# 7/06 Electric Fields and Energy

Size: px
Start display at page:

Transcription

1 Part ASome standard electric field and potential configurations About this lab: Electric fields are created by electric charges and exert force on charges. Electric potential gives an alternative description. You will study some simple cases illustrating how the field geometry is related to the potential geometry and to the charge distribution geometry.. Electric fields also store energy (as do magnetic fields). You will consider how and where the energy is stored, and how it can be dissipated. Some important electric field geometries: Besides the fundamental single point charge (monopole) field configuration (field directed radially out or i, depending on charge sign), there are some important special and simple electrostatic cases: plane parallel, coaxial cylindrical and dipole (oppositely charged points). > For infinite parallel conducting plates (in approximation, plates with separation << linear V dimensions), the field is uniform and perpendicular to the plates, of strength Separation. > For the dipole field (two opposite point charges) the field lines become circular close to the charges (<< separation distance) and form a distinctive pattern in general. (The simplest pattern for magnetic field lines is the dipole pattern there are no magnetic monopoles in the present cosmological epoch.)

2 Figure 1 Electric Potential and Field Mapping Arrangement From bottom up: Oppositely charged parallel electrodes with intermediate circular shielded region; Two oppositely charged points (dipole); Oppositely charged parallel electrodes The experimental arrangement for simulating the electric field between two point charges is shown below in Figure 2.. A DC power supply set just under 20 volts is connected across the two conductors. A digital multimeter set to read DC voltage on the 20V scale (if the applied voltage exceeds 20V the DMM will always read 1) has its negative lead fixed to the negative electrode; the positive meter lead may be touched to any point on the high-resistance conducting sheet (centimeter grid) to measure the electric potential at that point.

3 Figure 2 Field map board, power supply and digital meter Electric charges flow from one electrode to the other through the conducting sheet; this situation simulates very closely that of two charged electrodes in electrostatic equilibrium. Procedure 1. Choose an electrode configuration and print outa graph page of Electric Maps Report.sxw, which are the graph grids for Dipole, Parallel Plates, Ring & Plates. Every time you identify an equipotential point (you will seek out the 4V points, then the 8V points, etc), mark it with pencil on the graph grid (not on the conducting paper). 2. For your electrode configuration (Dipole, Parallel Plates, Ring & Plates) locate on the conducting paper and plot on the graph four equipotential lines, at 4V, 8V, 12V, and 16V. (All points of one conductor are at 0V; all points of the other at (just under) +20V. Check it!) Indicate on the field plot the polarity of each electrode, (+ or -). (Put scale numbers on your plot axes.) The plot need not necessarily be exactly to scale; we are interested in shapes.) Take enough points so that you can draw fairly accurate equipotential lines, but not so many as to make it needlessly tiresome. For the parallel strip electrodes measure potential beyond and to the sides of the electrode region. For the circular electrode between parallel strips make measurements inside the ring to test shielding. For the two point electrode configuration, measure behind the points as well as between, to map the dipole (two-pole) shape. In all cases be careful to take sufficient additional data to define the shape of the equipotential lines and corresponding E field lines close to the conducting electrodes. To simplify plotting it is a good idea to scan along grid lines of the conductor. If one scan direction gives slow variation, try the perpendicular direction. If time permits, do the entire conducting sheet; if time is short it will be sufficient to measure one side (left or right) and to sketch the other side symmetrically. Lift the probe to move it; don't gouge the black paper. Please do not write on or scratch the paper. Replacement is very costly.

4 3. Draw a smooth line among points at the same potential. Label all equipotential line with voltage. Then draw associated electric-field lines distinctively (use dashed lines for E. The E field lines should be everywhere perpendicular to the equipotential lines, from the defining relation between E and V, and should enter conductors at right angles (mobile charges very quickly readjust to make this so). The direction of E is toward decreasing potential V. Indicate on your plot the direction of the E field lines. Part B Electric energy storage and dissipation Figure 3 Capacitor charging-discharging setup About this section: Capacitance ("C") is a numerical property of a particular electrode geometry. It specifies the relation between electrode charge and electrode potential difference. Resistance ("R") is a process involving electrical (organized) energy dissipation into (random) energy (heat).

5 Electrostatic energy stored in a capacitor arrangement is dissipated in circuit resistance when current is allowed to flow. The discharge voltage vs. time curve is characteristically exponential with time e - t R equivalent C equivalent. If the current is reversed with an EMF (battery or power supply), the charging voltage curve vs. time involves the same time constant [ 1 e - t R equivalent C equivalent ]. Figure 4 Charging/discharge curves with the same time constant R eq C eq = 15 seconds Recording and fitting such experimental curves determines the "time constant" product R equivalent C equivalent, where "equivalent" denotes the net electrical effect of combinations of C's or R's.

6 (Warning: The Graphical Analysis Analyze: Curve Fit function has standard forms like these. However, GA uses a parameter C which is the inverse of the time constant product.) The volume energy density (joules/cubic meter, in mks units) stored in an electric field is proportional to E 2. (A similar relation involving B 2 holds for magnetic energy storage.) For a fixed conductor geometry the E fields, corresponding charges +/- q and corresponding voltages V are all proportional. Thus the stored energy is proportional to the square of applied voltage V, to the square of charges q on conductors, and also to the space average of E 2 (space integral). The field strength representation of stored energy is the most fundamental, as traveling electromagnetic waves are kinetic, not electrostatic, and there is no applied voltage or charge to relate them to. Voltage is an energy concept, defined reciprocally (space derivative and space integral) to the corresponding electric field: E = - dv dl (dl = path element in direction of the max V increase), and V = - E dl, where the dot indicates the cosine between the two vectors. Apparatus: RC (Resistor-Capacitor) circuit box, voltmeter, power supply, cables; additional resistors Capacitors are devices for storing electric field energy. They exist commercially in myriad forms and with varied properties. Depending on intended use, one property or another may be most desirable high voltage operation, compactness, low loss in AC operation, cost etc. They can serve to isolate one voltage level from another (an ideal capacitor does not pass DC current), as part of a timing circuit, as part of a voltage ripple filter, etc. Capacity occurs by virtue of electric field lines between the charge on two surfaces. It is sometimes undesired but unavoidable, as in electronic chips or other circuits, and designers must cope with the consequences of stray capacitance. Whether these are of major consequence or not may depend on the frequency of operation. (Similar considerations are involved in the presence of stray inductance, the analogous magnetic energy storage element.) The unit of capacitance is the farad, obviously named for Michael Faraday. A farad of capacitance is a very large amount; milli-, micro-, nano-, or picofarads are much more common as discrete commercial devices. Stray capacitances may be even smaller.

7 Resistors are energy dissipating devices. As circuit elements, they involve a voltage drop ir, where i is the current. In series with a capacitor, they delay the charge or discharge when a switch is opened or closed., producing (for discharge) an exponential variation of the voltage across the capacitor. (See discussion below of charging and discharging.) But, air can be also considered to be resistive (dissipative) when it is ionized in an electrical discharge. Heat is produced and, when the air discharge is explosive, thunder also results. Getting the stored energy out of (or into) a capacitor Think of the capacitor as a cubical detention pond with a valved outflow pipe. When the valve is opened, the rate of fall of the water height (voltage) depends on the size of the pipe (resistance). And if two ponds are cross connected with a very large pipe (connected in parallel by a very low resistance), with a single small outflow pipe, the common level falls more slowly capacitors in parallel add. Discharging For discharge t / V =V 0 e where is the product RC. V = 0 as t > infinity. The voltage decreases by a factor 1/e every seconds. (This exponential decay is similar to that of a radioactive sample which is not being replenished.) (Note once again: Graphical Analysis has a Curve Fit function of the form: exp(-cx). Here, the GA x is our time t, and the GA C is our inverse : C GA = 1/τ. (GA's C is obviously not a capacitance.) So, our = RC has dimensions of time, but GA's C has units of inverse time.) It is frequently easier to observe T 1 2 on a graph, the time for the voltage to reduce by half of starting value. The relation is T 1 2 = ln2 = ( ln 2 because we want the half time; if we wanted the 1/3 time, ln 3 would be involved, etc.) Charging For charging, the same time constant is involved

8 V = V 0 ( 1 e - t ) V approaches V 0 as t > infinity. The larger the time constant, the slower the charging or discharging. Combinations For various combinations of circuit elements, single equivalent values may be used by following these rules: > Resistors in series (same current through all) add directly: R series = R 1 + R 2 + R > Resistors in parallel (same voltage across all) add reciprocally: 1 R = 1 R R R (Your calculator 1/x function will handle this nicely. Don't forget the final inversion to get the equivalent R) > Capacitors in parallel (same voltage across all) add directly: C parallel = C 1 + C 2 +C > Capacitors in series (same charge (magnitude) on all plates) add reciprocally: 1 C series = 1 C C C The rules for equivalent resistors and capacitors thus interchange.

9 The schematics below represent charging/discharging circuits in which a capacitor and resistor are connected in series with a battery or power supply. Voltmeter + - A S + V(b) B C R Figure 5 Charge/discharge circuit When the switch S is placed in position A, the battery charges the circuit, i.e. charge flows from the battery thru the resistor into the capacitor, until the capacitor is fully charged. When the switch is placed in position B, the capacitor (which stores charge and energy) discharges through the resistor (which dissipates charge energy). You will investigate how quickly this charge enters and leaves the capacitor by measuring the voltage across it as a function of time and fitting the data. You will also connect capacitors in series (end to end) and parallel to measure the equivalent capacitance. Capacitance is the capacity to store charge, measured in farads, defined by: q = CV where q (Coulombs) is the charge on the capacitor and V (Volts) is the voltage across it. The electrical energy stored in the capacitor is given by stored energy = 1 2 CV 2 or, equivalently 1 q 2 2 C How to connect the RC circuit

10 A + B Two capacitors and one resistor are already wired into a single box with connection jacks. You need only connect the box to the power supply (which acts as the battery in the circuit) and the voltmeter. C E + D F The capacitors in the box are polarized and will only work if connected in one direction; Ground (black) on the power supply should only be connected to black on the box, red on the power supply should only be connected to red on the box. Figure 6 By connecting to different jacks (which are labeled A, B, C, etc) using the supplied cables, you can create various circuits as shown below: Power Supply Plug into +20V to Charge Capacitor Unplug from +20V to Discharge Capacitor +20V Ground Voltmeter + - A B F E C R Figure 7 Single capacitor discharge through a resistor:

11 Power Supply +20V Ground Plug into +20V to Charge Capacitor Unplug from +20V to Discharge Capacitor Voltmeter + - C D : A B F E C R Figure 8 Parallel Capacitors dischare through a resistor Figure 9 Single capacitor charging through a resistor: Procedure A. Single capacitor discharge Use your wristwatch to record voltage vs. time every five seconds, on scrap. Enter into Graphical

12 Analysis: Electric Fields and Energy, decide what theoretical function should describe the data and Analyze: Curve Fit to obtain the value of. Predict the time constant from the values of the resistances and capacitances in your circuit, using equivalent values as discussed above. Remember the warning that C GA is different than C cap. Save. B. Parallel capacitors discharge Proceed as above. Save. C. Series capacitors discharge Save. Note that there is no diagram for two capacitors in series. Design the experiment and hook up the cables according to what you think the circuit should be connected but have your instructor check the connection before performing the experiment. Then proceed as above. D. Single capacitor charge Save. Proceed as above. (Series and parallel resistors) Only if so directed, apply a known voltage to series and parallel resistor combinations and observe the current through the power supply. Sketch the circuit. Calculate and record the expected current from i calculated the circuit parameters and form the ratio. i measured Report Submit potential/field maps. Print composite charge/discharge graph. Show on each your calculation of the time constant R eq C eq, in terms of the given component values. Show ratio τ fit /τ calculated.

### EXPERIMENT 5A RC Circuits

EXPERIMENT 5A Circuits Objectives 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.

### UNIT 102-2: ELECTRIC POTENTIAL AND CAPACITANCE Approximate time two 100-minute sessions

Name St.No. Date(YY/MM/DD) / / Section UNIT 1022: ELECTRIC POTENTIAL AND CAPACITANCE Approximate time two 100minute sessions I get a real charge out of capacitors. P. W. Laws OBJECTIVES 1. To understand

### Coulomb s constant k = 9x10 9 N m 2 /C 2

1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy

### Lab 10: DC RC circuits

Name: Lab 10: DC RC circuits Group Members: Date: TA s Name: Objectives: 1. To understand current and voltage characteristics of a DC RC circuit 2. To understand the effect of the RC time constant Apparatus:

### 2 Electric Field Mapping Rev1/05

2 Electric Field Mapping Rev1/05 Theory: An electric field is a vector field that is produced by an electric charge. The source of the field may be a single charge or many charges. To visualize an electric

### Phys1220 Lab Electrical potential and field lines

Phys1220 Lab Electrical potential and field lines Purpose of the experiment: To explore the relationship between electrical potential (a scalar quantity) and electric fields (a vector quantity). Background:

### Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.

Experiment 4 RC Circuits 4.1 Objectives Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Graphically determine the time constant τ for the decay. 4.2

### Figure 1: Capacitor circuit

Capacitors INTRODUCTION The basic function of a capacitor 1 is to store charge and thereby electrical energy. This energy can be retrieved at a later time for a variety of uses. Often, multiple capacitors

### Electric Fields and Potentials

Electric Fields and Potentials INTRODUCTION This experiment is intended to illustrate the concepts of electric fields and electric potentials and how they are related to the charge distribution that produces

### University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB

PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB OBJECT: To study the discharging of a capacitor and determine the time constant for a simple circuit. APPARATUS: Capacitor (about 24 μf), two resistors (about

### Lab 3: Electric Field Mapping Lab

Lab 3: Electric Field Mapping Lab Last updated 9/14/06 Lab Type: Cookbook/Quantitative Concepts Electrostatic Fields Equi-potentials Objectives Our goal in this exercise is to map the electrostatic equi-potential

### Practical 1 RC Circuits

Objectives Practical 1 Circuits 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.

### Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

### Goals: Equipment: Introduction:

Goals: To explore the electric potential surrounding two equally and oppositely charged conductors To identify equipotential surfaces/lines To show how the electric field and electric potential are related

### Electric Field Mapping

PC1143 Physics III Electric Field Mapping 1 Objectives Map the electric fields and potentials resulting from three different configurations of charged electrodes rectangular, concentric, and circular.

### Mapping the Electric Field and Equipotential Lines. Multimeter Pushpins Connecting wires

Circle Your Lab Day: M T W Th F Name: Lab Partner: Lab Partner: Mapping the Electric Field and Equipotential Lines. Equipment: Cork board Conductive paper DC Power supply Multimeter Pushpins Connecting

### Equipotential and Electric Field Mapping

Experiment 2 Equipotential and Electric Field Mapping 2.1 Objectives 1. Determine the lines of constant electric potential for two simple configurations of oppositely charged conductors. 2. Determine the

### Electric Fields and Potentials

Electric Fields and Potentials INTRODUCTION Physicists use the concept of a field to explain the interaction of particles or bodies through space, i.e., the action-at-a-distance force between two bodies

### AP Physics C. Magnetism - Term 4

AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

### ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms

### General Physics II Lab EM2 Capacitance and Electrostatic Energy

Purpose General Physics II Lab General Physics II Lab EM2 Capacitance and Electrostatic Energy In this experiment, you will examine the relationship between charge, voltage and capacitance of a parallel

### Experiment 2 Electric Field Mapping

Experiment 2 Electric Field Mapping I hear and I forget. I see and I remember. I do and I understand Anonymous OBJECTIVE To visualize some electrostatic potentials and fields. THEORY Our goal is to explore

### Properties of Capacitors and its DC Behavior

LABORATORY Experiment 2 Properties of Capacitors and its DC Behavior 1. Objectives To investigate the /V characteristics of capacitor. To calculate the equivalent capacitance of capacitors connected in

### Experiment 8: Capacitance and the Oscilloscope

Experiment 8: Capacitance and the Oscilloscope Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Outline Capacitance: Capacitor

### AP Physics C. Electricity - Term 3

AP Physics C Electricity - Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the

### [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left

### Science 14. Lab 1 - Potential Plotting

Science 14 Lab 1 - Potential Plotting Theory Consider an isolated conductor, A, carrying a positive charge Q, as shown in figure (1a). If body B, with positive charge qo (Q >> qo) is moved to a position

### Capacitors GOAL. EQUIPMENT. CapacitorDecay.cmbl 1. Building a Capacitor

PHYSICS EXPERIMENTS 133 Capacitor 1 Capacitors GOAL. To measure capacitance with a digital multimeter. To make a simple capacitor. To determine and/or apply the rules for finding the equivalent capacitance

### Electrostatics: Coulomb's Law

Electrostatics: Coulomb's Law Objective: To learn how excess charge is created and transferred. To measure the electrostatic force between two objects as a function of their electrical charges and their

### Potential from a distribution of charges = 1

Lecture 7 Potential from a distribution of charges V = 1 4 0 X Smooth distribution i q i r i V = 1 4 0 X i q i r i = 1 4 0 Z r dv Calculating the electric potential from a group of point charges is usually

### Electric Field Mapping

Electric Field Mapping Equipment: mapping board, U-probe, 5 resistive boards, templates, 4 long leads, Phywe 07035.00 voltmeter, DC wall voltage output, 3 pieces of paper Precautions 1. Before turning

### 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

### AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage

Circuits AC vs. DC Circuits Constant voltage circuits Typically referred to as direct current or DC Computers, logic circuits, and battery operated devices are examples of DC circuits The voltage from

### Lab 4 CAPACITORS & RC CIRCUITS

67 Name Date Partners Lab 4 CAPACITORS & RC CIRCUITS OBJECTIVES OVERVIEW To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance of conducting parallel

### The Digital Multimeter (DMM)

The Digital Multimeter (DMM) Since Physics 152 covers electricity and magnetism, the analysis of both DC and AC circuits is required. In the lab, you will need to measure resistance, potential (voltage),

### RC Circuit (Power amplifier, Voltage Sensor)

Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power

### Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 2, March 5th, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

### Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5.

Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. 1. Which one of the following statements best explains why tiny bits of paper are attracted to a charged rubber rod? A) Paper

### Experiment VIII Equipotentials and Fields

Experiment VIII Equipotentials and Fields I. References Serway and Jewett, Vol. 2, Chapter 25 II. Apparatus 4 electrode boards docking station for electrode boards 2 templates for drawing electrodes DC

### A capacitor is a device that stores electric charge (memory devices). A capacitor is a device that stores energy E = Q2 2C = CV 2

Capacitance: Lecture 2: Resistors and Capacitors Capacitance (C) is defined as the ratio of charge (Q) to voltage (V) on an object: C = Q/V = Coulombs/Volt = Farad Capacitance of an object depends on geometry

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 5 Electrostatics Electrical energy potential difference and electric potential potential energy of charged conductors Capacitance and capacitors http://www.physics.wayne.edu/~apetrov/phy2140/

### PHY222 Lab 2 - Electric Fields Mapping the Potential Curves and Field Lines of an Electric Dipole

Print Your Name PHY222 Lab 2 - Electric Fields Mapping the Potential Curves and Field Lines of an Electric Dipole Print Your Partners' Names Instructions January 23, 2015 Before lab, read the Introduction,

### Electric Field Mapping. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX

Electric Field Mapping Department of Physics & Astronomy Texas Christian University, Fort Worth, TX April 15, 2013 Lab 1 Electric Field Mapping 1.1 Introduction For macroscopic objects with electrical

### Electric Field Mapping Lab 2. Precautions

TS 2-12-12 Electric Field Mapping Lab 2 1 Electric Field Mapping Lab 2 Equipment: mapping board, U-probe, resistive boards, templates, dc voltmeter (431B), 4 long leads, 16 V dc for wall strip Reading:

### Lecture 7. Capacitors and Electric Field Energy. Last lecture review: Electrostatic potential

Lecture 7. Capacitors and Electric Field Energy Last lecture review: Electrostatic potential V r = U r q Q Iclicker question The figure shows cross sections through two equipotential surfaces. In both

### Equipotential and Electric Field Mapping

Experiment 1 Equipotential and Electric Field Mapping 1.1 Objectives 1. Determine the lines of constant electric potential for two simple configurations of oppositely charged conductors. 2. Determine the

### EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete

### Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory

Lab 4 RC Circuits Name Partner s Name I. Introduction/Theory Consider a circuit such as that in Figure 1, in which a potential difference is applied to the series combination of a resistor and a capacitor.

### Name: Lab Partner: Section:

Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor

### Capacitors. Example 1

Physics 30AP Resistors and apacitors I apacitors A capacitor is a device for storing electrical charge that consists of two conducting objects placed near one another but not touching. A A typical capacitor

### Electric Field Mapping

Electric Field Mapping Equipment: mapping board, U-probe, 5 resistive boards, templates, knob adjustable DC voltmeter, 4 long leads, 16 V DC for wall strip, 8 1/2 X 11 sheets of paper Reading: Topics of

### On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L.

1 (a) A charged capacitor is connected across the ends of a negative temperature coefficient (NTC) thermistor kept at a fixed temperature. The capacitor discharges through the thermistor. The potential

### Lab 08 Capacitors 2. Figure 2 Series RC circuit with SPDT switch to charge and discharge capacitor.

Lab 08: Capacitors Last edited March 5, 2018 Learning Objectives: 1. Understand the short-term and long-term behavior of circuits containing capacitors. 2. Understand the mathematical relationship between

### Chapter 8. Capacitors. Charging a capacitor

Chapter 8 Capacitors You can store energy as potential energy by pulling a bowstring, stretching a spring, compressing a gas, or lifting a book. You can also store energy as potential energy in an electric

### PHY222 - Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.

PHY222 Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. Print Your Name Print Your Partners' Names You will return this handout to the instructor

### Calculus Relationships in AP Physics C: Electricity and Magnetism

C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the

### PHY132 Practicals Week 6 Student Guide

PHY132 Practicals Week 6 Student Guide Concepts of this Module Electric Potential Electric Field Background A field is a function, f (x,y,z), that assigns a value to every point in space (or some region

### Electric Field Mapping

Electric Field Mapping I hear and I forget. I see and I remember. I do and I understand Anonymous OBJECTIVE To visualize some electrostatic potentials and fields. THEORY Our goal is to explore the electric

### the electrical nature of matter is inherent in its atomic structure E & M atoms are made up of p+, n, and e- the nucleus has p+ and n

Electric Forces and Fields E & M the electrical nature of matter is inherent in its atomic structure atoms are made up of p+, n, and e- a.k.a Electricity and Magnetism the nucleus has p+ and n surrounding

### Name Class Date. RC Circuit Lab

RC Circuit Lab Objectives: Students will be able to Use the ScienceWorkshop interface to investigate the relationship between the voltage remaining across a capacitor and the time taken for the discharge

### MEP 382: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis

Faculty of Engineering MEP 38: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis Outline oltage and Current Ohm s Law Kirchoff s laws esistors Series and Parallel oltage Dividers

### Chapt ha e pt r e r 9 Capacitors

Chapter 9 Capacitors Basics of a Capacitor In its simplest form, a capacitor is an electrical device constructed of two parallel plates separated by an insulating material called the dielectric In the

### Lab 5 - Capacitors and RC Circuits

Lab 5 Capacitors and RC Circuits L51 Name Date Partners Lab 5 Capacitors and RC Circuits OBJECTIVES To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance

### College Physics II Lab 5: Equipotential Lines

INTRODUCTION College Physics II Lab 5: Equipotential Lines Peter Rolnick and Taner Edis Spring 2018 Introduction You will learn how to find equipotential lines in a tray of tap water. (Consult section

### AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

### Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallel-plate capacitor connected to battery. (b) is a circuit

### Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

### Old Dominion University Physics 112N/227N/232N Lab Manual, 13 th Edition

RC Circuits Experiment PH06_Todd OBJECTIVE To investigate how the voltage across a capacitor varies as it charges. To find the capacitive time constant. EQUIPMENT NEEDED Computer: Personal Computer with

### Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and

### LAB 3: Capacitors & RC Circuits

LAB 3: Capacitors & C Circuits Name: Circuits Experiment Board Wire leads Capacitors, esistors EQUIPMENT NEEDED: Two D-cell Batteries Multimeter Logger Pro Software, ULI Purpose The purpose of this lab

### Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and

### Electric Potential Energy Chapter 16

Electric Potential Energy Chapter 16 Electric Energy and Capacitance Sections: 1, 2, 4, 6, 7, 8, 9 The electrostatic force is a conservative force It is possible to define an electrical potential energy

### Describe the forces and torques exerted on an electric dipole in a field.

Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

### Lab 5 CAPACITORS & RC CIRCUITS

L051 Name Date Partners Lab 5 CAPACITORS & RC CIRCUITS OBJECTIVES OVERVIEW To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance of conducting parallel

### Electric Field of a uniformly Charged Thin Spherical Shell

Electric Field of a uniformly Charged Thin Spherical Shell The calculation of the field outside the shell is identical to that of a point charge. The electric field inside the shell is zero. What are the

### Concepts in Physics Lab 9: Equipotential Lines

INTRODUCTION Concepts in Physics Lab 9: Equipotential Lines Taner Edis Fall 2018 Introduction We will play around with electrical energy, seeing how very abstract, invisible concepts like electrical energy

### Danger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks:

Danger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks: What is Voltage anyway? Voltage... Is the energy (U, in

### Electric Currents and Circuits

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 19 Electric Currents and Circuits Marilyn Akins, PhD Broome Community College Electric Circuits The motion of charges leads to the idea of

### Electric Potential Energy Conservative Force

Electric Potential Energy Conservative Force Conservative force or field is a force field in which the total mechanical energy of an isolated system is conserved. Examples, Gravitation, Electrostatic,

### Capacitance, Resistance, DC Circuits

This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

### Electric Field Mapping

Electric Field Mapping Objectives To determine the equipotential lines and the corresponding electric field lines for a variety of arrangements of conductors in a plane. Theory The concept of an electric

### OBJECTIVE: To understand the relation between electric fields and electric potential, and how conducting objects can influence electric fields.

Name Section Question Sheet for Laboratory 4: EC-2: Electric Fields and Potentials OBJECTIVE: To understand the relation between electric fields and electric potential, and how conducting objects can influence

### ELECTRIC FIELD. 2. If you have an equipotential surface that means that the potential difference is zero, along that surface. a. true b.

ELECTRIC FIELD Pre-Lab Questions Page Name: Class: Roster Number: Instructor: Multiply Choice: Circle the correct answer 1. Electric field lines are drawn from a. positive charges to negative charges b.

### EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

### LAB 03 Electric Fields and Potentials

Group: LAB 03 Electric Fields and Potentials Names: (Principle Coordinator) (Lab Partner) (Lab Partner) Motto: Say map! Say map! Dora the Explorer Goals: Developing an intuitive picture of the electric

### Physics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules

Physics 115 General Physics II Session 24 Circuits Series and parallel R Meters Kirchoff s Rules R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/15/14 Phys

### Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

### Tactics Box 23.1 Using Kirchhoff's Loop Law

PH203 Chapter 23 solutions Tactics Box 231 Using Kirchhoff's Loop Law Description: Knight/Jones/Field Tactics Box 231 Using Kirchhoff s loop law is illustrated Learning Goal: To practice Tactics Box 231

### What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

Module 4 AC Theory What happens when things change. What you'll learn in Module 4. 4.1 Resistors in DC Circuits Transient events in DC circuits. The difference between Ideal and Practical circuits Transient

### ENGR 2405 Chapter 6. Capacitors And Inductors

ENGR 2405 Chapter 6 Capacitors And Inductors Overview This chapter will introduce two new linear circuit elements: The capacitor The inductor Unlike resistors, these elements do not dissipate energy They

### Lab 5 - Capacitors and RC Circuits

Lab 5 Capacitors and RC Circuits L51 Name Date Partners Lab 5 Capacitors and RC Circuits OBJECTIVES To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance

### Experiment FT1: Measurement of Dielectric Constant

Experiment FT1: Measurement of Dielectric Constant Name: ID: 1. Objective: (i) To measure the dielectric constant of paper and plastic film. (ii) To examine the energy storage capacity of a practical capacitor.

### Chapter 1 The Electric Force

Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

### ( ) ( ) = q o. T 12 = τ ln 2. RC Circuits. 1 e t τ. q t

Objectives: To explore the charging and discharging cycles of RC circuits with differing amounts of resistance and/or capacitance.. Reading: Resnick, Halliday & Walker, 8th Ed. Section. 27-9 Apparatus:

### Lab: Electric Potential & Electric Field I

Lab: INTRODUCTION In this lab, you will determine the electric potential produced by a set of electrodes held at a fixed voltage. The working surface of the experiment will be a two-dimensional sheet of

### 1. EQUIPOTENTIAL SURFACES AND ELECTRIC FIELD LINES

1. EQUIPOTENTIAL SURFACES AND ELECTRIC FIELD LINES Experiment 1 Objective The objective of this laboratory work is to directly measure electric potential produced by electric charges, to plot equipotential

### Simple circuits - 3 hr

Simple circuits - 3 hr Resistances in circuits Analogy of water flow and electric current An electrical circuit consists of a closed loop with a number of different elements through which electric current

### Capacitance and Dielectrics

Slide 1 / 39 Capacitance and Dielectrics 2011 by Bryan Pflueger Capacitors Slide 2 / 39 A capacitor is any two conductors seperated by an insulator, such as air or another material. Each conductor has