Whitepaper. How to Measure Conductivity over a Wide Range and at Ultra-low Levels

Size: px
Start display at page:

Download "Whitepaper. How to Measure Conductivity over a Wide Range and at Ultra-low Levels"

Transcription

1 Whitepaper How to Measure Conductivity over a Wide Range and at Ultra-low Levels Ilium Technology s Model 2100 conductivity meter and associated probes provide unprecedented range and sensitivity in conductivity measurements in liquid systems, from milli-siemens/cm down to as low as 1 femto-siemen/cm. To do so, they employ a number of proprietary and patent (pending) technologies. This paper will present some background on conductivity measurements and describe the technical approach used in order to provide a better understanding of the instrument s capabilities. What is conductivity? Conductivity is a material property that quantifies the amount of current that will flow through a material in response to an applied electrical potential relative to the cross-sectional area of the sample and the distance the current travels through the material. It is measured in Siemens/cm. One Siemen equals one amp of current per Volt of applied potential. Some older measurements may be seen in the literature using the unit Mhos/cm, a unit which is no longer used but which remains interesting because the name itself reflects the inverse relationship between resistance (R, measured in Ohms) and conductance (G, measured in Siemens formerly Mhos). Likewise, resistivity (ρ, measured in Ohm-cm) is the inverse of conductivity (σ, measured in Siemens/cm) (equation 1). (1) G = 1/R and σ = 1/ρ It is important to distinguish between conductivity and conductance. The relationship is exactly analogous to the relationship between resistivity and resistance. Conductance and resistance are properties of specific circuit elements, while conductivity and resistivity are properties of materials. Both are governed by Ohm s law (equations 2 and 3) relating current flow (I) to the applied potential (V). (2) R = V/I Substituting G = 1/R we get (3) G = I/V Conductivity can be a property of almost any material. The discussion that follows is limited to measurements of conductivity in liquid systems. Why measure conductivity? Conductivity measurements provide fast, continuous, inexpensive indications of changing electrical and material properties. This is useful in many research, development, analytical, quality control, and process control applications. Typical applications include: Solvent purity, additive concentration, additive titration, total dissolved solids.

2 DI water purity - deionized (DI) pure water is a relatively poor electrical conductor compared to tap or salt water. At 25 C and ph 7, it has a resistivity of 18.2 million ohm-cm (meg-ohmcm) or a conductivity of 55 nano-siemens/cm. It is the amount of ionized substances dissolved in the water which increases water's ability to conduct electricity above this value. Clean-in-place for solvents and water the cleaning process is monitored by measuring the purity of the effluent solvent as indicated by its conductivity. Personal care and cosmetics the purity, acidity, presence of additives, etc. of natural (e.g., vegetable) and synthetic (e.g., silicone) oils used in these products can be tracked by conductivity measurements. Jet fuels and other flammable, non-polar solvents - avoiding conditions leading to static discharge during pumping, transferring, filtering and mixing operations requires the conductivity of these materials to be kept above a minimum level of about 1 pico- Siemen/cm. Inks - conductivity of ink dispersions is affected by both soluble components and charge on pigment particles. Conductivity measurements provide a means to track dispersant concentration and effectiveness. Paints and coatings - conductivity of paint formulations is affected by both soluble components and charge on pigment particles. As with inks, conductivity measurement provides a means to track dispersant concentration and effectiveness. Why do I need a wide range of measurement? The range of conductivity measurements varies widely from application to application (figure 1), and may vary widely within a single process or experiment. A wide ranging measurement capability permits the user to: Follow a process - In non-aqueous systems, conductivities can easily swing over many decades with only relatively small changes in concentration of additives or impurities. The ability to follow that change with a single meter during a process can provide valuable, real-time information. Replace multiple meters Many commercial, industrial and academic laboratories must address a range of applications with a wide range of relevant conductivities. A single meter with a sufficiently wide range can eliminate the expense of multiple meters and the inconvenience and wasted time involved with switching meters for different applications. 2

3 Figure 1. Illustrating the conductivity measurement ranges associated with various applications. Measuring conductivity Conductivity of a liquid can be measured by immersing a pair of electrodes of known size, separated by a known distance and measuring the relationship between current flowing between the electrodes and the electrical potential applied to the electrodes (figure 2). Figure 2. Conductivity of a liquid is measured by determining the relationship between current and voltage between a pair of electrodes of known size and spacing immersed in the liquid. In this case the electrodes each have an area of 1 cm 2 and are parallel and separated by a distance of 1 cm. If a current of 1 amp flows when a potential difference of 1 Volt is applied, the liquid has a conductivity of 1 Siemen/cm. 3

4 Problems with range The electrodes of a system designed to measure conductivity in aqueous samples are often configured as two rings separated by an insulator on a long thin cylindrical probe. The surface area of the electrodes and the distance between them are fixed. During measurement a potential difference is applied to the electrodes and the current emerges from one electrode and follows a curved path to return to the other electrode (figure 3). The length and shape of the current path are dependent, not only on the configuration of the probe, but also on the electrical characteristics of the liquid. Clearly, changes in path length will affect measured conductivity. For measurements over a limited range, the variation in path length can be accommodated by calibrating the probe with an appropriate standard of known conductivity. The calibration procedure determines the cell constant (the effective ratio of path length to electrode area) for a particular probe. The effects of changes in path length can be reduced by configuring the electrodes as concentric cylinders, however fringing at the edges of the electrodes can still introduce unacceptable variability over a wide measurement range. Figure 3. When electrodes are in-line the current emerges from one electrode and follows a curved path to return to the other electrode. The length of the path varies with the conductivity and dielectric constant of the liquid, introducing errors into conductivity measurements that range widely. (Figure modified from Schwank and Green, Sensors 2007, 7, p553; available under public license, Problems with sensitivity Early instruments designed for ultra-low conductivities used DC measurements. While this technique can work in the low femto-siemen/cm range, it quickly runs into significant accuracy issues as conductivities approach and exceed 1 pico-siemen/cm. This is because as the conductivity increases, the rate of sample polarization becomes too fast for an accurate DC measurement to be made. AC measurements can eliminate this problem and work at both low and higher ranges. However, as the conductivity increases, the frequency required to stay ahead of the polarization effect also increases. As this occurs, additional AC signal components begin to overwhelm the sought after conductive component, once again leading to often unrecognized, but significant inaccuracies. At very low conductivities it becomes difficult to distinguish the conductivity signal from background noise. Although advanced signal processing techniques can extract accurate measurements from a noisy signal, it is important not to mistake an averaged noise signal for a valid conductivity measurement. 4

5 Ilium s Model 2100 Conductivity Meter and Smart Probes Intelligent Signal Processing The Model 2100 Conductivity Meter and associated Smart Probes (figure 4) provide accurate measurements over a range of 12 decades from milli-siemens/cm down to 1 femto-siemens/cm. Traditional aqueous conductivity meters have difficulty measuring samples below about 1 micro- Siemen/cm, and none can measure below a few nano-siemens/cm. The Model 2100 uses adaptive wave forms, dynamic signal compensation, and adaptive noise suppression techniques to provide highly accurate measurements over an extraordinarily wide range of sample conductivities. Figure 4. Model 2100 Conductivity Meter and Smart Probe. Calibrated Smart Probes As we described in a previous section, conventional aqueous probes need calibration every decade. Moreover, calibration depends on the availability of accurate standards. Good conductivity standards below 10 micro-siemens/cm are notoriously difficult to obtain. At 10 micro-siemens/cm available standards have an accuracy of ± 2-3%. At 1 micro-siemen/cm that accuracy degrades to ± 25%. For DI water in the nano-siemen range no standard is available. Ilium Smart Probes use concentric cylinder electrodes and incorporate guard electrodes to completely eliminate the effects of sample dependent variations in current path length on measurement accuracy (figure 5). The fully guarded probe design provides accurate measurements over the full design range of the probe without recalibration. Probes are calibrated using a NIST traceable procedure at the factory. All calibration data is stored in the probe from where it can be immediately retrieved by the model 2100 meter. Probes can be swapped as needed without recalibration. 5

6 All Smart Probes are also extremely easy to clean. They can be disassembled and reassembled in seconds with no change in the calibration or cell constant, providing complete reproducibility. This is an important advantage when measuring emulsions or particle dispersions such as paints and inks, which often leave particles or droplets deposited on the electrode surfaces. Figure 5. Ilium 1020 Smart Probe disassembled to show guard electrodes and signal electrode. The range of Smart Probes includes (figure 6): 1020 Smart Dip Probe, covering the range from 2.5 μs/cm down to 25 fs/cm, for general laboratory use Smart Flow-through Probe, covering the range from 2.5 μs/cm down to 25 fs/cm, for realtime, dynamic measurements in flowing liquids Smart Dip Probe, covering the range from 1 ms/cm to 5 ps/cm, for higher conductivity applications. (Will be available soon). Low range Smart Dip Probe, covering the range from 0.5 µs/cm down to 1 fs/cm, for lowest conductivity applications. (Will be available soon). Figure 6. Showing the measurement ranges of various Ilium Smart Probes 6

7 Conclusions Ilium s Model 2100 Conductivity Meter and associated Smart Probes provide accurate conductivity measurements over an extraordinarily wide range, from milli-siemens down to as low as 1 femto- Siemen. It is the only commercially available conductivity meter that can measure high, medium, low and ultra-low conductivity with one conductivity meter. Its wide range allows users to follow wide ranging applications, such as clean-in-place processes, titrations, reactions and formulation processes, from start to finish. It can reduce capital expenditures by allowing one meter to replace as many as three conventional meters that would be required to cover the same measurement range. It can eliminate the wasted time and inconvenience otherwise required to change meters. Additional time savings accrue from the Smart Probes, which are factory calibrated and do not require recalibration during normal use. Calibration data is saved in the probe and automatically accessed by the meter, permitting instant probe exchange with no impact in reproducibility. Finally, the probes can be disassembled, cleaned and reassembled in minutes with no effect on calibration. The Model 2100 and Smart Probes are the only conductivity measurement system you will ever need. For more information, visit: info@iliumtechnology.com, or call us at:

Chemistry Instrumental Analysis Lecture 23. Chem 4631

Chemistry Instrumental Analysis Lecture 23. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 23 A measure of how well a solution conducts electricity Water with absolutely no impurities (does not exist) Conducts electricity very poorly Impurities in

More information

An introduction to particle size characterisation by DCS:

An introduction to particle size characterisation by DCS: An introduction to particle size characterisation by DCS: Do you know the real size of your nano particles? By Dr Hiran Vegad, Analytik Ltd Introduction Differential centrifugal sedimentation (DCS) is

More information

The Impact of Metallized Electrodes on High Energy Density Pulse Power Capacitors

The Impact of Metallized Electrodes on High Energy Density Pulse Power Capacitors Technical Note Archive The Impact of Metallized Electrodes on High Energy Density Pulse Power Capacitors ABSTRACT Over the past few years, Aerovox has been replacing foil electrode construction with metallized

More information

OPERATING INSTRUCTIONS

OPERATING INSTRUCTIONS OPERATING INSTRUCTIONS Model IQ120 and IQ125 Professional ph Meter with Silicon Chip Sensor (IQ125 additional instructions printed in RED) IQ Scientific Instruments 2075-E Corte del Nogal Carlsbad, CA

More information

User s Guide. Waterproof Palm ph Meter Model PH220. Introduction

User s Guide. Waterproof Palm ph Meter Model PH220. Introduction User s Guide Waterproof Palm ph Meter Model PH220 Introduction Congratulations on your purchase of the Extech PH220 waterproof ph/mv meter. This microprocessor-based device with tactile buttons is battery

More information

6.5. RESEARCH ON THE CONDUCTIVITY OF VARIOUS WATER SAMPLES

6.5. RESEARCH ON THE CONDUCTIVITY OF VARIOUS WATER SAMPLES 6.5. RESEARCH ON THE CONDUCTIVITY OF VARIOUS WATER SAMPLES Purpose of experiment Determine the conductivity of various water samples. Tasks of experiment: Determine the average conductivity of tap water,

More information

INDUSTRIAL ELECTRICITY

INDUSTRIAL ELECTRICITY INDUSTRIAL ELECTRICITY TODAY S TOPICS: Introduction (cont) Scientific Notation DUE Mon 1/13 11:00am HOMEWORK 1 Reading quizzes 1 & 2 Worksheet 1 QUESTIONS?? Scantron Use for reading quizzes only Don t

More information

Eye on Ions: Electrical Conductivity of Aqueous Solutions

Eye on Ions: Electrical Conductivity of Aqueous Solutions Eye on Ions: Electrical Conductivity of Aqueous Solutions Pre-lab Assignment: Reading: 1. Chapter sections 4.1, 4.3, 4.5 and 4.6 in your course text. 2. This lab handout. Questions: 1. Using table 1 in

More information

CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING

CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING PHYSICS A2 UNIT 4 SECTION 3: CAPACITANCE CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING # Question CAPACITORS 1 What is current? Current is the rate of flow of charge in a circuit

More information

2. Basic Components and Electrical Circuits

2. Basic Components and Electrical Circuits 1 2. Basic Components and Electrical Circuits 2.1 Units and Scales The International System of Units (SI) defines 6 principal units from which the units of all other physical quantities can be derived

More information

Electricity. From the word Elektron Greek for amber

Electricity. From the word Elektron Greek for amber Electricity From the word Elektron Greek for amber Electrical systems have two main objectives: To gather, store, process, transport information & Energy To distribute and convert energy Electrical Engineering

More information

Understanding ph Troubleshooting and Diagnostic information

Understanding ph Troubleshooting and Diagnostic information Understanding ph Troubleshooting and Diagnostic information The desire is to achieve an accurate, reliable measurement with a reasonable electrode life expectancy while minimizing frequency or complexity

More information

PHS-25CW/3BW Benchtop ph Meter Instruction Manual

PHS-25CW/3BW Benchtop ph Meter Instruction Manual PHS-25CW/3BW Benchtop ph Meter Instruction Manual BANTE INSTRUMENTS CO., LTD PHS-W Series Benchtop ph Meter 1 Introduction Thank you for selecting the PHS-W series benchtop ph meter. This manual provides

More information

REX Evaluation Guide. American Micro Detection Systems Inc March Lane, Suite 200 Stockton, CA 95219

REX Evaluation Guide. American Micro Detection Systems Inc March Lane, Suite 200 Stockton, CA 95219 REX Evaluation Guide American Micro Detection Systems Inc. 2800 March Lane, Suite 200 Stockton, CA 95219 I. INTRODUCTION REX (Real-time Elemental X-ray Fluorescence System) is the only instrument capable

More information

7/06 Electric Fields and Energy

7/06 Electric Fields and Energy Part ASome standard electric field and potential configurations About this lab: Electric fields are created by electric charges and exert force on charges. Electric potential gives an alternative description.

More information

FORCE TENSIOMETER K100 THE HIGH-END SOLUTION FOR MEASURING SURFACE AND INTERFACIAL TENSION

FORCE TENSIOMETER K100 THE HIGH-END SOLUTION FOR MEASURING SURFACE AND INTERFACIAL TENSION FORCE TENSIOMETER K100 THE HIGH-END SOLUTION FOR MEASURING SURFACE AND INTERFACIAL TENSION MAXIMIZING THE VARIETY OF SURFACE AND INTERFACIAL TENSION MEASURING METHODS Determines surface and interfacial

More information

Bante210 Benchtop ph Meter Instruction Manual

Bante210 Benchtop ph Meter Instruction Manual Bante210 Benchtop ph Meter Instruction Manual BANTE INSTRUMENTS CO., LTD Bante210 Benchtop ph Meter 1 Introduction Thank you for selecting the Bante210 benchtop ph meter. This manual provides a step-by-step

More information

QAM-I-111 Operation and Calibration of the Conductivity Meter

QAM-I-111 Operation and Calibration of the Conductivity Meter 1.0 Applicability and Purpose i. This procedure applies to the operation and calibration of the YSI Model 3200 conductivity meter. This procedure is performed prior to any analysis using this meter. By

More information

Measure - Conductivity STANDARD Last std: Sep 10:17 am. Touch meas to measure sample. Touch std to access standardize mode ATC. 25.

Measure - Conductivity STANDARD Last std: Sep 10:17 am. Touch meas to measure sample. Touch std to access standardize mode ATC. 25. Conductivity Operation accumet Measure - Conductivity us/cm channel 1 STANDARD Last : Sep 17 @ 10:17 am The meter will automatically convert conductivity values to salinity, total dissolved solids (TDS),

More information

Rapid RH Portable ph Meter. User's Manual

Rapid RH Portable ph Meter. User's Manual Rapid RH Portable ph Meter User's Manual This page intentionally left blank. 2 Contents 1. Introduction... 4 2. Included with the Rapid RH Portable ph Meter... 4 3. Understanding ph... 5 4. Calibrating

More information

SECTION #1 - The experimental setup

SECTION #1 - The experimental setup Lemon Battery Connected in Series Charging a 2.2 Farad Capacitor SECTION #1 - The experimental setup 1. The goal of this experiment is to see if I can connect 2, 3 or 4 lemons together in a series configuration

More information

Electro Analytical Methods

Electro Analytical Methods CH 2252 Instrumental Methods of Analysis Unit II Electro Analytical Methods Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

Protein separation and characterization

Protein separation and characterization Address:800 S Wineville Avenue, Ontario, CA 91761,USA Website:www.aladdin-e.com Email USA: tech@aladdin-e.com Email EU: eutech@aladdin-e.com Email Asia Pacific: cntech@aladdin-e.com Protein separation

More information

PHS-25CW/3BW Benchtop ph Meter. Instruction Manual BANTE INSTRUMENTS CO., LTD

PHS-25CW/3BW Benchtop ph Meter. Instruction Manual BANTE INSTRUMENTS CO., LTD PHS-25CW/3BW Benchtop ph Meter Instruction Manual BANTE INSTRUMENTS CO., LTD PHS-W Series Benchtop ph Meter 1 Introduction Thank you for selecting the PHS-W series benchtop ph meter. This manual provides

More information

METHOD 9040B. ph ELECTROMETRIC MEASUREMENT

METHOD 9040B. ph ELECTROMETRIC MEASUREMENT METHOD 9040B ph ELECTROMETRIC MEASUREMENT 1.0 SCOPE AND APPLICATION 1.1 Method 9040 is used to measure the ph of aqueous wastes and those multiphase wastes where the aqueous phase constitutes at least

More information

Physical Properties and Structure of Solids

Physical Properties and Structure of Solids 49 Physical Properties and Structure of Solids INTRODUCTION: Depending on whether the kind of bonding in a pure substance is primarily ionic, covalent or metallic in character, a substance may be described

More information

Particle Size Analysis with Differential Centrifugal Sedimentation. Marc Steinmetz Sales & Support Manager CPS Instruments Europe

Particle Size Analysis with Differential Centrifugal Sedimentation. Marc Steinmetz Sales & Support Manager CPS Instruments Europe Particle Size Analysis with Differential Centrifugal Sedimentation Marc Steinmetz Sales & Support Manager CPS Instruments Europe What is important to you from a particle sizing technique? Many people talk

More information

8/17/2016. Summary. Summary. Summary. Chapter 1 Quantities and Units. Passive Components. SI Fundamental Units. Some Important Electrical Units

8/17/2016. Summary. Summary. Summary. Chapter 1 Quantities and Units. Passive Components. SI Fundamental Units. Some Important Electrical Units Passive Components Chapter 1 Quantities and Units Welcome to the Principles of Electric Circuits. You will study important ideas that are used in electronics. You may already be familiar with a few of

More information

Lecture January, 2011

Lecture January, 2011 Lecture 2 31 January, 2011 Announcements (1/31/11) 401B and 501B: Laboratory Meeting Tues Feb 1, 4 00-7 00 pm Electricity Test in 2 weeks (Feb 14) Today s lecture 3 00-4 00, 5 00-6 00 3x5 Cards Foundations:

More information

What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

What happens when things change. Transient current and voltage relationships in a simple resistive circuit. Module 4 AC Theory What happens when things change. What you'll learn in Module 4. 4.1 Resistors in DC Circuits Transient events in DC circuits. The difference between Ideal and Practical circuits Transient

More information

MATERIAL TEST REPORT STATIC DECAY AND SURFACE RESISTIVITY TESTING OF SOCK AND SPUNBOND SAMPLES NEW PIG CORPORATION FEBRUARY 28, 2008

MATERIAL TEST REPORT STATIC DECAY AND SURFACE RESISTIVITY TESTING OF SOCK AND SPUNBOND SAMPLES NEW PIG CORPORATION FEBRUARY 28, 2008 MATERIAL TEST REPORT STATIC DECAY AND SURFACE RESISTIVITY TESTING OF SOCK AND SPUNBOND SAMPLES NEW PIG CORPORATION FEBRUARY 28, 2008 1 MATERIAL EVALUATION REPORT Static Decay and Surface Resistivity Testing

More information

Capacitors. Charging a Capacitor. Charge and Capacitance. L05: Capacitors and Inductors

Capacitors. Charging a Capacitor. Charge and Capacitance. L05: Capacitors and Inductors L05: Capacitors and Inductors 50 Capacitors 51 Outline of the lecture: Capacitors and capacitance. Energy storage. Capacitance formula. Types of capacitors. Inductors and inductance. Inductance formula.

More information

All about ph! Is it as simple as it seems? The ph Workshop. Rick Noone Thermo Scientific Water Analysis Instruments, Orion products May 22, 2014

All about ph! Is it as simple as it seems? The ph Workshop. Rick Noone Thermo Scientific Water Analysis Instruments, Orion products May 22, 2014 All about ph! Is it as simple as it seems? The ph Workshop Rick Noone Thermo Scientific Water Analysis Instruments, Orion products May 22, 2014 Common Questions: Measuring ph What is ph? Potential Hydrogen

More information

How a TDS Meter Works

How a TDS Meter Works The use of "TDS" (total dissolved solids) meters for analyzing the purity of fresh water has become widespread in recent years. Many aquarists use them to determine if tap water purification systems such

More information

White Paper. Perform Conductivity Measurements In Compliance with USP <645>

White Paper. Perform Conductivity Measurements In Compliance with USP <645> Perform Conductivity Measurements In Compliance with USP Water is the most widely used substance, raw material, or ingredient in the production, processing and formulation of compendial articles.

More information

The Basic Capacitor. Dielectric. Conductors

The Basic Capacitor. Dielectric. Conductors Chapter 9 The Basic Capacitor Capacitors are one of the fundamental passive components. In its most basic form, it is composed of two conductive plates separated by an insulating dielectric. The ability

More information

Glossary of Common Laboratory Terms

Glossary of Common Laboratory Terms Accuracy A measure of how close a measured value is to the true value. Assessed by means of percent recovery of spikes and standards. Aerobic Atmospheric or dissolved oxygen is available. Aliquot A measured

More information

FORCE TENSIOMETER K100 THE HIGH-END SOLUTION FOR MEASURING SURFACE AND INTERFACIAL TENSION

FORCE TENSIOMETER K100 THE HIGH-END SOLUTION FOR MEASURING SURFACE AND INTERFACIAL TENSION FORCE TENSIOMETER K100 THE HIGH-END SOLUTION FOR MEASURING SURFACE AND INTERFACIAL TENSION MAXIMIZING THE VARIETY OF SURFACE AND INTERFACIAL TENSION MEASURING METHODS Determines surface and interfacial

More information

Direct Current (DC) Circuits

Direct Current (DC) Circuits Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be

More information

Module 1 Units 3,4,5

Module 1 Units 3,4,5 Module 1 Units 3,4,5 1. What is matter? Anything that occupies space or has mass 2. What are the two general categories of substances? Elements and compounds 3. How many naturally occurring elements are

More information

Determination of Avogadro s Number via Electrolysis

Determination of Avogadro s Number via Electrolysis Determination of Avogadro s Number via Electrolysis EXPERIMENT 14 Prepared by Edward L. Brown, Lee University and Verrill M. Norwood, Cleveland State Community College To determine the value of Avogadro

More information

The Design and Development of a Low Cost Wood Moisture Sensor

The Design and Development of a Low Cost Wood Moisture Sensor The Design and Development of a Low Cost Wood Moisture Sensor By Nicholas Hoffman Charlie Schreier Dr. Margaret Pinnell ETHOS Program The University of Dayton Stove Efficiency Testing Water boiling test

More information

farads or 10 µf. The letter indicates the part tolerance (how close should the actual value be to the marking).

farads or 10 µf. The letter indicates the part tolerance (how close should the actual value be to the marking). p1 EE1050/60 Capacitors Lab University of Utah Electrical Engineering Department EE1050/1060 Capacitors A. Stolp, 10/4/99 rev 3/17/01 Objectives 1.) Observe charging and discharging of a capacitor. 2.)

More information

2015 EdExcel A-Level Physics Topic 3. Charge and current

2015 EdExcel A-Level Physics Topic 3. Charge and current 2015 EdExcel A-Level Physics Topic 3 Charge and current 9/17/2018 Electric Charge Atoms consists of Negatively-charged electrons and Positively charged protons. Atoms have the same number of protons and

More information

Guide to ph Analysis.

Guide to ph Analysis. Guide to ph Analysis. XX Why Contents ph Matters Table of Contents Why ph Matters pg 4 What You Need pg 6 How to Measure pg 14 Slope and offset pg 18 Checklist pg 20 Best Practices pg 21 2 Guide to ph

More information

C-Therm TCi Principles of Operation Introduction

C-Therm TCi Principles of Operation Introduction Fax: (506) 454-70 C-Therm TCi Principles of Operation Introduction The third generation of the technology expands the capabilities of this rapid, non-destructive testing instrumentation originally developed

More information

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.

More information

NSW Higher School Certificate Senior Science 9.2 Lifestyle Chemistry

NSW Higher School Certificate Senior Science 9.2 Lifestyle Chemistry NSW Higher School Certificate Senior Science 9.2 Lifestyle Chemistry Section 2 Cleaning Products 9.2 Lifestyle Chemistry Section 2 ::: Cleaning Products 9.2.2 A wide range of cleaning products are made

More information

Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering

Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering Basic Electricity ME 120 Lecture Notes Portland State University Mechanical and Materials Engineering Learning Objectives Successful completion of this module will enable students to Link the basic model

More information

Particle Characterization Laboratories, Inc.

Particle Characterization Laboratories, Inc. Analytical services Particle size analysis Dynamic Light Scattering Static Light Scattering Sedimentation Diffraction Zeta Potential Analysis Single Point Titration Isoelectric point determination Aqueous

More information

The ultimate in desktop particle characterization

The ultimate in desktop particle characterization Particle size Zeta potential Molecular weight ZS The ultimate in desktop particle characterization detailed specification from www.malvern.com/zetasizernano The Zetasizer Nano ZS brings you the practicality

More information

The design and operational theory of ph electrodes is a very complex subject, explored only briefly here. What is important to understand is that thes

The design and operational theory of ph electrodes is a very complex subject, explored only briefly here. What is important to understand is that thes ph measurement A very important measurement in many liquid chemical processes (industrial, pharmaceutical, manufacturing, food production, etc.) is that of ph: the measurement of hydrogen ion concentration

More information

Coulomb s constant k = 9x10 9 N m 2 /C 2

Coulomb s constant k = 9x10 9 N m 2 /C 2 1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy

More information

Stage 4 G-03: CONDUCTIVITY OF SOLUTIONS CP: USP. May 2015 INTRODUCTION

Stage 4 G-03: CONDUCTIVITY OF SOLUTIONS CP: USP. May 2015 INTRODUCTION 002-1601PDG.pdf 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Stage 4 G-03: CONDUCTIVITY OF SOLUTIONS CP: USP May 2015 INTRODUCTION This chapter provides information on how to apply electrical

More information

The Basic Capacitor. Water Tower / Capacitor Analogy. "Partnering With Our Clients for Combined Success"

The Basic Capacitor. Water Tower / Capacitor Analogy. Partnering With Our Clients for Combined Success CAPACITOR BASICS I How s Work The Basic A capacitor is an electrical device which serves to store up electrical energy for release at a predetermined time. In its most basic form, it is comprised of three

More information

ph Electrode basics ph Electrodes Model 19 B /1 =1 m 24 B /1 =1 m

ph Electrode basics ph Electrodes  Model 19 B /1 =1 m 24 B /1 =1 m s ph electrodes are constructed from a special composition which senses the hydrogen ion concentration. This is typically composed of alkali metal ions. The alkali metal ions of the and the hydrogen ions

More information

OPERATION MANUAL. 3 in 1, IR, Type K/J/R/E/T, Pt 100 ohm THERMOMETER. Model : TM-2000

OPERATION MANUAL. 3 in 1, IR, Type K/J/R/E/T, Pt 100 ohm THERMOMETER. Model : TM-2000 3 in 1, IR, Type K/J/R/E/T, Pt 100 ohm THERMOMETER Model : TM-2000 Your purchase of this THERMOMETER marks a step forward for you into the field of precision measurement. Although this THERMOMETER is a

More information

Effusivity is defined as the square root of the product of thermal conductivity, k, density,

Effusivity is defined as the square root of the product of thermal conductivity, k, density, Pg of 8 Mathis TCi Principles of Operation Introduction The third generation of Mathis technology expands the capabilities of this rapid, nondestructive testing instrument to a whole new level. Designed

More information

Chapter 1. Introduction to Conductivity

Chapter 1. Introduction to Conductivity Chapter 1 Introduction to Conductivity CHAPTER 1 INTRODUCTION TO CONDUCTIVITY 1. INTRODUCTION The present modem measuring instruments are the fruits of Science and Technology. The tremendous changes in

More information

ELECTRICAL Quantities

ELECTRICAL Quantities 1 ELECTRICAL Quantities Friction And Charge When two materials rub together the contact between their surfaces may cause: a) the surfaces to become hot and show wear and tear. b) the surfaces to become

More information

792A AC/DC Transfer Standard

792A AC/DC Transfer Standard 92A AC/DC Transfer Standard Technical Data Support for your most demanding ac measurement requirements ppm total uncertainty Traceable to national standards range: 2 mv to 00 V Frequency range: Hz to 1

More information

Electrical Theory Lesson 1: Electricity and Electronics

Electrical Theory Lesson 1: Electricity and Electronics Page 1: Welcome to Lesson 1 of Electrical Theory. This lesson covers the following objectives: Identify the relationship between elements and compounds. Construct a model of an atom. Discuss the concepts

More information

INE-DDB-303A Portable Conductivity Meter Instruction Manual

INE-DDB-303A Portable Conductivity Meter Instruction Manual INE-DDB-303A Portable Conductivity Meter Instruction Manual Operation ManualPLEASE READ THIS MANUAL CAREFULLY BEFORE OPERATION Hagavish st. Israel 58817 Tel: 972 3 5595252, Fax: 972 3 5594529 mrc@mrclab.com,3

More information

Clinical Chemistry Lecture Guide

Clinical Chemistry Lecture Guide Clinical Chemistry Lecture Guide Key Terms Basic Principles Buffer Centrifugation Colligative property Conductivity Deionized water Density Dilution Distilled water Equivalent weight ( EqW ) Molality Molarity

More information

Lesson 3. Electric Potential. Capacitors Current Electricity

Lesson 3. Electric Potential. Capacitors Current Electricity Electric Potential Lesson 3 Potential Differences in a Uniform Electric Field Electric Potential and Potential Energy The Millikan Oil-Drop Experiment Capacitors Current Electricity Ohm s Laws Resistance

More information

Test method to assess the suitability of materials and surfaces to avoid problems from static electricity by measurement of capacitance loading

Test method to assess the suitability of materials and surfaces to avoid problems from static electricity by measurement of capacitance loading 1 of 15 JCI 12 October 2001 Test method to assess the suitability of materials and surfaces to avoid problems from static electricity by measurement of capacitance loading 1 Introduction This document

More information

The solution for all of your

The solution for all of your The solution for all of your nanoparticle sizing and zeta potential needs. DelsaNano Series Blood Banking Capillary Electrophoresis Cell Analysis Centrifugation Genomics Lab Automation Lab Tools Particle

More information

CHAPTER 4 THERMAL CONDUCTIVITY AND VISCOSITY MEASUREMENTS

CHAPTER 4 THERMAL CONDUCTIVITY AND VISCOSITY MEASUREMENTS 50 CHAPTER 4 THERMAL CONDUCTIVITY AND VISCOSITY MEASUREMENTS 4.1 INTRODUCTION In the development of any energy-efficient heat transfer fluids for enhanced heat transfer performance, in practical applications,

More information

Conductivity (electrolytic) From Wikipedia, the free encyclopedia

Conductivity (electrolytic) From Wikipedia, the free encyclopedia Page 1 of 7 Conductivity (electrolytic) From Wikipedia, the free encyclopedia Conductivity (or specific conductance) of an electrolyte solution is a measure of ohms. its ability to conduct electricity.

More information

The ultimate in desktop particle characterization

The ultimate in desktop particle characterization Particle size Zeta potential Molecular weight ZS The ultimate in desktop particle characterization detailed specification from www.malvern.com/zetasizernano The Zetasizer Nano ZS brings you the practicality

More information

Electrical Current. Electrical current consists of moving electrons. Measuring Current

Electrical Current. Electrical current consists of moving electrons. Measuring Current Electrical Current Electrical current consists of moving electrons Conductors such as copper are filled with movable charge not unlike a cloud of electrons. A net flow of these charges within the conductor

More information

BENCH TOP INSTRUMENTS DELTA OHM

BENCH TOP INSTRUMENTS DELTA OHM CRN TECNOPART, S.A. Sant Roc 30 08340 VILASSAR DE MAR (Barcelona) Tel 902 404 748-937 591 484 Fax 937 591 547 e-mail:crn@crntp.com http:// www.crntecnopart.com DO-060.92E BENCH TOP INSTRUMENTS DELTA OHM

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Element, Compounds and Mixtures NOTES 1.8: Understand how to classify a substance as an element, compound or mixture Classifications: S Class Element

More information

What are the two types of current? The two types of current are direct current and alternating current.

What are the two types of current? The two types of current are direct current and alternating current. Electric Current What are the two types of current? The two types of current are direct current and alternating current. Electric Current The continuous flow of electric charge is an electric current.

More information

Chapter 13. Capacitors

Chapter 13. Capacitors Chapter 13 Capacitors Objectives Describe the basic structure and characteristics of a capacitor Discuss various types of capacitors Analyze series capacitors Analyze parallel capacitors Analyze capacitive

More information

Laboratory Certification Workshop

Laboratory Certification Workshop Laboratory Certification Workshop Debra Waller debra.waller@dep.state.nj.us NJDEP-Office of Quality Assurance (OQA) 609-292-3950 www.state.nj.us/dep/oqa Environmental Laboratory Certification Program (ELCP)

More information

Requirements to perform accurate dielectric material analysis

Requirements to perform accurate dielectric material analysis Requirements to perform accurate dielectric material analysis By Britta Pfeiffer 2017 by OMICRON Lab V1.0 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support.

More information

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS FV 1-21-16 MATERIALS: Eight 50 ml beakers, distilled water bottle, two 250 ml beakers, conductivity meter, ph paper (A/B/N), stirring

More information

Introduction to Electrical and Computer Engineering. International System of Units (SI)

Introduction to Electrical and Computer Engineering. International System of Units (SI) Introduction to Electrical and Computer Engineering Basic Circuits and Simulation Basic Circuits and Simulation (1 of 22) International System of Units (SI) Length: meter (m) Mass: kilogram (kg) Time:

More information

Chapter 1. Chapter 1

Chapter 1. Chapter 1 Chapter 1 Scientific and Engineering Notation Very large and very small numbers are represented with scientific and engineering notation. 47,000,000 = 4.7 x 10 7 (Scientific Notation) = 47 x 10 6 (Engineering

More information

Superconductivity. Never store liquid nitrogen in a container with a tight fitting lid.

Superconductivity. Never store liquid nitrogen in a container with a tight fitting lid. Superconductivity 1 Introduction In this lab we will do some very simple experiments involving superconductors. You will not have to take much data; much of what you do will be qualitative. However, in

More information

The molecules that will be studied with this device will have an overall charge of

The molecules that will be studied with this device will have an overall charge of The Basics of the Rotation of Polarized Light The molecules that will be studied with this device will have an overall charge of zero but will have localized polarities that can be used to orient the molecule.

More information

Experiment 7 Buffer Capacity & Buffer Preparation

Experiment 7 Buffer Capacity & Buffer Preparation Chem 1B Dr. White 57 Experiment 7 Buffer Capacity & Buffer Preparation Objectives To learn how to choose a suitable conjugate acid- base pair for making a buffer of a given ph To gain experience in using

More information

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials Compiled by Dr. A.O. Oladebeye Department of Chemistry University of Medical Sciences, Ondo, Nigeria Electrochemical Cell Electrochemical

More information

Elizabethtown College Department of Physics and Engineering PHY104

Elizabethtown College Department of Physics and Engineering PHY104 Elizabethtown College Department of Physics and Engineering PHY104 Lab #7- Capacitors 1. Introduction The capacitor is one of the essential elements of analog circuitry. It is highly useful for its energy

More information

Electricity Worksheets

Electricity Worksheets Electricity Worksheets Jean Brainard, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Last Revision: August,

Last Revision: August, A3-1 HALL EFFECT Last Revision: August, 21 2007 QUESTION TO BE INVESTIGATED How to individual charge carriers behave in an external magnetic field that is perpendicular to their motion? INTRODUCTION The

More information

Chapter 11: WinTDR Algorithms

Chapter 11: WinTDR Algorithms Chapter 11: WinTDR Algorithms This chapter discusses the algorithms WinTDR uses to analyze waveforms including: Bulk Dielectric Constant; Soil Water Content; Electrical Conductivity; Calibrations for probe

More information

CERAMIC CHIP CAPACITORS

CERAMIC CHIP CAPACITORS Example below indicates : SNPO series, 470 pf, 5%, 50 Volt, Tape/Reel packed, 0805 case size. (EXAMPLE) S N P O 4 7 1 J 0 5 0 T 2 Series Series Code: SNPO, SX7R, SZ5U, SY5V. Note: SNPO indicates COG(NPO)

More information

Capacitor investigations

Capacitor investigations Sensors: Loggers: Voltage Any EASYSENSE Capacitor investigations Logging time: EasyLog (20 s) Teacher s notes 01 Time constant for a capacitor - resistor circuit Theory The charging and discharging of

More information

GCE AS/A level 1321/01 PHYSICS PH1: Motion Energy and Charge

GCE AS/A level 1321/01 PHYSICS PH1: Motion Energy and Charge Surname Other Names Centre Number 2 Candidate Number GCE AS/A level 1321/01 PHYSICS PH1: Motion Energy and Charge P.M. THURSDAY, 12 January 2012 1½ hours ADDITIONAL MATERIALS In addition to this examination

More information

Advanced Technique for Dielectric Analyses

Advanced Technique for Dielectric Analyses Chroma Systems Solutions, Inc. Advanced Technique for Dielectric Analyses 190xx Series Hipot Testers Keywords: Dielectric Analyses, Destructive testing, Threshold Detection, Breakdown, Test Damage. Title:

More information

Chapter 19, Electricity Physical Science, McDougal-Littell, 2008

Chapter 19, Electricity Physical Science, McDougal-Littell, 2008 SECTION 1 (PP. 633-641): MATERIALS CAN BECOME ELECTRICALLY CHARGED. Georgia Standards: S8P2c Compare and contrast the different forms of energy (heat, light, electricity, mechanical motion, sound) and

More information

MEEN Nanoscale Issues in Manufacturing. Lithography Lecture 1: The Lithographic Process

MEEN Nanoscale Issues in Manufacturing. Lithography Lecture 1: The Lithographic Process MEEN 489-500 Nanoscale Issues in Manufacturing Lithography Lecture 1: The Lithographic Process 1 Discuss Reading Assignment 1 1 Introducing Nano 2 2 Size Matters 3 3 Interlude One-The Fundamental Science

More information

Sealeze TM SSG515AT2D Static Dissipation Brush Performance in an Operational Environment

Sealeze TM SSG515AT2D Static Dissipation Brush Performance in an Operational Environment A White Paper: Sealeze TM SSG515AT2D Static Dissipation Brush Performance in an Operational Environment The following white paper was developed to document the performance of Sealeze SSD515AT2D static

More information

ph Probe Spear Tip Silver / silver chloride Reads Range / Resolution 95% in 1s Response time 100 PSI Max pressure 60m (197 ft) Max depth

ph Probe Spear Tip Silver / silver chloride Reads Range / Resolution 95% in 1s Response time 100 PSI Max pressure 60m (197 ft) Max depth V 2.4 Revised 3/1/18 Spear Tip ph Probe Silver / silver chloride Reads ph Range 0 14 Resolution Response time Max pressure Max depth Temperature range C Cable length Internal temperature sensor Time before

More information

Edexcel GCSE Chemistry. Topic 2: States of matter and mixtures. Methods of separating and purifying substances. Notes.

Edexcel GCSE Chemistry. Topic 2: States of matter and mixtures. Methods of separating and purifying substances. Notes. Edexcel GCSE Chemistry Topic 2: States of matter and mixtures Methods of separating and purifying substances Notes 2.5 Explain the difference between the use of pure in chemistry compared with its everyday

More information

Test Equipment Depot Washington Street Melrose, MA TestEquipmentDepot.com INSTRUCTION MANUAL. Milwaukee Refractometer

Test Equipment Depot Washington Street Melrose, MA TestEquipmentDepot.com INSTRUCTION MANUAL. Milwaukee Refractometer Test Equipment Depot - 800.517.8431-99 Washington Street Melrose, MA 02176 TestEquipmentDepot.com INSTRUCTION MANUAL Milwaukee Refractometer MA871 Refractometer for Sucrose Measurements 1 Instruction Manual

More information

Standard Operating Procedure for: Conductivity Using Cole-Parmer Traceable Portable Conductivity Meter. Missouri State University.

Standard Operating Procedure for: Conductivity Using Cole-Parmer Traceable Portable Conductivity Meter. Missouri State University. Standard Operating Procedure for: Conductivity Using Cole-Parmer Traceable Portable Conductivity Meter Missouri State University and Ozarks Environmental and Water Resources Institute (OEWRI) Prepared

More information