Coulomb s constant k = 9x10 9 N m 2 /C 2


 Kory Junior Greene
 5 years ago
 Views:
Transcription
1 1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy of U = kq 1q 2 r Coulomb s constant k = 9x10 9 N m 2 /C 2 This potential energy can be used in the Law of Conservation of Energy where K is the kinetic energy of the charged particle. K i + U i = K f + U f An electron is moving at 10 6 m/s and is 1 nm from a heavy positive ion. How fast is the electron moving when it is 10 nm from the ion? The ion is singly ionized, i.e. one electron has been removed from the neutral atom. Assume that the ion is so heavy compared to the electron that the ion does not move. Ans. 7.4x10 5 m/s The following three charges are held fixed on an xy grid. q 1 = +2 C at (0,0) q 2 = 4 C at (3 m,0) q 3 = +3 C at (0, 4 m) Find the potential energy of the group. Ans J
2 2 Voltage (Potential) Symbol V mks units [Volts = V] A charged object with charge q o produces a voltage at every point in space except at its position. This object shares a potential energy with another charge q. This energy is given by U = qv where V is the voltage of q o at the position of q. Voltage of Point Charges A charged object that can be approximated as a point charge produces a voltage V at point P where V = kq r Sign of voltage: If q is +, voltage is +. If q is , voltage is  The following three charges are held fixed on an xy grid. q r x P q 1 = +2 C at (0,0) q 2 = 4 C at (3 m,0) q 3 = +3 C at (0, 4 m) Note that this is the same charge distribution used in the previous example in the potential energy section. (a) Find the net voltage at the point (3 m, 4 m) to these point charges. (b) If a fourth charge of +2 C is placed at (3 m, 4 m), find its potential energy. Ans. (a) V (b) J
3 3 Equipotential Surfaces Every point on one equipotential surface is at the same voltage. If a charged particle moves from one equipotential surface to another surface at a different voltage, then the particle will change speed. The Law of Conservation of Energy can be rewritten as K i + qv i = K f + qv f Positive charges speed up when going from high to low voltage. They slow down when going from low to high voltage. Negative charges speed up when going from low to high voltage. They slow down when going from high to low voltage. Using the previous equation, you can write that the amount of kinetic energy gained or lost is K = q V = q V Note that in this equation, V is the absolute value of the voltage difference. Charged Parallel Plates (Uniform Electric Field) We already know that there will be a uniform electric field between a set of parallel plates with different amounts of charge. There is then a voltage difference V between the plates given by V = Ed where d is the distance between the plates. This voltage difference is usually is written as just plain V so the equation becomes V = Ed The electric field points from the more positive plate to the more negative plate. The more positive plate is at a higher voltage than the more negative plate. V is the difference between these two plate voltages. +Q + d E V _ Q
4 4 Note from the above equation that the electric field can be expressed in units of [V/m]. This unit is equivalent to [N/C]. The motion of charged particles between the plates can be analyzed using the previous equation for the kinetic energy gained or lost by the particle as it travels across the plates. K = q V = q V The mks unit of energy is the Joule. The kinetic energies of typical charged particles is much less than a Joule so we introduce another energy unit called the electronvolt [ev] which is defined to be the kinetic energy gained by an electron if it is accelerated across 1 V of voltage difference. [1 ev = 1.6x1019 J] Two parallel plates are separated by 2 cm. The top plate is at 90V and the bottom plate is at  10V. You are instructed to accelerate an electron across the plates. Answer the following questions. (a) What is the size of the electric field between the plates? (b) Near which plate should you place the electron so it speeds up as it travels between the plates? (c) How much kinetic energy does the electron gain in traveling across the plates? Answer in units of Joules and electronvolts. (d) What is the final speed of the electron if it starts approximately at rest? Ans. (a) 5000 V/m (b) bottom plate (c) 1.6x1017 J = 100 ev (d) 5.93x10 6 m/s
5 5 2.2 Capacitance & Capacitors A capacitor is a device that can store opposite charge (+Q and Q) on two different surfaces when a voltage difference (V) is applied between the surfaces. The capacitance (C) of the capacitor determines how much charge can be stored for a given voltage difference. Q = CV In this equation, Q is the absolute value of the charge on one of the surfaces and V is the voltage difference between the surfaces. mks units of capacitance [Farad = F = C/V] The capacitance of a capacitor depends on the shape of the capacitor and the material between the two surfaces. For a parallelplate capacitor, A C = Κε oa d d where A is the area of one of the plates, d is the distance between the plates, and is the dielectric constant of the insulating material between the plates. The dielectric constant has no units and is a property of the material. A capacitor stores energy in the electric field between the plates with an amount equal to U = 1 2 CV2
6 6 Combinations of Capacitors Capacitors in parallel share the same voltage difference. The equivalent capacitance of two capacitors in parallel is C eq = C 1 + C Capacitors in series store the same amount of charge. The equivalent capacitance of two capacitors in series is given by 1 C eq = 1 C C 2 This equation can be solved for the equivalent capacitance to give C eq= C 1 C 2 C 1 + C 2 (a) Find the equivalent capacitance of the circuit. (b) Find for each capacitor the amount of stored charge, the voltage difference, and the amount of stored energy if a voltage difference of 12 V is applied between points A and B. A C 1 C 2 B C 3 C 1 = 3 F C 2 = 6 F C 3 = 4 F Ans. (a) 6 F (b) C 1 : 24 C, 8 V, 96 J C 2 : 24 C, 4 V, 48 J C 3 : 48 C, 12 V, 288 J
7 7 2.3 Current Symbol mks units I, i [Amperes = Amps = A = C/s] The current is the rate that charge flows from one point to another. I = Δq Δt By convention, current flows in the direction that positive charge would travel in a circuit. (In practice, it is the flow of electrons in the opposite direction that constitutes the current.) 2. 4 Resistance & Resistors When current flows through an object, there is always some resistance to this flow. A resistor is an object through which a current (I) flows when a voltage difference (V) is applied across the ends of the object. The resistance (R) of the resistor determines how much current flows for a given voltage difference. For most objects, I = V / R This equation is an expression of Ohm s Law which is usually written as V = IR mks units of resistance [Ohm = = V/A ] The resistance of a resistor depends on the shape of the resistor and the material from which it is made. R = ρ A A where A is the crosssectional area of the object, is the object s length, and is the resistivity of the material. mks units of resistivity [ m]
8 8 A resistor cannot store energy. Rather, it converts all of the electrical energy it receives into heat energy at a rate given by P = IV Recall that the rate that energy is delivered or used is the power P with units of Watts [ W = J/s]. Power = Energy / Time Thus, the amount of energy supplied or used is Energy = Power Time mks unit of energy [J = W s] common unit of electrical energy [kilowatthour = kwhr] [1 kwhr = 3.6x10 6 J] Combinations of Resistors Resistors in parallel share the same voltage difference. The equivalent resistance of two resistors in parallel is 1 = R eq R 1 R 2 This equation can be solved for the equivalent resistance to give R eq= R 1 R 2 R 1 + R Resistors in series have the same current flowing through each. The equivalent resistance of two resistors in series is given by R eq = R 1 + R 2
9 9 2.5 DC Circuits Resistor Circuits (a) Find the equivalent resistance of the circuit. (b) Find for each resistor the current, the voltage difference, and the dissipated power. R 1 40 V 8 R 2 R Ans. (a) 20 (b) R 1 : 2 A, 16 V, 32 W R 2 : 0.8 A, 24 V, 19.2 W R 3 : 1.2 A, 24 V, 28.8 W RC Circuits Charging Up a Capacitor: Charge on a plate increases in size, current decrease with time. Close switch at t = 0 R t τ q(t) = CV o (1 e ) I(t) = V o e t τ R Discharging a Capacitor: Both charge on a plate and current decrease with time. V o C t τ q(t) = Q o e I(t) = V o e t τ R C Close switch at t = 0 R In both cases, is the RC time constant: = RC [s] The capacitor is considered fully charge or discharged after about 5 time constants.
10 10 A 2 F capacitor is charged up with a 15V battery through a resistance of (a) What is the RC time constant of the circuit? (b) What is the initial current that flows through the circuit? (c) What is the final charge stored by the capacitor? (d) Find the current and stored charge 2 milliseconds after the charging begins. (e) After charging up, the capacitor is discharged through the same resistance. How long does it take for the current to reach 1 ma? Ans. (a) 6 ms (b) 5 ma (c) 30 C (d) 3.58 ma and 8.52 C (e) 9.7 ms
Objects usually are charged up through the transfer of electrons from one object to the other.
1 Part 1: Electric Force Review of Vectors Review your vectors! You should know how to convert from polar form to component form and vice versa add and subtract vectors multiply vectors by scalars Find
More informationCapacitance, Resistance, DC Circuits
This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple
More informationReview. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.
More information2. Basic Components and Electrical Circuits
1 2. Basic Components and Electrical Circuits 2.1 Units and Scales The International System of Units (SI) defines 6 principal units from which the units of all other physical quantities can be derived
More informationPhysics 102: Lecture 05 Circuits and Ohm s Law
Physics 102: Lecture 05 Circuits and Ohm s Law Physics 102: Lecture 5, Slide 1 Summary of Last Time Capacitors Physical C = ke 0 A/d C=Q/V Series 1/C eq = 1/C 1 + 1/C 2 Parallel C eq = C 1 + C 2 Energy
More informationELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?
ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,
More informationand the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number.
Name: Physics Chapter 17 Study Guide  Useful Information: e = 1.6"10 #19 C k = 9 "10 9 Nm 2 C 2 $ 0
More informationGen. Phys. II Exam 1  Chs. 18,19,20  Electric Fields, Potential, Current Feb. 12, 2018
Gen. Phys. II Exam 1  Chs. 18,19,20  Electric Fields, Potential, Current Feb. 12, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with correct
More informationd) (6) If a third charge q = 2.0 µc is now placed 12.0 cm to the left of Q 1, what magnitude electric force will it experience?
Gen. Phys. II Exam 1  Chs. 16,17,18A  Electric Fields, Potential, Current Sep. 12, 2013 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results
More informationAC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage
Circuits AC vs. DC Circuits Constant voltage circuits Typically referred to as direct current or DC Computers, logic circuits, and battery operated devices are examples of DC circuits The voltage from
More informationScience Olympiad Circuit Lab
Science Olympiad Circuit Lab Key Concepts Circuit Lab Overview Circuit Elements & Tools Basic Relationships (I, V, R, P) Resistor Network Configurations (Series & Parallel) Kirchhoff s Laws Examples Glossary
More informationDirect Current (DC) Circuits
Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be
More informationSection 1 Electric Charge and Force
CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible
More information= e = e 3 = = 4.98%
PHYS 212 Exam 2  Practice Test  Solutions 1E In order to use the equation for discharging, we should consider the amount of charge remaining after three time constants, which would have to be q(t)/q0.
More informationENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004
ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms
More informationCircuits Capacitance of a parallelplate capacitor : C = κ ε o A / d. (ρ = resistivity, L = length, A = crosssectional area) Resistance : R = ρ L / A
k = 9.0 x 109 N m2 / C2 e = 1.60 x 1019 C ε o = 8.85 x 1012 C2 / N m2 Coulomb s law: F = k q Q / r2 (unlike charges attract, like charges repel) Electric field from a point charge : E = k q / r2 ( towards
More informationChapter 33  Electric Fields and Potential. Chapter 34  Electric Current
Chapter 33  Electric Fields and Potential Chapter 34  Electric Current Electric Force acts through a field An electric field surrounds every electric charge. It exerts a force that causes electric charges
More informationAP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below
AP Physics Study Guide Chapter 17 Electric Potential and Energy Name Circle the vector quantities below and underline the scalar quantities below electric potential electric field electric potential energy
More informationthe electrical nature of matter is inherent in its atomic structure E & M atoms are made up of p+, n, and e the nucleus has p+ and n
Electric Forces and Fields E & M the electrical nature of matter is inherent in its atomic structure atoms are made up of p+, n, and e a.k.a Electricity and Magnetism the nucleus has p+ and n surrounding
More informationCAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING
PHYSICS A2 UNIT 4 SECTION 3: CAPACITANCE CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING # Question CAPACITORS 1 What is current? Current is the rate of flow of charge in a circuit
More informationAlSaudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Electricity
AlSaudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Electricity ELECTRIC NATURE OF MATTER: The electric nature of matter means the ability of a matter to produce charge on it. The addition
More informationElectricity
Electricity Electric Charge There are two fundamental charges in the universe. Positive (proton) has a charge of +1.60 x 1019 C Negative (electron) has a charge of 1.60 x 1019 C There is one general
More informationPhysics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3
Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 Summary of last lecture Equipotential surfaces: Surfaces where the potential is the same everywhere, e.g. the
More informationAgenda for Today. Elements of Physics II. Capacitors Parallelplate. Charging of capacitors
Capacitors Parallelplate Physics 132: Lecture e 7 Elements of Physics II Charging of capacitors Agenda for Today Combinations of capacitors Energy stored in a capacitor Dielectrics in capacitors Physics
More informationCapacitor Action. 3. Capacitor Action Theory Support. Electronics  AC Circuits
Capacitor Action Topics covered in this presentation: Capacitors on DC Capacitors on AC Capacitor Charging Capacitor Discharging 1 of 18 Charging a Capacitor (DC) Before looking at how capacitors charge
More informationCurrent and Resistance
Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 21 Electric current 22
More informationand in a simple circuit Part 2
Current, Resistance, and Voltage in a simple circuit Part 2 Electric Current Whenever electric charges of like signs move, an electric current is said to exist. Look at the charges flowing perpendicularly
More informationLouisiana State University Physics 2102, Exam 2, March 5th, 2009.
PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 2, March 5th, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),
More information104 Practice Exam 12/21/02
104 Practice Exam 12/21/02 1. One mole of a substance contains 6.02 > 10 23 protons and an equal number of electrons. If the protons could somehow be separated from the electrons and placed in separate
More informationGeneral Physics II (PHYS 104) Exam 2: March 21, 2002
General Physics II (PHYS 104) Exam 2: March 21, 2002 Name: Multiple Choice (3 points each): Answer the following multiple choice questions. Clearly circle the response (or responses) that provides the
More informationTest Review Electricity
Name: Date: 1. An operating television set draws 0.71 ampere of current when connected to a 120volt outlet. Calculate the time it takes the television to consume 3.0 10 5 joules of electric energy. [Show
More informationWhat are the two types of current? The two types of current are direct current and alternating current.
Electric Current What are the two types of current? The two types of current are direct current and alternating current. Electric Current The continuous flow of electric charge is an electric current.
More informationPhysics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules
Physics 115 General Physics II Session 24 Circuits Series and parallel R Meters Kirchoff s Rules R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/15/14 Phys
More informationChapter 16. Electric Energy and Capacitance
Chapter 16 Electric Energy and Capacitance Electric Potential Energy The electrostatic force is a conservative force It is possible to define an electrical potential energy function with this force Work
More informationPHYS 212 Final Exam (Old Material) Solutions  Practice Test
PHYS 212 Final Exam (Old Material) Solutions  Practice Test 1E If the ball is attracted to the rod, it must be made of a conductive material, otherwise it would not have been influenced by the nearby
More informationmelectron= 9.1x1031 kg e = 1.6x1019 C MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam #1, PHYS 102 Name Chapters 16, 17, & 18 8 February 2006 Constants k=9x109 Nm2/C2 e o =8.85x1012 F/m mproton=1.673x1027 kg melectron= 9.1x1031 kg e = 1.6x1019 C MULTIPLE CHOICE. Choose the one
More informationChapter 20 Electric Circuits
Chapter 0 Electric Circuits Chevy olt  Electric vehicle of the future Goals for Chapter 9 To understand the concept of current. To study resistance and Ohm s Law. To observe examples of electromotive
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm s law http://www.physics.wayne.edu/~apetrov/phy2140/
More informationDanger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks:
Danger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks: What is Voltage anyway? Voltage... Is the energy (U, in
More informationChapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9
Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q
More informationCapacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.
Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallelplate capacitor connected to battery. (b) is a circuit
More informationEXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection
OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1signal function generator 2 Oscilloscope, A.V.O meter 3 Resisters & inductor &capacitor THEORY the following form for
More informationChapter 13. Capacitors
Chapter 13 Capacitors Objectives Describe the basic structure and characteristics of a capacitor Discuss various types of capacitors Analyze series capacitors Analyze parallel capacitors Analyze capacitive
More informationPhysics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5.
Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. 1. Which one of the following statements best explains why tiny bits of paper are attracted to a charged rubber rod? A) Paper
More informationPhysics 1214 Chapter 19: Current, Resistance, and DirectCurrent Circuits
Physics 1214 Chapter 19: Current, Resistance, and DirectCurrent Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When
More informationElectric Potential Energy Conservative Force
Electric Potential Energy Conservative Force Conservative force or field is a force field in which the total mechanical energy of an isolated system is conserved. Examples, Gravitation, Electrostatic,
More informationExam 1 Solutions. The ratio of forces is 1.0, as can be seen from Coulomb s law or Newton s third law.
Prof. Eugene Dunnam Prof. Paul Avery Feb. 6, 007 Exam 1 Solutions 1. A charge Q 1 and a charge Q = 1000Q 1 are located 5 cm apart. The ratio of the electrostatic force on Q 1 to that on Q is: (1) none
More informationNotes on Electricity (Circuits)
A circuit is defined to be a collection of energygivers (batteries) and energytakers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current
More informationPhys 2025, First Test. September 20, minutes Name:
Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 101 C / N m e
More informationPhysics 219 Question 1 January
Lecture 616 Physics 219 Question 1 January 30. 2012. A (nonideal) battery of emf 1.5 V and internal resistance 5 Ω is connected to a light bulb of resistance 50 Ω. How much power is delivered to the
More informationPhysics 7B1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20
Physics 7B1 (A/B) Professor Cebra Winter 2010 Lecture 2 Simple Circuits Slide 1 of 20 Conservation of Energy Density In the First lecture, we started with energy conservation. We divided by volume (making
More informationCHAPTER 1 ELECTRICITY
CHAPTER 1 ELECTRICITY Electric Current: The amount of charge flowing through a particular area in unit time. In other words, it is the rate of flow of electric charges. Electric Circuit: Electric circuit
More informationChapter 18. Direct Current Circuits
Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating
More informationChapter 28. Direct Current Circuits
Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining
More informationChapter 2: Capacitor And Dielectrics
hapter 2: apacitor And Dielectrics In this chapter, we are going to discuss the different ways that a capacitor could be arranged in a circuit and how its capacitance could be increased. Overview apacitor
More informationElectric Charge and Electric field
Electric Charge and Electric field ConcepTest 16.1a Electric Charge I Two charged balls are repelling each other as they hang from the ceiling. What can you say about their charges? 1) one is positive,
More informationChapter 16 Electrical Energy Capacitance. HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51
Chapter 16 Electrical Energy Capacitance HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51 Electrical Potential Reminder from physics 1: Work done by a conservative force, depends only
More informationChapter 27. Circuits
Chapter 27 Circuits 1 1. Pumping Chagres We need to establish a potential difference between the ends of a device to make charge carriers follow through the device. To generate a steady flow of charges,
More informationCharge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter
Basic Concepts of DC Circuits Introduction An electric circuit is an interconnection of electrical elements. Systems of Units 1 Charge The most basic quantity in an electric circuit is the electric charge.
More informationCapacitors (Chapter 26)
Capacitance, C Simple capacitive circuits Parallel circuits Series circuits Combinations Electric energy Dielectrics Capacitors (Chapter 26) Capacitors What are they? A capacitor is an electric device
More informationVersion 001 CIRCUITS holland (1290) 1
Version CIRCUITS holland (9) This printout should have questions Multiplechoice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated
More informationElectrostatics and Charge. Creating Electric Fields
Electrostatics and Charge Creating Electric Fields Electric Charges Recall that all matter is made of atoms. Neutral atoms can acquire a charge in several different ways, all of which require movement
More informationWhich of these particles has an electrical charge?
Which of these particles has an electrical charge? A. Proton. B. Electron. C. Ion. D. All of the above. Which is the predominant carrier of charge in copper wire? A. Proton. B. Electron. C. Ion. D. All
More informationNote on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current
Note on Posted Slides These are the slides that I intended to show in class on Tue. Mar. 18, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably
More information1. The diagram shows the electric field lines produced by an electrostatic focussing device.
1. The diagram shows the electric field lines produced by an electrostatic focussing device. Which one of the following diagrams best shows the corresponding equipotential lines? The electric field lines
More informationCAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being deenergized.
D ircuits APAITANE APAITANE Because of the effect of capacitance, an electrical circuit can store energy, even after being deenergized. EO 1.5 EO 1.6 EO 1.7 EO 1.8 EO 1.9 DESRIBE the construction of a
More information7/06 Electric Fields and Energy
Part ASome standard electric field and potential configurations About this lab: Electric fields are created by electric charges and exert force on charges. Electric potential gives an alternative description.
More informationLecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 21 Physics, 4 th Edition James S. Walker Chapter 21 Electric Current and Direct Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power
More information[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1
1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left
More informationRevision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference
Electricity and Circuits a Electric circuits Describe the basic structure of an atom (positions, relative masses and relative charges of protons, neutrons and electrons). Recognise the circuit symbols
More informationChapter 19 Electric Potential and Electric Field
Chapter 19 Electric Potential and Electric Field The electrostatic force is a conservative force. Therefore, it is possible to define an electrical potential energy function with this force. Work done
More informationReview. Spring Semester /21/14. Physics for Scientists & Engineers 2 1
Review Spring Semester 2014 Physics for Scientists & Engineers 2 1 Notes! Homework set 13 extended to Tuesday, 4/22! Remember to fill out SIRS form: https://sirsonline.msu.edu Physics for Scientists &
More informationPhysics 2102 Gabriela González
Physics 2102 Gabriela González Any two charged conductors form a capacitor. Capacitance : C= Q/V Simple Capacitors: Parallel plates: C = ε 0 A/d Spherical : C = ε 0 4πab/(ba) Cylindrical: C = ε 0 2πL/ln(b/a)
More informationAgenda for Today. Elements of Physics II. Capacitors Parallelplate. Charging of capacitors
Capacitors Parallelplate Physics 132: Lecture e 7 Elements of Physics II Charging of capacitors Agenda for Today Combinations of capacitors Energy stored in a capacitor Dielectrics in capacitors Physics
More informationPhysics 2220 Fall 2010 George Williams SECOND MIDTERM  REVIEW PROBLEMS
Physics 0 Fall 010 George Williams SECOND MIDTERM  REVIEW PROBLEMS The last four problems are from last years second midterm. Solutions are available on the class web site.. There are no solutions for,
More information6. In a dry cell electrical energy is obtained due to the conversion of:
1. If a wire of uniform area of cross section is cut into two halves (equal in size), the resistivity of each part will be: a) Halved. b) Doubled. c) Becomes four times its initial value. d) Remains the
More informationELECTRIC CURRENT. Ions CHAPTER Electrons. ELECTRIC CURRENT and DIRECTCURRENT CIRCUITS
LCTRC CURRNT CHAPTR 25 LCTRC CURRNT and DRCTCURRNT CRCUTS Current as the motion of charges The Ampère Resistance and Ohm s Law Ohmic and nonohmic materials lectrical energy and power ons lectrons nside
More informationChapter 10 EMT1150 Introduction to Circuit Analysis
Chapter 10 EM1150 Introduction to Circuit Analysis Department of Computer Engineering echnology Fall 2018 Prof. Rumana Hassin Syed Chapter10 Capacitors Introduction to Capacitors he Electric Field Capacitance
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 4 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm s law resistivity
More informationElectronics Capacitors
Electronics Capacitors Wilfrid Laurier University October 9, 2015 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists
More informationChapter 21 Electric Current and Circuits
Chapter 21 Electric Current and Circuits 1 As an introduction to this chapter you should view the following movie. If you cannot click on the link, then copy it and paste it into your web browser. http://www.ionaphysics.org/movies/vir.mp4
More informationTheme Music: Duke Ellington Take the A Train Cartoon: Bill Amend FoxTrot
May18, 2011 Physics 122 Prof. E. F. Redish Theme Music: Duke Ellington Take the A Train Cartoon: Bill Amend FoxTrot 1 Review sheets for Final Exam Material from two previous exams plus Electric currents
More informationPhysics 208, Spring 2016 Exam #2
Physics 208, Spring 2016 Exam #2 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You
More information10/14/2018. Current. Current. QuickCheck 30.3
Current If QCurrent is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow: The SI unit for current is the coulomb per second,
More information1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.
1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. a. The two bulbs are first connected in parallel to a 120 V source. i. Determine the
More informationElectrical energy & Capacitance
Electrical energy & Capacitance PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html work previously A force is conservative if the work done
More informationElectric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)
Electric Charge Electric Charge ( q ) unbalanced charges positive and negative charges n Units Coulombs (C) Electric Charge How do objects become charged? Types of materials Conductors materials in which
More informationReview from yesterday. Please answer PROBLEM 3 in Knight on page 716 while we are waiting to start. It takes 3.0 μj to move a 15nC charge from A
Review from yesterday Please answer PROBLEM 3 in Knight on page 716 while we are waiting to start. It takes 3.0 μj to move a 15nC charge from A to B 1 Review from yesterday Please answer PROBLEM 17 in
More informationElectric Field of a uniformly Charged Thin Spherical Shell
Electric Field of a uniformly Charged Thin Spherical Shell The calculation of the field outside the shell is identical to that of a point charge. The electric field inside the shell is zero. What are the
More information5. ELECTRIC CURRENTS
5. ELECTRIC CURRENTS TOPIC OUTLINE Section Recommended Time Giancoli Section 5.1 Potential Difference, Current, Resistance 5.2 Electric Circuits 3h 19.1, 19.2 6.2 Electric Field and Force 6.3 Magnetic
More information8. Electric circuit: The closed path along which electric current flows is called an electric circuit.
GIST OF THE LESSON 1. Positive and negative charges: The charge acquired by a glass rod when rubbed with silk is called positive charge and the charge acquired by an ebonite rod when rubbed with wool is
More informationPhysics 169. Luis anchordoqui. Kitt Peak National Observatory. Wednesday, March 8, 17
Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 5.1 Ohm s Law and Resistance ELECTRIC CURRENT is defined as flow of electric charge through a crosssectional area Convention i = dq dt Unit
More informationPhysics 142 Steady Currents Page 1. Steady Currents
Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of
More informationCOPYRIGHTED MATERIAL. DC Review and PreTest. Current Flow CHAPTER
Kybett c0.tex V303/3/2008 8:44pm Page CHAPTER DC Review and PreTest Electronics cannot be studied without first understanding the basics of electricity. This chapter is a review and pretest on those
More informationTurn in scantron You keep these question sheets
Exam 2 on OCT. 15. 2018  Physics 106 R. Schad YOUR NAME ¼À Turn in scantron You keep these question sheets 1) This is to identify the exam version you have IMPORTANT Mark the A 2) This is to identify
More informationPHY102 Electricity Course Summary
TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional
More informationIntroduction to AC Circuits (Capacitors and Inductors)
Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationLouisiana State University Physics 2102, Exam 3 April 2nd, 2009.
PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),
More information(b) State the relation between work, charge and potential difference for an electric circuit.
Question Bank on ChElectricity 1. (a) Define the S.I unit of potential difference. (b) State the relation between work, charge and potential difference for an electric circuit. Calculate the potential
More informationChapter 19: Electric Potential & Potential Energy
Chapter 9: Electric Potential & Potential Energy Brent Royuk Phys2 Concordia University Terminology Two Different uantities: Electric Potential and Electric Potential Energy Electric Potential = Voltage
More information