Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem

Size: px
Start display at page:

Download "Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem"

Transcription

1 Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem David K Hammond University of Oregon / NeuroInformatics Center International Conference on Industrial and Applied Mathematics 11:30-11:55 July 22,

2 Overview Spectral Graph Wavelet Transform (SGWT) Motivations from Classical Wavelet Analysis Spectral Graph Theory SGWT construction EEG source estimation Electrical head modeling Cortical connectome graph construction Sparse representation with Cortical Spectral Graph Wavelets 2

3 SGWT : wavelets on weighted graphs Weighted graphs : N vertices Symmetric adjacency matrix A i,j = w i,j (w i,j 0) f(i) : value on i th vertex Wavelets on weighted graph: Linear, multiscale representation for functions on vertices f R N Why? ψ γ R N localized in space and frequency c γ = ψ γ,f Wavelets : very useful, but classically limited to Euclidean space Graphs : flexibly model complicated data domains 3

4 Preview : some SGWT graph wavelets 4

5 Classical wavelet analysis Signal f L 2 (R) mother wavelet ψ Analysis : wavelet coefficients W f (t, u) =ψ t,u,f translation & dilation ψ t,u (x) = 1 x u ψ t t Reconstruction (Orthogonal Wavelet case) f = n,j W f (2 j, 2 j n)ψ 2j,2 j n(x) Signal manipulation often easier in wavelet transform space 5

6 Towards Wavelets on Graphs Problem : dilation and translation on irregular Graph? Wavelet transform in Fourier domain : W f (t, x) =f ψ t W f (t, w) = ˆf(ω) ˆψ (tω) ψ t (x) = 1 t ψ( x t ) Individual wavelets : apply operator to δ u (x) = δ(x u) ψ t,u ( x) =W δu (t, x) = F 1 ˆδu (ω) ˆψ (tω) localization dilation Dilate operator ˆψ (tω) in frequency domain, then localize Analog of Fourier transform on weighted graphs => Spectral graph theory 6

7 Degree matrix N D i,i = k=1 A k,i Spectral Graph Theory Graph Laplacian L = D A Spectral decomposition of L Lχ l = λ l χ l {χ l } N l=1 0 = λ 1 λ 1... λ N orthonormal basis Graph Fourier transform ˆf(l) =χ l,f = n χ l (n)f(n) Graph inverse Fourier transform f = l ˆf(l)χ l 7

8 Spectral Graph Wavelets Wavelet kernel g : R + R + H., P. Vandergheynst, R. Gribonval 2011 Applied and Computational Harmonic Analysis g(t 1 λ) analogous to ˆψ (ω) Wavelet operator (at scale t j ) T t j g = g(t j L):R N R N Action defined on eigenvectors T t j g χ l = g(t j λ l )χ l λ λ N Wavelets ψ j,n = T t j g δ n SGWT coefficients at scale j T t j g f = l g(t j λ l ) ˆf(l)χ l 8

9 Spectral Graph Wavelets h(λ) g(t 1 λ) g(t 2 λ) g(t 3 λ) Scaling function band T h = h(l) φ n = T h δ n K-fold Overcomplete W : R N R KN λ K=4 λ N Fast SGWT Polynomial approximation of g(t j x) Avoids diagonalization of L 9

10 Application to EEG Source Estimation 10

11 Electroencephalography (EEG) J 2 J3 Φ 1 Φ 2 J 1 EEG signal : arises from dipole current sources + volume conduction Source estimation : Infer current sources J from electrode measurements Φ Access to subject specific brain anatomy : MRI : measure tissue geometry Diffusion tensor imaging (DTI) + tract tracing : measure brain connectivity How to exploit connectivity knowledge? Sparsity in cortical graph wavelet basis. 11

12 EEG forward problem Quasi-static Maxwell PDE φ : potential s : current sources σ(x, y, z) : tissue conductivity (σ φ) =s (σ φ) n =0 on boundary Finite-difference solver, on 1mm 3D grid Lead field matrix K e 1 e 2 e 3 d 1 n K ij : solution at e i with unit source at d j N d d 4 d 2 Φ=KJ N e K d 3 J R N d Φ R N e : source current amplitudes : electrode voltages 12

13 Cortical connectome graph Cortical grey matter (neuron cell bodies) connected by white matter fibers (axons) Diffusion along fiber directions diffusion ellipsoid λ1 v 1 λ2 v 2 r T D 1 r =1 Diffusion Tensor Imaging (DTI) measures water diffusion direction at every voxel Tractography dominant eigenvector v 1 reveals fiber orientation v 1 (x 1 ) v 1 (x 2 ) compute streamlines, from seed points ( a little more complicated, in practice... ) γ (t) =v 1 (γ(t)) using method developed by S Warfield, B Scherrer, Children s Hospital, Harvard 13

14 Cortical connectome graph seed in white matter, retain tracts connecting cortex to cortex global (tract-based) connectome A tr a tr i,j = k connecting i and j 1 length(k) local (adjacency-based) connectome A loc a loc i,j = length of boundary between patches i,j hybrid connectome A A = λ tr A tr + λ loc A loc 14 showing 12,124 out of 775,939 cortical-cortical tracts

15 Cortical connectome graph seed in white matter, retain tracts connecting cortex to cortex global (tract-based) connectome A tr a tr i,j = k connecting i and j 1 length(k) local (adjacency-based) connectome A loc a loc i,j = length of boundary between patches i,j hybrid connectome A A = λ tr A tr + λ loc A loc 15 showing 12,124 out of 775,939 cortical-cortical tracts

16 Cortical connectome graph seed in white matter, retain tracts connecting cortex to cortex global (tract-based) connectome A tr a tr i,j = k connecting i and j 1 length(k) local (adjacency-based) connectome A loc a loc i,j = length of boundary between patches i,j hybrid connectome A A = λ tr A tr + λ loc A loc 16 showing 12,124 out of 775,939 cortical-cortical tracts

17 cortex patches, showing patch centers 17

18 Global (tract-based) connectome graph 18

19 Local connectome graph 19

20 linear superposition : Φ=KJ Inverse problem : Given Φ, find J EEG inverse problem N e equations, N d unknowns infinitely many possibilities for J! Find J minimizing Φ KJ 2 + f(j) f(j) : small for good J large for bad J data fidelity prior how to build prior using connectivity? 20

21 Sparse representation with Cortical Graph Wavelets Construct SGWT from hybrid connectome A W : R N d R KN d expand J = i c i ψ i = W T c prior : 1 penalty on c c = argmin c J = W T c Φ KW T c λ c 1 (P) (P) is convex, L1-LS program solve with truncated Newton interior point method Kim, Koh, Lustig, Boyd, Gorinevsky

22 Motor Potential study Phan Luu (EGI) Validation : investigate source estimates for paradigm where we know where the sources should be Experimental paradigm: Press button (RT,LT,RP,LP) EEG recording setup : channel (257 electrodes) sensor net, 250 Hz average locked to button press onset (ERP) expect activation in contralateral motor cortex 22

23 subject 1470 Preliminary Results 40 ms before left thumb press minimum norm (l2 penalty) proposed (wavelet l1 penalty) dipole l1 penalty 23

24 subject ms before right thumb press minimum norm (l2 penalty) proposed (wavelet l1 penalty) dipole l1 penalty 24

25 Future Work Explore parameters (connectome graph construction, SGWT...) Sensible automatic selection of regularization parameters (L-curve) Spatiotemporal estimation via spatiotemporal graph More appropriate convex solver (path following for λ)? Alternative convex program formulations More subjects / different experimental paradigms 25

26 Acknowledgements Allen Malony Don Tucker Pierre Vandergheynst Rémi Gribonvale Adnan Salman Kai Li Simon Warfield Benoit Scherrer NIC, University of Oregon EGI / NIC, University of Oregon EPFL, Switzerland INRIA, France NIC, University of Oregon NIC, University of Oregon CRL, Children s Hospital, Harvard CRL, Children s Hospital, Harvard 26

27 FIN

28 Chebyshev polynomials for fast SGWT 1 g(t j x) p j (x) = M c j,k T k (x) k=0 0 0 λ 40 λ max Chebyshev approx for M=10 g(t j L)f p j (L)f = M k=0 c j,k (T k (L)f) T k (x) =2xT k 1 (x) T k 2 (x) T k (L)f =2L(T k 1 (L)f) T k 2 (L)f computing T k (L)f is fast if L is sparse 28

29 Some Cortical Graph Wavelets 29

The Spectral Graph Wavelet Transform: Fundamental Theory and Fast Computation

The Spectral Graph Wavelet Transform: Fundamental Theory and Fast Computation The Spectral Graph Wavelet Transform: Fundamental Theory and Fast Computation David K. Hammond, Pierre Vandergheynst, Rémi Gribonval To cite this version: David K. Hammond, Pierre Vandergheynst, Rémi Gribonval.

More information

Graph Signal Processing

Graph Signal Processing Graph Signal Processing Rahul Singh Data Science Reading Group Iowa State University March, 07 Outline Graph Signal Processing Background Graph Signal Processing Frameworks Laplacian Based Discrete Signal

More information

Wavelets on graphs via spectral graph theory

Wavelets on graphs via spectral graph theory Wavelets on graphs via spectral graph theory David K. Hammond,a,, Pierre Vandergheynst b,2, Rémi Gribonval c a NeuroInformatics Center, University of Oregon, Eugene, USA b Ecole Polytechnique Fédérale

More information

Cortical graph smoothing : a novel method for exploiting DWI-derived anatomical brain connectivity to improve EEG source estimation

Cortical graph smoothing : a novel method for exploiting DWI-derived anatomical brain connectivity to improve EEG source estimation 1 Cortical graph smoothing : a novel method for exploiting DWI-derived anatomical brain connectivity to improve EEG source estimation David K. Hammond 1, Benoit Scherrer 2, and Simon K. Warfield 2 1 NeuroInformatics

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

Wavelets on graphs via spectral graph theory

Wavelets on graphs via spectral graph theory Wavelets on graphs via spectral graph theory David K. Hammond, Pierre Vandergheynst, Rémi Gribonval To cite this version: David K. Hammond, Pierre Vandergheynst, Rémi Gribonval. Wavelets on graphs via

More information

17th Annual Meeting of the Organization for Human Brain Mapping. Multivariate cortical shape modeling based on sparse representation

17th Annual Meeting of the Organization for Human Brain Mapping. Multivariate cortical shape modeling based on sparse representation 17th Annual Meeting of the Organization for Human Brain Mapping Multivariate cortical shape modeling based on sparse representation Abstract No: 2207 Authors: Seongho Seo 1, Moo K. Chung 1,2, Kim M. Dalton

More information

2D Wavelets. Hints on advanced Concepts

2D Wavelets. Hints on advanced Concepts 2D Wavelets Hints on advanced Concepts 1 Advanced concepts Wavelet packets Laplacian pyramid Overcomplete bases Discrete wavelet frames (DWF) Algorithme à trous Discrete dyadic wavelet frames (DDWF) Overview

More information

Wavelets and Filter Banks on Graphs

Wavelets and Filter Banks on Graphs Wavelets and Filter Banks on Graphs Pierre Vandergheynst Signal Processing Lab, EPFL Joint work with David Shuman Duke Workshop on Sensing and Analysis of High-Dimensional Data Duke University, July 2011

More information

Learning Parametric Dictionaries for. Signals on Graphs

Learning Parametric Dictionaries for. Signals on Graphs Learning Parametric Dictionaries for 1 Signals on Graphs Dorina Thanou, David I Shuman, and Pascal Frossard arxiv:141.887v1 [cs.lg] 5 Jan 214 Abstract In sparse signal representation, the choice of a dictionary

More information

New Machine Learning Methods for Neuroimaging

New Machine Learning Methods for Neuroimaging New Machine Learning Methods for Neuroimaging Gatsby Computational Neuroscience Unit University College London, UK Dept of Computer Science University of Helsinki, Finland Outline Resting-state networks

More information

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs)

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Yonas T. Weldeselassie (Ph.D. Candidate) Medical Image Computing and Analysis Lab, CS, SFU DT-MR Imaging Introduction

More information

Wavelets on Graphs, an Introduction

Wavelets on Graphs, an Introduction Wavelets on Graphs, an Introduction Pierre Vandergheynst and David Shuman Ecole Polytechnique Fédérale de Lausanne (EPFL) Signal Processing Laboratory {pierre.vandergheynst,david.shuman}@epfl.ch Université

More information

Sparsifying Transform Learning for Compressed Sensing MRI

Sparsifying Transform Learning for Compressed Sensing MRI Sparsifying Transform Learning for Compressed Sensing MRI Saiprasad Ravishankar and Yoram Bresler Department of Electrical and Computer Engineering and Coordinated Science Laborarory University of Illinois

More information

Graph Wavelets to Analyze Genomic Data with Biological Networks

Graph Wavelets to Analyze Genomic Data with Biological Networks Graph Wavelets to Analyze Genomic Data with Biological Networks Yunlong Jiao and Jean-Philippe Vert "Emerging Topics in Biological Networks and Systems Biology" symposium, Swedish Collegium for Advanced

More information

Random Sampling of Bandlimited Signals on Graphs

Random Sampling of Bandlimited Signals on Graphs Random Sampling of Bandlimited Signals on Graphs Pierre Vandergheynst École Polytechnique Fédérale de Lausanne (EPFL) School of Engineering & School of Computer and Communication Sciences Joint work with

More information

SPARSE REPRESENTATION ON GRAPHS BY TIGHT WAVELET FRAMES AND APPLICATIONS

SPARSE REPRESENTATION ON GRAPHS BY TIGHT WAVELET FRAMES AND APPLICATIONS SPARSE REPRESENTATION ON GRAPHS BY TIGHT WAVELET FRAMES AND APPLICATIONS BIN DONG Abstract. In this paper, we introduce a new (constructive) characterization of tight wavelet frames on non-flat domains

More information

Sampling, Inference and Clustering for Data on Graphs

Sampling, Inference and Clustering for Data on Graphs Sampling, Inference and Clustering for Data on Graphs Pierre Vandergheynst École Polytechnique Fédérale de Lausanne (EPFL) School of Engineering & School of Computer and Communication Sciences Joint work

More information

Wavelets, wavelet networks and the conformal group

Wavelets, wavelet networks and the conformal group Wavelets, wavelet networks and the conformal group R. Vilela Mendes CMAF, University of Lisbon http://label2.ist.utl.pt/vilela/ April 2016 () April 2016 1 / 32 Contents Wavelets: Continuous and discrete

More information

Filtering and Sampling Graph Signals, and its Application to Compressive Spectral Clustering

Filtering and Sampling Graph Signals, and its Application to Compressive Spectral Clustering Filtering and Sampling Graph Signals, and its Application to Compressive Spectral Clustering Nicolas Tremblay (1,2), Gilles Puy (1), Rémi Gribonval (1), Pierre Vandergheynst (1,2) (1) PANAMA Team, INRIA

More information

Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm

Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm Philipp Landgraf 1, Dorit Merhof 1, Mirco Richter 1 1 Institute of Computer Science, Visual Computing Group, University of Konstanz philipp.landgraf@uni-konstanz.de

More information

Spectral Processing. Misha Kazhdan

Spectral Processing. Misha Kazhdan Spectral Processing Misha Kazhdan [Taubin, 1995] A Signal Processing Approach to Fair Surface Design [Desbrun, et al., 1999] Implicit Fairing of Arbitrary Meshes [Vallet and Levy, 2008] Spectral Geometry

More information

Adaptive Piecewise Polynomial Estimation via Trend Filtering

Adaptive Piecewise Polynomial Estimation via Trend Filtering Adaptive Piecewise Polynomial Estimation via Trend Filtering Liubo Li, ShanShan Tu The Ohio State University li.2201@osu.edu, tu.162@osu.edu October 1, 2015 Liubo Li, ShanShan Tu (OSU) Trend Filtering

More information

1. Inputting scalp electric potential spectral powers will not output LORETA (current density) spectral powers.

1. Inputting scalp electric potential spectral powers will not output LORETA (current density) spectral powers. Page 1 of 8 Misusing LORETA This software computes LORETA from scalp electric potential differences (time domain EEG/ERP) or from EEG cross-spectra (frequency domain). One particular very incorrect usage

More information

Recent Developments in Numerical Methods for 4d-Var

Recent Developments in Numerical Methods for 4d-Var Recent Developments in Numerical Methods for 4d-Var Mike Fisher Slide 1 Recent Developments Numerical Methods 4d-Var Slide 2 Outline Non-orthogonal wavelets on the sphere: - Motivation: Covariance Modelling

More information

DIFFUSION MAGNETIC RESONANCE IMAGING

DIFFUSION MAGNETIC RESONANCE IMAGING DIFFUSION MAGNETIC RESONANCE IMAGING from spectroscopy to imaging apparent diffusion coefficient ADC-Map anisotropy diffusion tensor (imaging) DIFFUSION NMR - FROM SPECTROSCOPY TO IMAGING Combining Diffusion

More information

Medical Visualization - Tensor Visualization. J.-Prof. Dr. Kai Lawonn

Medical Visualization - Tensor Visualization. J.-Prof. Dr. Kai Lawonn Medical Visualization - Tensor Visualization J.-Prof. Dr. Kai Lawonn Lecture is partially based on the lecture by Prof. Thomas Schultz 2 What is a Tensor? A tensor is a multilinear transformation that

More information

EEG/MEG Inverse Solution Driven by fmri

EEG/MEG Inverse Solution Driven by fmri EEG/MEG Inverse Solution Driven by fmri Yaroslav Halchenko CS @ NJIT 1 Functional Brain Imaging EEG ElectroEncephaloGram MEG MagnetoEncephaloGram fmri Functional Magnetic Resonance Imaging others 2 Functional

More information

Understanding graphs through spectral densities

Understanding graphs through spectral densities Understanding graphs through spectral densities David Bindel Department of Computer Science Cornell University SCAN seminar, 29 Feb 216 SCAN 1 / 1 Can One Hear the Shape of a Drum? 2 u = λu on Ω, u = on

More information

Computational Modeling of Human Head Electromagnetics for Source Localization of Milliscale Brain Dynamics

Computational Modeling of Human Head Electromagnetics for Source Localization of Milliscale Brain Dynamics Computational Modeling of Human Head Electromagnetics for Source Localization of Milliscale Brain Dynamics Allen D. MALONY a,1, Adnan SALMAN b, Sergei TUROVETS c, Don TUCKER c, Vasily VOLKOV d, Kai LI

More information

Finite Frames and Graph Theoretical Uncertainty Principles

Finite Frames and Graph Theoretical Uncertainty Principles Finite Frames and Graph Theoretical Uncertainty Principles (pkoprows@math.umd.edu) University of Maryland - College Park April 13, 2015 Outline 1 Motivation 2 Definitions 3 Results Outline 1 Motivation

More information

In collaboration with J.-C. Pesquet A. Repetti EC (UPE) IFPEN 16 Dec / 29

In collaboration with J.-C. Pesquet A. Repetti EC (UPE) IFPEN 16 Dec / 29 A Random block-coordinate primal-dual proximal algorithm with application to 3D mesh denoising Emilie CHOUZENOUX Laboratoire d Informatique Gaspard Monge - CNRS Univ. Paris-Est, France Horizon Maths 2014

More information

2.3. Clustering or vector quantization 57

2.3. Clustering or vector quantization 57 Multivariate Statistics non-negative matrix factorisation and sparse dictionary learning The PCA decomposition is by construction optimal solution to argmin A R n q,h R q p X AH 2 2 under constraint :

More information

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels Machine Learning: Basis and Wavelet 32 157 146 204 + + + + + - + - 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 7 22 38 191 17 83 188 211 71 167 194 207 135 46 40-17 18 42 20 44 31 7 13-32 + + - - +

More information

arxiv: v2 [physics.bio-ph] 17 Jun 2015

arxiv: v2 [physics.bio-ph] 17 Jun 2015 Neuroelectrics Barcelona SL - TN0008 1 Application of the reciprocity theorem to EEG inversion and optimization of EEG-driven tcs (tdcs, tacs and trns) Author: Giulio Ruffini (giulio.ruffini@neuroelectrics.com)

More information

approximation algorithms I

approximation algorithms I SUM-OF-SQUARES method and approximation algorithms I David Steurer Cornell Cargese Workshop, 201 meta-task encoded as low-degree polynomial in R x example: f(x) = i,j n w ij x i x j 2 given: functions

More information

The Generalized Haar-Walsh Transform (GHWT) for Data Analysis on Graphs and Networks

The Generalized Haar-Walsh Transform (GHWT) for Data Analysis on Graphs and Networks The Generalized Haar-Walsh Transform (GHWT) for Data Analysis on Graphs and Networks Jeff Irion & Naoki Saito Department of Mathematics University of California, Davis SIAM Annual Meeting 2014 Chicago,

More information

Global vs. Multiscale Approaches

Global vs. Multiscale Approaches Harmonic Analysis on Graphs Global vs. Multiscale Approaches Weizmann Institute of Science, Rehovot, Israel July 2011 Joint work with Matan Gavish (WIS/Stanford), Ronald Coifman (Yale), ICML 10' Challenge:

More information

Application to Hyperspectral Imaging

Application to Hyperspectral Imaging Compressed Sensing of Low Complexity High Dimensional Data Application to Hyperspectral Imaging Kévin Degraux PhD Student, ICTEAM institute Université catholique de Louvain, Belgium 6 November, 2013 Hyperspectral

More information

Random sampling of bandlimited signals on graphs

Random sampling of bandlimited signals on graphs Random sampling of bandlimited signals on graphs Gilles Puy, Nicolas Tremblay, Rémi Gribonval, Pierre Vandergheynst To cite this version: Gilles Puy, Nicolas Tremblay, Rémi Gribonval, Pierre Vandergheynst

More information

Sparse & Redundant Signal Representation, and its Role in Image Processing

Sparse & Redundant Signal Representation, and its Role in Image Processing Sparse & Redundant Signal Representation, and its Role in Michael Elad The CS Department The Technion Israel Institute of technology Haifa 3000, Israel Wave 006 Wavelet and Applications Ecole Polytechnique

More information

( nonlinear constraints)

( nonlinear constraints) Wavelet Design & Applications Basic requirements: Admissibility (single constraint) Orthogonality ( nonlinear constraints) Sparse Representation Smooth functions well approx. by Fourier High-frequency

More information

Vertex-Frequency Analysis on Graphs

Vertex-Frequency Analysis on Graphs Vertex-Frequency Analysis on Graphs David I Shuman, Benjamin Ricaud, Pierre Vandergheynst,2 Signal Processing Laboratory (LTS2, Ecole Polytechnique Fédérale de Lausanne (EPFL, Lausanne, Switzerland Abstract

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

GAUSSIAN PROCESS TRANSFORMS

GAUSSIAN PROCESS TRANSFORMS GAUSSIAN PROCESS TRANSFORMS Philip A. Chou Ricardo L. de Queiroz Microsoft Research, Redmond, WA, USA pachou@microsoft.com) Computer Science Department, Universidade de Brasilia, Brasilia, Brazil queiroz@ieee.org)

More information

A New Generation of Brain-Computer Interfaces Driven by Discovery of Latent EEG-fMRI Linkages Using Tensor Decomposition

A New Generation of Brain-Computer Interfaces Driven by Discovery of Latent EEG-fMRI Linkages Using Tensor Decomposition A New Generation of Brain-Computer Interfaces Driven by Discovery of Latent EEG-fMRI Linkages Using Tensor Decomposition Gopikrishna Deshpande AU MRI Research Center AU Department of Electrical and Computer

More information

Scalable color image coding with Matching Pursuit

Scalable color image coding with Matching Pursuit SCHOOL OF ENGINEERING - STI SIGNAL PROCESSING INSTITUTE Rosa M. Figueras i Ventura CH-115 LAUSANNE Telephone: +4121 6935646 Telefax: +4121 69376 e-mail: rosa.figueras@epfl.ch ÉCOLE POLYTECHNIQUE FÉDÉRALE

More information

Provable Alternating Minimization Methods for Non-convex Optimization

Provable Alternating Minimization Methods for Non-convex Optimization Provable Alternating Minimization Methods for Non-convex Optimization Prateek Jain Microsoft Research, India Joint work with Praneeth Netrapalli, Sujay Sanghavi, Alekh Agarwal, Animashree Anandkumar, Rashish

More information

Wavelet Frames on the Sphere for Sparse Representations in High Angular Resolution Diusion Imaging. Chen Weiqiang

Wavelet Frames on the Sphere for Sparse Representations in High Angular Resolution Diusion Imaging. Chen Weiqiang Wavelet Frames on the Sphere for Sparse Representations in High Angular Resolution Diusion Imaging Chen Weiqiang Overview 1. Introduction to High Angular Resolution Diusion Imaging (HARDI). 2. Wavelets

More information

Compressed Sensing and Neural Networks

Compressed Sensing and Neural Networks and Jan Vybíral (Charles University & Czech Technical University Prague, Czech Republic) NOMAD Summer Berlin, September 25-29, 2017 1 / 31 Outline Lasso & Introduction Notation Training the network Applications

More information

M. Holschneider 1 A. Eicker 2 R. Schachtschneider 1 T. Mayer-Guerr 2 K. Ilk 2

M. Holschneider 1 A. Eicker 2 R. Schachtschneider 1 T. Mayer-Guerr 2 K. Ilk 2 SPP project TREGMAT: Tailored Gravity Field Models for Mass Distributions and Mass Transport Phenomena in the Earth System by by M. 1 A. Eicker 2 R. Schachtschneider 1 T. Mayer-Guerr 2 K. Ilk 2 1 University

More information

Space-Frequency Atoms

Space-Frequency Atoms Space-Frequency Atoms FREQUENCY FREQUENCY SPACE SPACE FREQUENCY FREQUENCY SPACE SPACE Figure 1: Space-frequency atoms. Windowed Fourier Transform 1 line 1 0.8 0.6 0.4 0.2 0-0.2-0.4-0.6-0.8-1 0 100 200

More information

DATA defined on network-like structures are encountered

DATA defined on network-like structures are encountered Graph Fourier Transform based on Directed Laplacian Rahul Singh, Abhishek Chakraborty, Graduate Student Member, IEEE, and B. S. Manoj, Senior Member, IEEE arxiv:6.v [cs.it] Jan 6 Abstract In this paper,

More information

Short note on compact operators - Monday 24 th March, Sylvester Eriksson-Bique

Short note on compact operators - Monday 24 th March, Sylvester Eriksson-Bique Short note on compact operators - Monday 24 th March, 2014 Sylvester Eriksson-Bique 1 Introduction In this note I will give a short outline about the structure theory of compact operators. I restrict attention

More information

A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning

A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning D Calvetti 1 A Pascarella 3 F Pitolli 2 E Somersalo 1 B Vantaggi 2 1 Case Western Reserve University Department

More information

Inverse problems, Dictionary based Signal Models and Compressed Sensing

Inverse problems, Dictionary based Signal Models and Compressed Sensing Inverse problems, Dictionary based Signal Models and Compressed Sensing Rémi Gribonval METISS project-team (audio signal processing, speech recognition, source separation) INRIA, Rennes, France Ecole d

More information

Analysis of Variance for functional data using the R package ERP

Analysis of Variance for functional data using the R package ERP ERPs Signal detection Optimal signal detection under dependence Analysis of Variance for functional data using the R package ERP David Causeur IRMAR, UMR 6625 CNRS - Agrocampus, Rennes, France Collaborators

More information

SHIFT-INVARIANT DICTIONARY LEARNING FOR SPARSE REPRESENTATIONS: EXTENDING K-SVD

SHIFT-INVARIANT DICTIONARY LEARNING FOR SPARSE REPRESENTATIONS: EXTENDING K-SVD SHIFT-INVARIANT DICTIONARY LEARNING FOR SPARSE REPRESENTATIONS: EXTENDING K-SVD Boris Mailhé, Sylvain Lesage,Rémi Gribonval and Frédéric Bimbot Projet METISS Centre de Recherche INRIA Rennes - Bretagne

More information

A Tutorial on Wavelets and their Applications. Martin J. Mohlenkamp

A Tutorial on Wavelets and their Applications. Martin J. Mohlenkamp A Tutorial on Wavelets and their Applications Martin J. Mohlenkamp University of Colorado at Boulder Department of Applied Mathematics mjm@colorado.edu This tutorial is designed for people with little

More information

recent developments of approximation theory and greedy algorithms

recent developments of approximation theory and greedy algorithms recent developments of approximation theory and greedy algorithms Peter Binev Department of Mathematics and Interdisciplinary Mathematics Institute University of South Carolina Reduced Order Modeling in

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics.

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics. A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Kalai Arasu Muthusamy, D.Phil(Oxon) Senior Lecturer & Consultant Neurosurgeon. Division of Neurosurgery. University Malaya Medical Centre.

More information

Transform methods. and its inverse can be used to analyze certain time-dependent PDEs. f(x) sin(sxπ/(n + 1))

Transform methods. and its inverse can be used to analyze certain time-dependent PDEs. f(x) sin(sxπ/(n + 1)) AMSC/CMSC 661 Scientific Computing II Spring 2010 Transforms and Wavelets Dianne P. O Leary c 2005,2010 Some motivations: Transform methods The Fourier transform Fv(ξ) = ˆv(ξ) = v(x)e ix ξ dx, R d and

More information

Recovering overcomplete sparse representations from structured sensing

Recovering overcomplete sparse representations from structured sensing Recovering overcomplete sparse representations from structured sensing Deanna Needell Claremont McKenna College Feb. 2015 Support: Alfred P. Sloan Foundation and NSF CAREER #1348721. Joint work with Felix

More information

Tensor Visualization. CSC 7443: Scientific Information Visualization

Tensor Visualization. CSC 7443: Scientific Information Visualization Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its

More information

Space-Frequency Atoms

Space-Frequency Atoms Space-Frequency Atoms FREQUENCY FREQUENCY SPACE SPACE FREQUENCY FREQUENCY SPACE SPACE Figure 1: Space-frequency atoms. Windowed Fourier Transform 1 line 1 0.8 0.6 0.4 0.2 0-0.2-0.4-0.6-0.8-1 0 100 200

More information

Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 4 th, Emily Fox 2014

Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 4 th, Emily Fox 2014 Case Study 3: fmri Prediction Fused LASSO LARS Parallel LASSO Solvers Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 4 th, 2014 Emily Fox 2014 1 LASSO Regression

More information

A Physical Model for MR-DTI Based Connectivity Map Computation

A Physical Model for MR-DTI Based Connectivity Map Computation A Physical Model for MR-DTI Based Connectivity Map Computation Erdem Yörük 1, Burak Acar 1, and Roland Bammer 1 Department of Electrical-Electronic Engineering, Bogazici University, TURKEY, erdem.yoruk@boun.edu.tr,

More information

A Riemannian Framework for Denoising Diffusion Tensor Images

A Riemannian Framework for Denoising Diffusion Tensor Images A Riemannian Framework for Denoising Diffusion Tensor Images Manasi Datar No Institute Given Abstract. Diffusion Tensor Imaging (DTI) is a relatively new imaging modality that has been extensively used

More information

Functional Connectivity and Network Methods

Functional Connectivity and Network Methods 18/Sep/2013" Functional Connectivity and Network Methods with functional magnetic resonance imaging" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml

More information

Spectral Clustering. Guokun Lai 2016/10

Spectral Clustering. Guokun Lai 2016/10 Spectral Clustering Guokun Lai 2016/10 1 / 37 Organization Graph Cut Fundamental Limitations of Spectral Clustering Ng 2002 paper (if we have time) 2 / 37 Notation We define a undirected weighted graph

More information

Tropical Graph Signal Processing

Tropical Graph Signal Processing Tropical Graph Signal Processing Vincent Gripon To cite this version: Vincent Gripon. Tropical Graph Signal Processing. 2017. HAL Id: hal-01527695 https://hal.archives-ouvertes.fr/hal-01527695v2

More information

Multiresolution image processing

Multiresolution image processing Multiresolution image processing Laplacian pyramids Some applications of Laplacian pyramids Discrete Wavelet Transform (DWT) Wavelet theory Wavelet image compression Bernd Girod: EE368 Digital Image Processing

More information

Kadath: a spectral solver and its application to black hole spacetimes

Kadath: a spectral solver and its application to black hole spacetimes Kadath: a spectral solver and its application to black hole spacetimes Philippe Grandclément Laboratoire de l Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France philippe.grandclement@obspm.fr

More information

On the Phase Transition Phenomenon of Graph Laplacian Eigenfunctions on Trees

On the Phase Transition Phenomenon of Graph Laplacian Eigenfunctions on Trees On the Phase Transition Phenomenon of Graph Laplacian Eigenfunctions on Trees Naoki Saito and Ernest Woei Department of Mathematics University of California Davis, CA 9566 USA Email: saito@math.ucdavis.edu;

More information

MIXED EFFECTS MODELS FOR TIME SERIES

MIXED EFFECTS MODELS FOR TIME SERIES Outline MIXED EFFECTS MODELS FOR TIME SERIES Cristina Gorrostieta Hakmook Kang Hernando Ombao Brown University Biostatistics Section February 16, 2011 Outline OUTLINE OF TALK 1 SCIENTIFIC MOTIVATION 2

More information

Seismic imaging and optimal transport

Seismic imaging and optimal transport Seismic imaging and optimal transport Bjorn Engquist In collaboration with Brittany Froese, Sergey Fomel and Yunan Yang Brenier60, Calculus of Variations and Optimal Transportation, Paris, January 10-13,

More information

On the coherence barrier and analogue problems in compressed sensing

On the coherence barrier and analogue problems in compressed sensing On the coherence barrier and analogue problems in compressed sensing Clarice Poon University of Cambridge June 1, 2017 Joint work with: Ben Adcock Anders Hansen Bogdan Roman (Simon Fraser) (Cambridge)

More information

A Statistical Look at Spectral Graph Analysis. Deep Mukhopadhyay

A Statistical Look at Spectral Graph Analysis. Deep Mukhopadhyay A Statistical Look at Spectral Graph Analysis Deep Mukhopadhyay Department of Statistics, Temple University Office: Speakman 335 deep@temple.edu http://sites.temple.edu/deepstat/ Graph Signal Processing

More information

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017 The Kernel Trick, Gram Matrices, and Feature Extraction CS6787 Lecture 4 Fall 2017 Momentum for Principle Component Analysis CS6787 Lecture 3.1 Fall 2017 Principle Component Analysis Setting: find the

More information

Digital Image Processing

Digital Image Processing Digital Image Processing, 2nd ed. Digital Image Processing Chapter 7 Wavelets and Multiresolution Processing Dr. Kai Shuang Department of Electronic Engineering China University of Petroleum shuangkai@cup.edu.cn

More information

醫用磁振學 MRM 擴散張量影像 擴散張量影像原理. 本週課程內容 MR Diffusion 擴散張量造影原理 擴散張量造影應用 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系

醫用磁振學 MRM 擴散張量影像 擴散張量影像原理. 本週課程內容   MR Diffusion 擴散張量造影原理 擴散張量造影應用 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系 本週課程內容 http://www.ym.edu.tw/~cflu 擴散張量造影原理 擴散張量造影應用 醫用磁振學 MRM 擴散張量影像 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系 alvin4016@ym.edu.tw MRI The Basics (3rd edition) Chapter 22: Echo Planar Imaging MRI in Practice, (4th edition)

More information

Multiscale Frame-based Kernels for Image Registration

Multiscale Frame-based Kernels for Image Registration Multiscale Frame-based Kernels for Image Registration Ming Zhen, Tan National University of Singapore 22 July, 16 Ming Zhen, Tan (National University of Singapore) Multiscale Frame-based Kernels for Image

More information

Diffusion Tensor Imaging quality control : artifacts assessment and correction. A. Coste, S. Gouttard, C. Vachet, G. Gerig. Medical Imaging Seminar

Diffusion Tensor Imaging quality control : artifacts assessment and correction. A. Coste, S. Gouttard, C. Vachet, G. Gerig. Medical Imaging Seminar Diffusion Tensor Imaging quality control : artifacts assessment and correction A. Coste, S. Gouttard, C. Vachet, G. Gerig Medical Imaging Seminar Overview Introduction DWI DTI Artifact Assessment Artifact

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

M/EEG source analysis

M/EEG source analysis Jérémie Mattout Lyon Neuroscience Research Center Will it ever happen that mathematicians will know enough about the physiology of the brain, and neurophysiologists enough of mathematical discovery, for

More information

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Amit Singer Princeton University Department of Mathematics and Program in Applied and Computational Mathematics

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 11: From random walk to quantum walk

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 11: From random walk to quantum walk Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 11: From random walk to quantum walk We now turn to a second major topic in quantum algorithms, the concept

More information

Beyond incoherence and beyond sparsity: compressed sensing in the real world

Beyond incoherence and beyond sparsity: compressed sensing in the real world Beyond incoherence and beyond sparsity: compressed sensing in the real world Clarice Poon 1st November 2013 University of Cambridge, UK Applied Functional and Harmonic Analysis Group Head of Group Anders

More information

Harmonic Analysis and Geometries of Digital Data Bases

Harmonic Analysis and Geometries of Digital Data Bases Harmonic Analysis and Geometries of Digital Data Bases AMS Session Special Sesson on the Mathematics of Information and Knowledge, Ronald Coifman (Yale) and Matan Gavish (Stanford, Yale) January 14, 2010

More information

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min Spectral Graph Theory Lecture 2 The Laplacian Daniel A. Spielman September 4, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in class. The notes written before

More information

Forward and inverse wave problems:quantum billiards and brain imaging p.1

Forward and inverse wave problems:quantum billiards and brain imaging p.1 Forward and inverse wave problems: Quantum billiards and brain imaging Alex Barnett barnett@cims.nyu.edu. Courant Institute Forward and inverse wave problems:quantum billiards and brain imaging p.1 The

More information

MGA Tutorial, September 08, 2004 Construction of Wavelets. Jan-Olov Strömberg

MGA Tutorial, September 08, 2004 Construction of Wavelets. Jan-Olov Strömberg MGA Tutorial, September 08, 2004 Construction of Wavelets Jan-Olov Strömberg Department of Mathematics Royal Institute of Technology (KTH) Stockholm, Sweden Department of Numerical Analysis and Computer

More information

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Andreas Rhodin, Harald Anlauf German Weather Service (DWD) Workshop on Flow-dependent aspects of data assimilation,

More information

An Introduction to Wavelets and some Applications

An Introduction to Wavelets and some Applications An Introduction to Wavelets and some Applications Milan, May 2003 Anestis Antoniadis Laboratoire IMAG-LMC University Joseph Fourier Grenoble, France An Introduction to Wavelets and some Applications p.1/54

More information

Human Brain Networks. Aivoaakkoset BECS-C3001"

Human Brain Networks. Aivoaakkoset BECS-C3001 Human Brain Networks Aivoaakkoset BECS-C3001" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml enrico.glerean@aalto.fi" Why?" 1. WHY BRAIN NETWORKS?"

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

Global Positioning from Local Distances

Global Positioning from Local Distances Global Positioning from Local Distances Amit Singer Yale University, Department of Mathematics, Program in Applied Mathematics SIAM Annual Meeting, July 2008 Amit Singer (Yale University) San Diego 1 /

More information

Second-Order Inference for Gaussian Random Curves

Second-Order Inference for Gaussian Random Curves Second-Order Inference for Gaussian Random Curves With Application to DNA Minicircles Victor Panaretos David Kraus John Maddocks Ecole Polytechnique Fédérale de Lausanne Panaretos, Kraus, Maddocks (EPFL)

More information

MAXIMUM REGULARITY OF HUA HARMONIC FUNCTIONS

MAXIMUM REGULARITY OF HUA HARMONIC FUNCTIONS MAXIMUM REGULARITY OF UA ARMONIC FUNCTIONS P. JAMING 1. The Siegel upper half space 1.1. Setting. On C 2 consider r(z) = Im(z 2 ) z 1 2. The Siegel upper half space and its boundary are given by U ={z

More information