Size: px
Start display at page:

Download "Artefact Correction in DTI"

Transcription

1 Artefact Correction in DTI (ACID) Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London Siawoosh Mohammadi

2 Motivation High-end DTI: tractography Potential problems in DTI z y x Lazar, NMR Biomed., 21 Mohammadi et al., MRM, accepted

3 Overview Diffusion Tensor Imaging (DTI) in brief Example application in DTI Three artefacts in DTI Eddy Current (EC) distortions Local Perturbation Fields (LPFs) Signal-dropout due to mechanical vibration Take home message

4 Diffusion Tensor Imaging (DTI) in brief n DW images Diffusion tensor DT represented by ellipsoid m b= images

5 Overview Diffusion Tensor Imaging (DTI) in brief Example application in DTI Three artefacts in DTI Eddy Current (EC) distortions Local Perturbation Fields (LPFs) Signal-dropout due to mechanical vibration Take home message

6 Patients (TLE) and Control Keller et al., Journal of Neuroimaging, accepted

7 7T high resolution DTI Heidemann et al., MRM, 21

8 Grey matter DTI Amygdala parcellation Variability in grey matter diffusion Bach et al., J Neurosci., 211 Nagy et al., ISMRM, 211 Cortical radial and tangential diffusivity MacNab et al., ISMRM, 211

9 High angular resolution diffusion imaging (HARDI) ODF - Orientation Distribution Function Aganj et al., MRM, 21

10 Overview Diffusion Tensor Imaging (DTI) in brief Example application in DTI Three artefacts in DTI Eddy Current (EC) distortions Local Perturbation Fields (LPFs) Signal-dropout due to mechanical vibration Take home message

11 EC distortion artefact Stejskal & Tanner, JCP, 1965 Reese et al., MRM, 23

12 EC and imaging gradients EC G z y z y Skare S., thesis, 22 EC G y EC G x x y x y

13 Whole-brain eddy current distortions original image z y y z y x x y distorted image translation in-plane shearing scaling through-plane shearing eddy current field components EC B EC G x EC G y EC G z Mohammadi et al., MRM, 21

14 Eddy currents: bright edges / blurring Without eddy current and motion correction With eddy current and motion correction

15 Less blurring leads to higher sensitivity in FA group comparison Relevance Better tensor estimates towards the cortex improves GM DTI specificity Keller et al., JON, accepted Nagy et al., ISMRM, 211 Better image quality in high resolution DTI and HARDI, where ST pulse is necessary Heidemann et al., MRM, 21 Aganj et al., MRM, 21

16 Overview Diffusion Tensor Imaging (DTI) in brief Example application in DTI Three artefacts in DTI Eddy Current (EC) distortions Local Perturbation Fields (LPFs) Signal-dropout due to mechanical vibration Take home message

17 Problem: effective gradient, e.g., due to ECs diffusion weighting period readout period expected gradients effective gradients FA original Error in B matrix FA inhomogeneity EC distortion

18 SM2 How to measure the LPFs? Mohammadi et al., Neuroimage, under review

19 Folie 18 SM2 cite zoltan Siawoosh Mohammadi;

20 Measuring LPFs on different MR systems (a) DTI1 (b) DTI2 (c) DTI3 ε11 ε22 ε11 ε ε ε22 ε 33 ε 12 ε 33 ε 12 ε 33 ε ε 13 ε ε 13 ε ε 13 ε = B δb Mohammadi et al., Neuroimage, under review B * with δ B = 2 Σ B and Σ = ε ε ε ε ε ε ε ε ε

21 LPF correction: repositioning experiment.1 z DTI3,2 = 53±3 z DTI3,1 = 41±3 number of voxel tr( δb) Measured MD MD meas DTI3,1 MD meas DTI3, MD [1-3 mm s 2 ] cor2 MD DTI3,1 number of voxel 5 cor2 MD DTI3,2 Corrected MD MD cor2 DTI3,1 MD cor2 DTI3, MD [1-3 mm s 2 ] Mohammadi et al., Neuroimage, under review

22 Relevance Improved sensitivity of group comparison of MD due to repositioning effect Keller et al., JON, accepted Better grey matter DTI due to reduced FA contrast inhomogeneity MacNab et al., ISMRM, 211

23 Overview Diffusion Tensor Imaging (DTI) in brief Example application in DTI Three artefacts in DTI Eddy Current (EC) distortions Local Perturbation Fields (LPFs) Signal-dropout due to mechanical vibration Take home message

24 Vibration artefacts in blip up and blip down DTI data sets Gallichan et al., HBM, 21

25 Problem: signal-dropout due to axial rotation Unshifted echo (blip-up PE) [arbitrary units] 1 k-space coverage echo k min k= k max k y /PE Shifted echo (blip-up PE) k y eff m1 Ω ( r) z [arbitrary units] 1 k } y Mohammadi et al., MRM, accepted k min k= k max k y /PE

26 Recover signal using phase encoding reversal Blip up Blip down Mohammadi et al., MRM, accepted

27 d Mohammadi et al., MRM, accepted Correction of vibration artefacts in DTI using phase-encoding reversal (COVIPER)

28 Relevance Robust data, e.g., avoiding false positives in FA group studies Keller et al., JON, accepted Better data quality in grey matter Less signal-dropout artefacts in HARDI MacNab et al., ISMRM, 211 Aganj et al., MRM, 21

29 Take home message Retrospective artefact correction is possible Sensitivity and robustness of DTI can be improved Three artefacts related to the diffusion weighting gradients were presented We are not finished yet

30 Acknowledgements MR physics group in WTCN, London Nikolaus Weiskopf (my supervisor and head of MR physics at the WTCN) Zoltan Nagy Oliver Josephs Chloe Hutton (special thanks for the acronym ) Antoine Lutti External collaborators Michael Deppe (University of Münster) Harald Möller (Max Plank Institute Leipzig) Dirk Müller (University of Münster) Mark Symms (Department of Clinical and Experimental Epilepsy, UCL, London) David Carmichael (Imaging and Biophysics, UCL, London) This work was supported by the Wellcome Trust.

Diffusion Tensor Imaging I. Jennifer Campbell

Diffusion Tensor Imaging I. Jennifer Campbell Diffusion Tensor Imaging I Jennifer Campbell Diffusion Imaging Molecular diffusion The diffusion tensor Diffusion weighting in MRI Alternatives to the tensor Overview of applications Diffusion Imaging

More information

Diffusion Tensor Imaging I: The basics. Jennifer Campbell

Diffusion Tensor Imaging I: The basics. Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Imaging MRI: many different sources of contrast T1W T2W PDW Perfusion BOLD DW

More information

Diffusion Tensor Imaging (DTI): An overview of key concepts

Diffusion Tensor Imaging (DTI): An overview of key concepts Diffusion Tensor Imaging (DTI): An overview of key concepts (Supplemental material for presentation) Prepared by: Nadia Barakat BMB 601 Chris Conklin Thursday, April 8 th 2010 Diffusion Concept [1,2]:

More information

Advanced Topics and Diffusion MRI

Advanced Topics and Diffusion MRI Advanced Topics and Diffusion MRI Slides originally by Karla Miller, FMRIB Centre Modified by Mark Chiew (mark.chiew@ndcn.ox.ac.uk) Slides available at: http://users.fmrib.ox.ac.uk/~mchiew/teaching/ MRI

More information

Basics of Diffusion Tensor Imaging and DtiStudio

Basics of Diffusion Tensor Imaging and DtiStudio Basics of Diffusion Tensor Imaging and DtiStudio DTI Basics 1 DTI reveals White matter anatomy Gray matter White matter DTI uses water diffusion as a probe for white matter anatomy Isotropic diffusion

More information

DIFFUSION MAGNETIC RESONANCE IMAGING

DIFFUSION MAGNETIC RESONANCE IMAGING DIFFUSION MAGNETIC RESONANCE IMAGING from spectroscopy to imaging apparent diffusion coefficient ADC-Map anisotropy diffusion tensor (imaging) DIFFUSION NMR - FROM SPECTROSCOPY TO IMAGING Combining Diffusion

More information

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics.

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics. A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Kalai Arasu Muthusamy, D.Phil(Oxon) Senior Lecturer & Consultant Neurosurgeon. Division of Neurosurgery. University Malaya Medical Centre.

More information

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs)

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Yonas T. Weldeselassie (Ph.D. Candidate) Medical Image Computing and Analysis Lab, CS, SFU DT-MR Imaging Introduction

More information

Diffusion Tensor Imaging (DTI) e Neurite Orientation Dispersion and Density Imaging (NODDI)

Diffusion Tensor Imaging (DTI) e Neurite Orientation Dispersion and Density Imaging (NODDI) Diffusion Tensor Imaging (DTI) e Neurite Orientation Dispersion and Density Imaging (NODDI) Claudia AM Gandini Wheeler-Kingshott, PhD Prof. of MRI Physics Overview Diffusion and microstructure NODDI theoretical

More information

Cambridge University Press MRI from A to Z: A Definitive Guide for Medical Professionals Gary Liney Excerpt More information

Cambridge University Press MRI from A to Z: A Definitive Guide for Medical Professionals Gary Liney Excerpt More information Main glossary Aa AB systems Referring to molecules exhibiting multiply split MRS peaks due to spin-spin interactions. In an AB system, the chemical shift between the spins is of similar magnitude to the

More information

IMA Preprint Series # 2298

IMA Preprint Series # 2298 RELATING FIBER CROSSING IN HARDI TO INTELLECTUAL FUNCTION By Iman Aganj, Neda Jahanshad, Christophe Lenglet, Arthur W. Toga, Katie L. McMahon, Greig I. de Zubicaray, Margaret J. Wright, Nicholas G. Martin,

More information

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging 1, Chunlei Liu, Ph.D. 1 Brain Imaging and Analysis Center Department of Radiology Duke University, Durham, NC, USA 1 Magnetization

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

Active Imaging with Dual Spin-Echo Diffusion MRI

Active Imaging with Dual Spin-Echo Diffusion MRI Active Imaging with Dual Spin-Echo Diffusion MRI Jonathan D. Clayden 1, Zoltan Nagy 2, Matt G. Hall 3,4, Chris A. Clark 1, and Daniel C. Alexander 3,4 1 Institute of Child Health 2 Wellcome Trust Centre

More information

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Chunlei Liu, PhD Department of Electrical Engineering & Computer Sciences and Helen Wills Neuroscience Institute University

More information

Diffusion Imaging II. By: Osama Abdullah

Diffusion Imaging II. By: Osama Abdullah iffusion Imaging II By: Osama Abdullah Review Introduction. What is diffusion? iffusion and signal attenuation. iffusion imaging. How to capture diffusion? iffusion sensitizing gradients. Spin Echo. Gradient

More information

Two-step Anomalous Diffusion Tensor Imaging

Two-step Anomalous Diffusion Tensor Imaging Two-step Anomalous Diffusion Tensor Imain Thomas R. Barrick 1, Matthew G. Hall 2 1 Centre for Stroke and Dementia, Division of Cardiac and Vascular Sciences, St. Geore s University of London, 2 Department

More information

MRI beyond Fourier Encoding: From array detection to higher-order field dynamics

MRI beyond Fourier Encoding: From array detection to higher-order field dynamics MRI beyond Fourier Encoding: From array detection to higher-order field dynamics K. Pruessmann Institute for Biomedical Engineering ETH Zurich and University of Zurich Parallel MRI Signal sample: m γκ,

More information

Cortical diffusion imaging

Cortical diffusion imaging Cortical diffusion imaging Alard Roebroeck Maastricht Brain Imaging Center (MBIC) Dept. of Cognitive Neuroscience Faculty of Psychology & Neuroscience Maastricht University Diffusion MRI In vivo & Ex vivo

More information

Diffusion imaging of the brain: technical considerations and practical applications

Diffusion imaging of the brain: technical considerations and practical applications Diffusion imaging of the brain: technical considerations and practical applications David G. Norris FC Donders Centre for Cognitive Neuroimaging Nijmegen Sustaining the physiologist in measuring the atomic

More information

Fast and Accurate HARDI and its Application to Neurological Diagnosis

Fast and Accurate HARDI and its Application to Neurological Diagnosis Fast and Accurate HARDI and its Application to Neurological Diagnosis Dr. Oleg Michailovich Department of Electrical and Computer Engineering University of Waterloo June 21, 2011 Outline 1 Diffusion imaging

More information

Diffusion Tensor Processing and Visualization

Diffusion Tensor Processing and Visualization NA-MIC National Alliance for Medical Image Computing http://na-mic.org Diffusion Tensor Processing and Visualization Guido Gerig University of Utah NAMIC: National Alliance for Medical Image Computing

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

Connectomics analysis and parcellation of the brain based on diffusion-weighted fiber tractography

Connectomics analysis and parcellation of the brain based on diffusion-weighted fiber tractography Connectomics analysis and parcellation of the brain based on diffusion-weighted fiber tractography Alfred Anwander Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany What is the

More information

Advanced MRI: Diffusion MRI 1: DTI and k-space

Advanced MRI: Diffusion MRI 1: DTI and k-space k y Advanced MRI: Diffusion MRI 1: DTI and k-space k X Eric Sigmund, PhD February 26th, 2013 LECTURE 1 Neuro Diffusion MRI 3-5 m White matter axons Body 15 m Renal medulla Musculoskeletal 50 m Skeletal

More information

A Novel Tensor Distribution Model for the Diffusion Weighted MR Signal

A Novel Tensor Distribution Model for the Diffusion Weighted MR Signal A Novel Tensor Distribution Model for the Diffusion Weighted MR Signal Baba C. UFRF Professor & Director Center for Vision, Graphics, and Medical Imaging Department of Computer & Information Science and

More information

Diffusion Magnetic Resonance Imaging Part 1: Theory & Methods

Diffusion Magnetic Resonance Imaging Part 1: Theory & Methods Diffusion Magnetic Resonance Imaging Part 1: Theory & Methods Benjamin M. Ellingson, Ph.D. Assistant Professor of Radiology, Biomedical Physics and Bioengineering Dept. of Radiological Sciences UCLA Neuro-Oncology

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

Robust estimator framework in diffusion tensor imaging

Robust estimator framework in diffusion tensor imaging The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Robust estimator framework in diffusion tensor imaging Ivan I. Maximov 1,*, Farida Grinberg 1, and N. Jon

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Simon Lacoste-Julien Electromagnetic Theory Project 198-562B Department of Physics McGill University April 21 2003 Abstract This paper gives an elementary introduction

More information

Tissue Parametric Mapping:

Tissue Parametric Mapping: Tissue Parametric Mapping: Contrast Mechanisms Using SSFP Sequences Jongho Lee Department of Radiology University of Pennsylvania Tissue Parametric Mapping: Contrast Mechanisms Using bssfp Sequences Jongho

More information

Diffusion Tensor Imaging quality control : artifacts assessment and correction. A. Coste, S. Gouttard, C. Vachet, G. Gerig. Medical Imaging Seminar

Diffusion Tensor Imaging quality control : artifacts assessment and correction. A. Coste, S. Gouttard, C. Vachet, G. Gerig. Medical Imaging Seminar Diffusion Tensor Imaging quality control : artifacts assessment and correction A. Coste, S. Gouttard, C. Vachet, G. Gerig Medical Imaging Seminar Overview Introduction DWI DTI Artifact Assessment Artifact

More information

How Many Gradients are Sufficient in High-Angular Resolution Diffusion Imaging (HARDI)?

How Many Gradients are Sufficient in High-Angular Resolution Diffusion Imaging (HARDI)? How Many Gradients are Sufficient in High-Angular Resolution Diffusion Imaging (HARDI)? Liang Zhan 1, Ming-Chang Chiang 1, Alex D. Leow 1, Siwei Zhu 2, Marina Barysheva 1, Arthur W. Toga 1, Katie L. McMahon

More information

FREQUENCY SELECTIVE EXCITATION

FREQUENCY SELECTIVE EXCITATION PULSE SEQUENCES FREQUENCY SELECTIVE EXCITATION RF Grad 0 Sir Peter Mansfield A 1D IMAGE Field Strength / Frequency Position FOURIER PROJECTIONS MR Image Raw Data FFT of Raw Data BACK PROJECTION Image Domain

More information

CIND Pre-Processing Pipeline For Diffusion Tensor Imaging. Overview

CIND Pre-Processing Pipeline For Diffusion Tensor Imaging. Overview CIND Pre-Processing Pipeline For Diffusion Tensor Imaging Overview The preprocessing pipeline of the Center for Imaging of Neurodegenerative Diseases (CIND) prepares diffusion weighted images (DWI) and

More information

Diffusion Weighted MRI. Zanqi Liang & Hendrik Poernama

Diffusion Weighted MRI. Zanqi Liang & Hendrik Poernama Diffusion Weighted MRI Zanqi Liang & Hendrik Poernama 1 Outline MRI Quick Review What is Diffusion MRI? Detecting Diffusion Stroke and Tumor Detection Presenting Diffusion Anisotropy and Diffusion Tensor

More information

Application of diffusion MRI to cancer, heart and brain connectome imaging

Application of diffusion MRI to cancer, heart and brain connectome imaging Colloquium @ Department of Physics, NTU Application of diffusion MRI to cancer, heart and brain connectome imaging March 11, 2014 Wen-Yih Isaac Tseng MD, PhD Advanced Biomedical MRI Lab Center for Optoelectronic

More information

The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps

The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps J. Biomedical Science and Engineering, 009,, 96-101 The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps Na Zhang 1, Zhen-Sheng Deng 1*, Fang Wang 1,

More information

What Visualization Researchers Should Know About HARDI Models

What Visualization Researchers Should Know About HARDI Models What Visualization Researchers Should Know About HARDI Models Thomas Schultz October 26, 2010 The Diffusion MRI (dmri) Signal ADC Modeling Diffusion Propagator Fiber Models Diffusion

More information

IMPROVED IMAGING OF BRAIN WHITE MATTER USING DIFFUSION WEIGHTED MAGNETIC RESONANCE IMAGING HA-KYU JEONG. Dissertation. Submitted to the Faculty of the

IMPROVED IMAGING OF BRAIN WHITE MATTER USING DIFFUSION WEIGHTED MAGNETIC RESONANCE IMAGING HA-KYU JEONG. Dissertation. Submitted to the Faculty of the IMPROVED IMAGING OF BRAIN WHITE MATTER USING DIFFUSION WEIGHTED MAGNETIC RESONANCE IMAGING By HA-KYU JEONG Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial

More information

Measuring cerebral blood flow and other haemodynamic parameters using Arterial Spin Labelling MRI. David Thomas

Measuring cerebral blood flow and other haemodynamic parameters using Arterial Spin Labelling MRI. David Thomas Measuring cerebral blood flow and other haemodynamic parameters using Arterial Spin Labelling MRI David Thomas Principal Research Associate in MR Physics Leonard Wolfson Experimental Neurology Centre UCL

More information

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Diffusion-Weighted MRI may be used to measure the apparent diffusion coefficient of water in tissue.

Diffusion-Weighted MRI may be used to measure the apparent diffusion coefficient of water in tissue. Specialty Area: MR Physics for Physicists Speaker: Jennifer A. McNab, Ph.D. Assistant Professor, Radiology, Stanford University () Highlights The Bloch-Torrey equation is a generalization of the Bloch

More information

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

Symmetric Positive-Definite Cartesian Tensor Orientation Distribution Functions (CT-ODF)

Symmetric Positive-Definite Cartesian Tensor Orientation Distribution Functions (CT-ODF) Symmetric Positive-Definite Cartesian Tensor Orientation Distribution Functions (CT-ODF) Yonas T. Weldeselassie 1, Angelos Barmpoutis 2, and M. Stella Atkins 1 1 School of Computing Science, Simon Fraser

More information

Morphometrics with SPM12

Morphometrics with SPM12 Morphometrics with SPM12 John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. What kind of differences are we looking for? Usually, we try to localise regions of difference.

More information

Pulse Sequences: RARE and Simulations

Pulse Sequences: RARE and Simulations Pulse Sequences: RARE and Simulations M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.04.19 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Final project

More information

Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem

Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem David K Hammond University of Oregon / NeuroInformatics Center International Conference on Industrial and

More information

Diffusion Tensor Imaging tutorial

Diffusion Tensor Imaging tutorial NA-MIC http://na-mic.org Diffusion Tensor Imaging tutorial Sonia Pujol, PhD Surgical Planning Laboratory Harvard University DTI tutorial This tutorial is an introduction to the advanced Diffusion MR capabilities

More information

Tract-Specific Analysis for DTI of Brain White Matter

Tract-Specific Analysis for DTI of Brain White Matter Tract-Specific Analysis for DTI of Brain White Matter Paul Yushkevich, Hui Zhang, James Gee Penn Image Computing & Science Lab Department of Radiology University of Pennsylvania IPAM Summer School July

More information

Extracting Quantitative Measures from EAP: A Small Clinical Study using BFOR

Extracting Quantitative Measures from EAP: A Small Clinical Study using BFOR Extracting Quantitative Measures from EAP: A Small Clinical Study using BFOR A. Pasha Hosseinbor, Moo K. Chung, Yu-Chien Wu, John O. Fleming, Aaron S. Field, and Andrew L. Alexander University of Wisconsin-Madison,

More information

New developments in Magnetic Resonance Spectrocopy and Diffusion MRI. Els Fieremans Steven Delputte Mahir Ozdemir

New developments in Magnetic Resonance Spectrocopy and Diffusion MRI. Els Fieremans Steven Delputte Mahir Ozdemir New developments in Magnetic Resonance Spectrocopy and Diffusion MRI Els Fieremans Steven Delputte Mahir Ozdemir Overview Magnetic Resonance Spectroscopy (MRS) Basic physics of MRS Quantitative MRS Pitfalls

More information

Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters

Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters Songyuan Tang a, Yong Fan a, Hongtu Zhu b, Pew-Thian Yap a Wei Gao a, Weili Lin a, and Dinggang Shen a a Department

More information

Diffusion tensor imaging: brain pathway reconstruction

Diffusion tensor imaging: brain pathway reconstruction Neda Sepasian, Jan ten Thije Boonkkamp, Anna Vilanova Diffusion tensor imaging: brain pathway reconstruction NAW 5/6 nr. 4 december 205 259 Neda Sepasian Department of Biomedical Engineering Eindhoven

More information

A Riemannian Framework for Denoising Diffusion Tensor Images

A Riemannian Framework for Denoising Diffusion Tensor Images A Riemannian Framework for Denoising Diffusion Tensor Images Manasi Datar No Institute Given Abstract. Diffusion Tensor Imaging (DTI) is a relatively new imaging modality that has been extensively used

More information

Diffusion tensor imaging (DTI):

Diffusion tensor imaging (DTI): Diffusion tensor imaging (DTI): A basic introduction to data acquisition and analysis Matthew Cykowski, MD Postdoctoral fellow Research Imaging Center UTHSCSA Room 2.320 cykowski@uthscsa.edu PART I: Acquiring

More information

醫用磁振學 MRM 擴散張量影像 擴散張量影像原理. 本週課程內容 MR Diffusion 擴散張量造影原理 擴散張量造影應用 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系

醫用磁振學 MRM 擴散張量影像 擴散張量影像原理. 本週課程內容   MR Diffusion 擴散張量造影原理 擴散張量造影應用 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系 本週課程內容 http://www.ym.edu.tw/~cflu 擴散張量造影原理 擴散張量造影應用 醫用磁振學 MRM 擴散張量影像 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系 alvin4016@ym.edu.tw MRI The Basics (3rd edition) Chapter 22: Echo Planar Imaging MRI in Practice, (4th edition)

More information

Deformation Morphometry: Basics and Applications

Deformation Morphometry: Basics and Applications Deformation Morphometry: Basics and Applications Valerie Cardenas Nicolson, Ph.D. Assistant Adjunct Professor NCIRE, UCSF, SFVA Center for Imaging of Neurodegenerative Diseases VA Challenge Clinical studies

More information

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still

More information

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010 Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric Map

More information

On Signal to Noise Ratio Tradeoffs in fmri

On Signal to Noise Ratio Tradeoffs in fmri On Signal to Noise Ratio Tradeoffs in fmri G. H. Glover April 11, 1999 This monograph addresses the question of signal to noise ratio (SNR) in fmri scanning, when parameters are changed under conditions

More information

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania III,, and Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania August 25, 2010 Copyright Page All material in this lecture, except as noted within the text,

More information

University of Minnesota. Kâmil Uğurbil

University of Minnesota. Kâmil Uğurbil University of Minnesota Kâmil Uğurbil MGH CMRR, U Minn Title Kwong et al 1992 PNAS Ogawa et al PNAS 1992: Figure 2 images superimposed Submillimeter scale neuronal ensembles WHOLE BRAIN Orientation Domains

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

Computing FMRI Activations: Coefficients and t-statistics by Detrending and Multiple Regression

Computing FMRI Activations: Coefficients and t-statistics by Detrending and Multiple Regression Computing FMRI Activations: Coefficients and t-statistics by Detrending and Multiple Regression Daniel B. Rowe and Steven W. Morgan Division of Biostatistics Medical College of Wisconsin Technical Report

More information

H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida

H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida Tractography in the CST using an Intrinsic Unscented Kalman Filter H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida Outline Introduction Method Pre-processing Fiber

More information

Introduction to the Physics of NMR, MRI, BOLD fmri

Introduction to the Physics of NMR, MRI, BOLD fmri Pittsburgh, June 13-17, 2011 Introduction to the Physics of NMR, MRI, BOLD fmri (with an orientation toward the practical aspects of data acquisition) Pittsburgh, June 13-17, 2001 Functional MRI in Clinical

More information

Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields

Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields Çağatay Demiralp and David H. Laidlaw Brown University Providence, RI, USA Abstract. We give a proof of concept

More information

Improving White Matter Tractography by Resolving the Challenges of Edema

Improving White Matter Tractography by Resolving the Challenges of Edema Improving White Matter Tractography by Resolving the Challenges of Edema Jérémy Lecoeur, Emmanuel Caruyer, Luke Macyszyn, Ragini Verma To cite this version: Jérémy Lecoeur, Emmanuel Caruyer, Luke Macyszyn,

More information

Velocity Images. Phase Contrast Technique. G. Reiter 1,2, U. Reiter 1, R. Rienmüller 1

Velocity Images. Phase Contrast Technique. G. Reiter 1,2, U. Reiter 1, R. Rienmüller 1 Velocity Images - the MR Phase Contrast Technique G. Reiter 1,2, U. Reiter 1, R. Rienmüller 1 SSIP 2004 12 th Summer School in Image Processing, Graz, Austria 1 Interdisciplinary Cardiac Imaging Center,

More information

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

Master of Science Thesis. Using q-space Diffusion MRI for Structural Studies of a Biological Phantom at a 3T Clinical Scanner

Master of Science Thesis. Using q-space Diffusion MRI for Structural Studies of a Biological Phantom at a 3T Clinical Scanner Master of Science Thesis Using q-space Diffusion MRI for Structural Studies of a Biological Phantom at a 3T Clinical Scanner Anna Rydhög Supervisor: Sara Brockstedt, Jimmy Lätt Medical Radiation Physics

More information

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229 Sequence Overview Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging 75 Pulse Sequences and k-space RF k y G z k x G x 3D k-space G y k y k z Acq. k x 76 Gradient

More information

Measurement Tensors in Diffusion MRI: Generalizing the Concept of Diffusion Encoding

Measurement Tensors in Diffusion MRI: Generalizing the Concept of Diffusion Encoding Measurement Tensors in Diffusion MRI: Generalizing the Concept of Diffusion Encoding Carl-Fredrik Westin 1,2, Filip Szczepankiewicz 3, Ofer Pasternak 1, Evren Özarslan1, Daniel Topgaard 4, Hans Knutsson

More information

Computational Brain Anatomy

Computational Brain Anatomy Computational Brain Anatomy John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing followed

More information

Understanding brain micro-structure using diffusion magnetic resonance imaging (dmri)

Understanding brain micro-structure using diffusion magnetic resonance imaging (dmri) Understanding brain micro-structure using diffusion magnetic resonance imaging (dmri) Jing-Rebecca Li Equipe DEFI, CMAP, Ecole Polytechnique Institut national de recherche en informatique et en automatique

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Statistical Analysis of Tensor Fields

Statistical Analysis of Tensor Fields Statistical Analysis of Tensor Fields Yuchen Xie Baba C. Vemuri Jeffrey Ho Department of Computer and Information Sciences and Engineering University of Florida Abstract. In this paper, we propose a Riemannian

More information

MRI in Review: Simple Steps to Cutting Edge Part I

MRI in Review: Simple Steps to Cutting Edge Part I MRI in Review: Simple Steps to Cutting Edge Part I DWI is now 2 years old... Mike Moseley Radiology Stanford DWI, b = 1413 T2wt, 28/16 ASN 21 San Francisco + Disclosures: Funding NINDS, NCRR, NCI 45 minutes

More information

Developing a Method for Distortion Correction in High b-value Diffusion-Weighted Magnetic Resonance Imaging HENRIK HANSSON

Developing a Method for Distortion Correction in High b-value Diffusion-Weighted Magnetic Resonance Imaging HENRIK HANSSON Developing a Method for Distortion Correction in High b-value Diffusion-Weighted Magnetic Resonance Imaging Master s thesis in Complex Adaptive Systems HENRIK HANSSON Department of Applied Physics Division

More information

The Diffusion Tensor Imaging Toolbox

The Diffusion Tensor Imaging Toolbox 7418 The Journal of Neuroscience, May 30, 2012 32(22):7418 7428 Toolbox Editor s Note: Toolboxes are intended to describe and evaluate methods that are becoming widely relevant to the neuroscience community

More information

IMA Preprint Series # 2256

IMA Preprint Series # 2256 MULTIPLE q-shell ODF RECONSTRUCTION IN q-ball IMAGING By Iman Aganj Christophe Lenglet Guillermo Sapiro Essa Yacoub Kamil Ugurbil and Noam Harel IMA Preprint Series # 2256 ( May 2009 ) INSTITUTE FOR MATHEMATICS

More information

Introduction to MRI Acquisition

Introduction to MRI Acquisition Introduction to MRI Acquisition James Meakin FMRIB Physics Group FSL Course, Bristol, September 2012 1 What are we trying to achieve? 2 What are we trying to achieve? Informed decision making: Protocols

More information

Correction Gradients. Nov7, Reference: Handbook of pulse sequence

Correction Gradients. Nov7, Reference: Handbook of pulse sequence Correction Gradients Nov7, 2005 Reference: Handbook of pulse sequence Correction Gradients 1. Concomitant-Field Correction Gradients 2. Crusher Gradients 3. Eddy-Current Compensation 4. Spoiler Gradients

More information

Orientation Distribution Function for Diffusion MRI

Orientation Distribution Function for Diffusion MRI Orientation Distribution Function for Diffusion MRI Evgeniya Balmashnova 28 October 2009 Diffusion Tensor Imaging Diffusion MRI Diffusion MRI P(r, t) = 1 (4πDt) 3/2 e 1 4t r 2 D 1 t Diffusion time D Diffusion

More information

Decomposition of Higher-Order Homogeneous Tensors and Applications to HARDI

Decomposition of Higher-Order Homogeneous Tensors and Applications to HARDI Decomposition of Higher-Order Homogeneous Tensors and Applications to HARDI E. Balmashnova, A. Fuster and L.M.J. Florack Eindhoven University of Technology, The Netherlands E.Balmachnova@tue.nl Abstract.

More information

A Physical Model for MR-DTI Based Connectivity Map Computation

A Physical Model for MR-DTI Based Connectivity Map Computation A Physical Model for MR-DTI Based Connectivity Map Computation Erdem Yörük 1, Burak Acar 1, and Roland Bammer 1 Department of Electrical-Electronic Engineering, Bogazici University, TURKEY, erdem.yoruk@boun.edu.tr,

More information

Chapter 26 Sequence Design, Artifacts and Nomenclature. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University

Chapter 26 Sequence Design, Artifacts and Nomenclature. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Chapter 26 Sequence Design, Artifacts and Nomenclature Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Previous classes: RF pulse, Gradient, Signal Readout Gradient echo, spin echo,

More information

From Diffusion Data to Bundle Analysis

From Diffusion Data to Bundle Analysis From Diffusion Data to Bundle Analysis Gabriel Girard gabriel.girard@epfl.ch Computational Brain Connectivity Mapping Juan-les-Pins, France 20 November 2017 Gabriel Girard gabriel.girard@epfl.ch CoBCoM2017

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x ) Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 5 GE Medical Systems 2003 Gibbs Artifact Apodization rect(k ) Hanning Window h(k )=1/2(1+cos(2πk ) 256256 image 256128

More information

A generalized CSA-ODF model for Fiber Orientation Mapping

A generalized CSA-ODF model for Fiber Orientation Mapping A generalized CSA-ODF model for Fiber Orientation Mapping A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Amith J. Kamath IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions

Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 11, NUMBER 1, WINTER 2010 Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions

More information

Diffusion MRI. Outline. Biology: The Neuron. Brain connectivity. Biology: Brain Organization. Brain connections and fibers

Diffusion MRI. Outline. Biology: The Neuron. Brain connectivity. Biology: Brain Organization. Brain connections and fibers Outline Diffusion MRI Alfred Anwander Download of Slides: www.cbs.mpg.de/events/ teaching/brainsignals1112 password: mpi-brain CBSWIKI: Cornet/DiffusionMRI Neuroanatomy Diffusion MRI Diffusion Tensor Imaging

More information

NMR and MRI : an introduction

NMR and MRI : an introduction Intensive Programme 2011 Design, Synthesis and Validation of Imaging Probes NMR and MRI : an introduction Walter Dastrù Università di Torino walter.dastru@unito.it \ Introduction Magnetic Resonance Imaging

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

NeuroImage. The effect of finite diffusion gradient pulse duration on fibre orientation estimation in diffusion MRI

NeuroImage. The effect of finite diffusion gradient pulse duration on fibre orientation estimation in diffusion MRI NeuroImage 51 (2010) 743 751 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg The effect of finite diffusion gradient pulse duration on fibre orientation

More information

Diffusion MRI: Mitigation of Magnetic Field Inhomogeneities

Diffusion MRI: Mitigation of Magnetic Field Inhomogeneities 10.2478/v10048-012-0031-8 MEASUREMENT SCIENCE REVIEW, Volume 12, No. 5, 2012 iffusion MRI: Mitigation of Magnetic Field Inhomogeneities P. Marcon 1, K. Bartusek 2, Z. okoupil 2, E. Gescheidtova 1 1 epartment

More information

Overview of Spatial Statistics with Applications to fmri

Overview of Spatial Statistics with Applications to fmri with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example

More information

Quantitative Neuro-Anatomic and Functional Image Assessment Recent progress on image registration and its applications

Quantitative Neuro-Anatomic and Functional Image Assessment Recent progress on image registration and its applications Quantitative Neuro-Anatomic and Functional Image Assessment Recent progress on image registration and its applications Guido Gerig Sarang Joshi Tom Fletcher Applications of image registration in neuroimaging

More information