Iterative Learning Control with Switching Gain PD Feedback for Nonlinear Systems

Size: px
Start display at page:

Download "Iterative Learning Control with Switching Gain PD Feedback for Nonlinear Systems"

Transcription

1 TIC-STH 9 Ieaive Leaig Coo wih Swichig Gai PD Feedbac o Noiea Sysems P.R. Ouyag.A. Pez F.F. Xi Depame o Aeospace Egieeig Ryeso Uivesiy Tooo ON Caada Absac I his pape we popose a ew ieaive eaig coo caed Swichig Gai PD-PD (SPD-PD) Type Ieaive Leaig Coo o ajecoy acig o ime vayig oiea sysems wih uceaiy ad disubace. I he deveoped coo scheme a PD eedbac coo wih swichig gais o ieaio domais ad a PD ype ieaive eaig coo based o pevious ieaios combies acig eos io he updaed aw. I is pove ha he boudedess o he ia acig eo is guaaeed i he pesece o uceaiy disubace ad iiiaizaio eo. The covegece speed is adjusabe by he adopio o he swichig gais i he ieaio domai. I is show ha a as covegece ad a sma acig eo boud ca be obseved by usig he SPD-PD ype ieaive eaig coo. Keywods- Ieaive eaig coo PD eedbac coo swichig gai ajecoy acig covegece oiea sysem. I. INTRODUCTION Ieaive Leaig Coo (ILC) has daw iceasig aeio because o is simpe coo sucue ad good acig peomace based o he sysem s epeiive opeaios []. The basic picipe behid he ILC is o use iomaio obaied om pevious eecuios o he same as o om he coo acio i ode o impove he peomace om ia o ia. A adiioa cass o ILC agoihms is he eed owad coo sysem ha is heoeicay capabe o educig he acig eo o zeo as he umbe o ieaios iceases owads iiiy. Accodig o he eaig acio ype ILC ca be cassiied as P-ype D- ype I-ype PI-ype PD-ype ad PID-ype. Some deaied suveys o ILC ca be oud i [-4]. A PD-ype aveaged ieaive eaig coo is poposed o iea sysems i [5]. Some eseaches used he cue ieaio acig eo o om he coo siga ha ca be viewed as o-ie ieaio eaig coo [6-]. A adapive P-ype high-gai eaig coo sysem based o he use o he cue ia eedbac was poposed [6]. A simia coo agoihm was used o discee ime sysems [7]. A PID eedbac coo ad high ode PID-ype ILC o he ajecoy acig coo o obos was poposed i [8] whee posiio veociy ad acceeaio iomaio ae eeded o he eaig pocess. Some P-ype ad PD-ype oie ILCs wee deveoped i [9]. As demosaed i ha pape he ieaive eaig coo wih cue cyce siga ca achieve as covegece aes by seecig a high eedbac coo gai. Simia cocusios wee obaied i [ ]. A PD ype eaig coo usig cue cyce sigas was poposed o geea oiea sysems wih uceaiy ad disubace []. O he ohe had eedbac coo is widey used i idusia appicaios such as obo sysems ad pocess coo sysems o achieve good peomace bu cao achieve eacy he desied acig peomace because a o-zeo eo is equied o acivae he eedbac coo. Theeoe he PD/PID coo aoe is o adequae o ajecoy acig especiay whe he sysem has oieaiies ad uceaiies. The combiaio o eedbac coo ad ieaive eaig coo is a pomisig echique o achieve good acig peomace ad speed up he covegece pocess. A P-ype eedbac pus a P-ype ILC coo agoihm (P-P ype) o discee oiea ime-vayig sysems was poposed i [3]. A P-D eaig coo was poposed i [4] o discee iea ime-ivaia sysems. High ode D-D eaig coos wee deveoped i [ 5]. A P-P ype agoihm was deveoped o iemaic pahacig o mobie obos i [6]. I his pape a swichig gai PD ype eedbac coo pus a PD ype ieaive eaig coo (SPD-PD) is poposed o dea wih he uceaiy ad disubace ad o impove he acig eo om cyce o cyce. II. PROLEM STATEMENT I his pape we coside a oiea ime-vayig sysem wih o-epeiive uceaiy ad disubace as oows: ì ( ) = ( ( ) ) + ( ) u( ) + h( ) () î y() = C() () + () whee deoes he ieaive ide. ÎÂ u ÎÂ ad m y ÎÂ ae he sae coo ipu ad oupu o he sysem especivey. The ucio h () ÎÂ epeses he m uceaiy o he sysem ad ucio () ÎÂ is he disubace. Fom he above assumpio oe ca see ha ( ( ) ) ÎÂ () ÎÂ ad C () ÎÂ. I his pape he oowig oaioa coveio is adoped: æ ö = ma i M( ) = ma ç S mi j i i mçèj = ø - h () = sup e h () > Î[ T] /9/$6. 9 IEEE 875

2 whee [ T = ] is a veco M = ém i j ù êë úû ÎÂ is a mai ad h ()( Î [ T]) is a ea ucio whee T is he ime duaio. To esic he discussio he oowig assumpios ae made o he sysem. A) The desied ajecoy yd () is a is-ode coiuiy o Î [ T]. A) The coo ipu mai C () is a is-ode coiuiy o Î [ T]. A3) The ucio ( ( ) ) is gobay uiomy Lipschiz i o Î [ T]. Tha meas ( + ( ) ) - ( ( ) ) c + () -() whee is he ieaio umbe ad c > is a cosa. A4) Uceaiy ad disubace ems h () ad () ae bouded as oows: " Î [ T] ad " h () b h i () b ad i () b. To coo he oiea sysem saed i Eq. () we popose he oowig SPD-PD ype eaig coo aw u+ () = u() + Kp ( + ) e+ () + Kd( + ) e + () () + K () e () + K () e () p d wih eedbac coo gais give o be as: ì Kp ( ) = s( ) Kp ( ) î Kd( ) = s( ) Kd( ) Whee e+ () = yd() - y+ () e() = yd() - y() e+ () = yd() -y+ () ad e() = yd() -y() ae posiio eos ad veociy eos o he oupu veco o he +h ieaio ad h ieaio especivey. K pi ÎÂ ad K di ÎÂ ae he popoioa ad deivaive gai maices especivey. Eq. (3) epeses he swichig gais o he eedbac coo whee s> ( ) is a moooicay iceasig ucio o he ieaio umbe. I ca be see ha he poposed SPD-PD coo aw cosiss o wo coo oops. The is oop is a PD eedbac cooe wih swichig gais i he ieaio domai ad he secod oop is a sadad PD ype ILC. Theeoe SPD-PD ype ieaive eaig coo is eecivey a hybid coo i ha aims o use he advaages oeed by boh eedbac coo ad ILC. The ey pupose o ioducig swichig gais i he eedbac oop is o epedie he covegece o he ieaio ad avoid vibaio o divig acuaos. Aso oe ca see ha he poposed coo agoihm is a eesio o he agoihm deveoped i []. We assume ha o each ieaio he epeaabiiy o he iiia sae seig is saisied wihi a admissibe deviaio eve: (3) ()- () e o =... (4) whee e is a sma posiive cosa ha epeses he accepabe accuacy o he desiged sae veco ad () epeses he desied iiia sae vaue. Fo bieess o discussio he oowig oaios ae used i he oowig secios: ma K () C( ) ma K C( ) d d d d [ T] [ T] pd p d [ T] ma K CK C ma K CK C pd p d [ T] ma K ma K Kp p Kp p [ T] [ T] ma K ma K K Kd d Kd d [ T] [ T] ma ( ) [ T] = + c d pd -c C ma C( ) ma s( ) K [ T] = + c d pd -c - ( ) = ma I + Kd() C = ma I m -K d C Î[ T] Î[ T] = b = + K - K III. s MAIN RESULTS AND CONVERGENCE ANALYSIS Theoem: Fo he oiea ime-vayig sysem () i he SPD-PD ype ieaive eaig coo aw () is used ad he swichig gai agoihm (3) is adoped he he ia sae ad oupu acig eo is bouded give by ì æ F ö im d () + Tb + e h -c çè -b ø æ F ö C im () e h ç -c -b î çè ø e + Tb + + b ( ) ( ) s. (5) F= K + K + + b + + b s s d d h s Kp Kp Wih + + b + K + K e ( ) ( ) s Kd Kd s Povided he coo gai K () d ad he eaig gai K () d ae seeced such ha I () ( ) ( ) m + Kd C is osigua ad - ì ma ( I + K ) d() ( ) C( ) < Î[ T] ma I - Kd ( ) ( ) C( ) < î Î[ T]. (6) 876

3 Aso we popose he oowig iiia sae eaig agoihm: - + () = ( + ( ) Kd( ) C( )) { () + ( ) Kd( ) yd() + ( ) K ( )( y ()- y ())} (7) d d I his pape he om is used o eamie he covegece o he acig eo o he poposed coo agoihm. Fis o a a eaio bewee om ad om is epeseed by Lemma. Lemma : Suppose ha () = [ () () ()] T is deied i Î [ T]. The æ ö - ç ( ) d e ( ) çèò (8) ø Fis we deie he oowig hee vaiabes. d d - e yd - y du ud -u ad. d Fom () we ca cacuae he acig eos as: e C (9) e C The deivaive o he acig eos ca be epeseed as e C C () e C C Fom () we have: du+ = du- s( + ) Kp ( ) e+ ( ) - s( + ) Kd( ) e + ( ) () -K e () -K e () () () p d Submiig (9) ad () io () ges: { } { } du = du -K Cd - - K Cd + Cd - + p d ( ) ( ){ d } - s+ K C - p + + ( ) d( ){ d d } - s+ K C + C - () Aso om Eq. () we ca ge he oowig: u (3) u Submiig () io (3) ad eogaizig ges: I + s( + ) Kd( ) C du+ = ( I-KdC) du - s( + ) ( Kp ( ) C+ Kd( ) C ) d+ -( KpC+ KdC) d - s( + ) Kd( )( Cd+ -Ch+ - + ) -Kd( Cd -Ch - ) + s( + ) Kp ( ) + + Kp (4) ( ) Fom A3) we have d c d ad s o choose a pope d+ c d+. As coo gai K p ( ) ad om (6) we ca esue d d I s K C I K C (5) Theeoe Eq. (4) ca be ewie i he λ-om ad simpiied as: { ( ) ( pd d c ) d ( s d d ) b h ( s Kp Kp) b ( s Kd Kd) b } du du + + c d + s pd d Fo he h ieaio he sae veco ca be wie as () = () + ( ( ( ) ) + ( ) u ( ) ) d+ h () d Fom () we aso have: (6) ò ò (7) d() = d() + ò ( ( d( ) ) + ( ) ud( ) ) d (8) Fom (7) ad (8) we ge: ò d d ò d = ( ( ( ) ) - ( ( ) ) ) d + ( () du- h ) d+ d( ) Appyig A3) o (9) we ge d c d d+ ( () du - h ) d+ d ( ) (9) ò ò () Eq. () ca be wie i he om om as: d c d d+ ( () du + h ) d+ d( ) ò ò () Accodig o he deiiio o λ-om o λ>c appyig Lemma o () obais: d T d + + u b h -c -c -c Fo he + h ieaio we ca ge simia esu: T d du + b h -c -c -c e e () (3) Submiig (~3) io (6) ad simpiyig i ges: ( - s K) du+ ( + K) du + F (4) Eq. (4) ca be simpiied as du + b d + F (5) u Fom (6) we have. I we choose 3 877

4 ( ( + ) + + ) c spd pd sd d > + c he we - ca guaaee. Fiay om (5) we ca ge: im du () F = (6) - b Submiig (6) io () we ca ge: æ F ö im d() = + Tbh + e -c ç b è - ø Fiay om Eq. (9) we ca ge: æ C F ö im e() = + Tbh + e + b -c ç b è - ø (7) (8) Rema : I he iiia sae updaig aw (7) is used we wi esue im () = (). I his mae we ca ge im e =. Theeoe æ C F ö im e () = Tb h b c + + b (9) - çè - ø Rema : I hee is o uceaiy ad disubace i () he he ia acig eo boud becomes: im e () e C = (3) - c Rema 3: I he iiia sae updaig aw (7) is appied ad hee is o uceaiy ad disubace he he ia acig eo wi be im e ( ) =. Such a cocusio ca be deived diecy om Rema ad Rema. IV. EXPERIMENTAL VERIFICATION I his secio we appy he poposed SPD-PD ieaive eaig coo agoihm o a oiea sysem o impove is acig peomace. The simuaio eampe i [] is adoped o he pupose o compaiso. The oiea sysem wih uceaiy ad disubace is descibed by é () ù ési( () ) + si( () ) ùé() ù é ùéu() ù = +ê ê() ú 5 3 ê() ú ê úêu() ú ë û êë úûë û ë ûë û é cos( p ) ù + (.5+ a ) êcos( 4p ) ú ë û éy () ù é4 ùé () ù é si( p ) ù (.5 a ) êy() ú = + + ê úê() ú êsi( 4p ) ú ë û ë ûë û ë û Wih =5Hz. The desied acig ajecoies ae se as y d() = yd() = ( -) o Î[ ] To eam he obusess o he poposed eaig coo agoihm sevea simuaio sudies ae coduced usig diee coo ad eaig gais. Fo a he cases he iiia saes ae se as ()=.3 ad ()=-.3. Aso we assume he mai i he iiia sae eaig schedue (7) is o accuae (The esimaed vaue is.4). I he oowig secios he cassic PD ILC is obaied by seig K p =K d =. A. Eampe : Repeiive Uceaiy ad Disubace I he is simuaio sudy we se α = which meas ha he uceaiy ad disubace is epeiive om ieaio o ieaio. The oowig coo gais ad eaig gais ae chose: Fo cassic ILC: Kp = diag{} Kd = diag{.5.5} Fo SPD-PD: K p( ) = diag{.5.5} Kd( ) = diag{5} K =.6* diag{} K =.6* diag{.5.5} s( ) =. p d Reeig o () we ca obai ha C = diag{4 } o he simuaio eampe. Theeoe he peec ILC eaig gai is Kd = diag{.5.5} ha is used i he cassic ILC. Accodig o he chose gais om (6) we have = o he cassic ILC ad =. ad =.6 o he SPD-PD. Tha meas iaccuae owedge o maices ad C ae cosideed i he eaig coo gai desig o SPD-PD. Figue shows he maimum acig eo boud o hee cases om ieaio o ieaio. Fom his igue we ca see ha he SPD-PD eaig coo agoihm ca obai a vey as covege ae (7 ieaios) ad vey sma ad moooic deceased acig eos. u o he cassic ILC case ahough he bes eaig gai is used (as = ) he acig eos wee i he good-bad-good mode beoe eachig sabe boudedess ad moe ieaios (7 ieaios) wee eeded o obai a eaivey accepabe acig peomace. We ca see ha he acig eos ae si eaivey age compaed wih he SPD-PD. Simia esus wee show i [] whee moe ha ieaios ae eeded o achieve sabe acig peomace. I demosaed ha he swichig gai eedbac coo is moe useu i ems o educig acig eo ad speed up he covegece. Maimum absoue eos e: Cassic ILC e: SPD-PD e: Cassic ILC e: SPD-PD 5 5 Ieaio umbe Figue. Maimum boud eos o eampe

5 Maimum absoue eos e: Cassic ILC e: SPD-PD e: Cassic ILC e: SPD-PD 5 5 Ieaio umbe Figue. Maimum boud eos o eampe.. Eampe : Vayig Uceaiy ad Disubace I his eampe we coside a siuaio whee he uceaiy ad disubace is vaied om ieaio o ieaio by se a =.5. A he coo gais ad eaig gais ae se he same as i eampe. This eampe epeses a moe geea siuaio o ea appicaios. Figue shows he simuaio esus. Fom Fig. we ca see ha a good acig peomace ca be achieved usig he SPD-PD ype eaig coo agoihm eve i he codiios o vayig uceaiy ad disubace om ieaio o ieaio. Tha is aibued o he eedbac coo which ca compesae he disubace. u o he adiioa ILC agoihm hee ae age sabe acig eos. Tha is because he cassic ILC cao compesae he cue ieaio disubace because o he imiaio o he oie eaig saegy. C. Compaiso o Diee Feedbac Coo Gais To adjus he ia acig eo boud by usig diee coo gais diee eedbac coo gais ae used o he SPD-PD ype eaig coo agoihm. I his eampe he eaig coo gais ae se he same as he pevious wo eampes. The oowig eedbac coo gais ae used i he simuaio epeimes. Fo a hee diee gai cases s( ) =. The midde gais ae chose he same as i Eampe. The ow gais ae ha o he midde gais ad he high gais ae oe ad ha imes midde oes. Tabe iss he maimum absoue ia acig eos ude diee eedbac coo gais. Fom his abe we ca see ha wih he icease o he eedbac coo gais he ia acig eos become smae ad he covegece ae is ase. I demosaes ha he coo paamee ρ has sigiica eec o he covegece ae. Tha cocusio is coicide wih he heoeica aaysis show i Secio 3. Tabe shows he ia acig eos (sabe bouday) o SPD-PD eaig coo compaed o ied gai PD-PD eaig coo usig he same eaig gais. Fom his abe i is ceay show ha he SPD-PD eaig coo ca obai much bee acig peomace (a eas 5 imes) eve wih he eisece o he o-epeiive uceaiy ad disubace (Eampe ). Figue 3 shows he acig eo boud esus om ieaio o ieaio based o SPD-PD eaig coo ad he ied gai ( s= ( ) ) PD-PD eaig coo. Coo Gais TALE I. COMPARISON UNDER DIFFERENT CONTROL GAINS Eampe Eampe Ie. ma e ma e Ie. ma e ma e Low Mid High TALE II. COMPARISON FOR SPD-PD AND PD-PD LEARNING CONTROL Eampe Eampe Coo Ie. ma e ma e Ie. ma e ma e PD-PD SPD-PD Maimum absoue eos Maimum absoue eos e: PD-PD e: SPD-PD e: PD-PD e: SPD-PD Ieaio umbe a) Tacig eos o Eampe e: PD-PD e: SPD-PD e: PD-PD e: SPD-PD Ieaio umbe b) Tacig eos o Eampe Figue 3. Compaiso o SPD-PD ad PD-PD eaig coo. Fom Figue 3 ad Tabe we ca see ha he acig peomaces ae impoved i high eedbac coo gais ae used i he deveoped agoihm. I aso ceay shows ha he acig eos moooicay decease om ieaio o ieaio. D. The Eec o Popoioa Gais Fom he covegece aaysis coduced i pevious secio we ca see ha he popoioa eedbac gai ad ieaive eaig gai ae o acos o guaaeeig he covegece as hey ae o icuded i he covegece 5 879

6 codiio. Theeoe i is a good poi o eam he eec o popoioa gais o he acig peomace. Figue 4 shows oe simuaio esu o he acig eos om ieaio o ieaio usig SPD-PD coo SD-PD coo ( K p = ) SPD-D coo ( K p = ) ad SD-D coo ( K p = K p = ). I is ceay show ha K p gais have eec oy o he is ew (3 i his simuaio) ieaios. Ae ha K p gais mae ie coibuio o he covegece speed. The simuaio esus show ha he ia acig eos usig hese ou eaig coo aws ae amos he same. Maimum absoue eos e Maimum absoue eos e e: SPD-PD e: SD-PD e: SPD-D e: SD-D Ieaio umbe e: SPD-PD e: SD-PD e: SPD-D e: SD-D Ieaio umbe Figue 4. The eec o popoioa coo gais o he covegece speed. V. CONCLUSIONS I his pape a ew ieaive eaig coo is poposed ha is a PD eedbac coo wih adjused coo gais i ieaio domai pus a PD-ype ILC wih pevious ieaio iomaio i he updaig coo aw. I aims o mae use o he chaaceisics oeed by boh he eedbac coo ad he ieaive eaig coo. The poposed coo aw aes he advaages o boh he cue ad pevious ieaio iomaio o he sysem o ehace he sabiiy chaaceisics ad quicy dive he acig ajecoies o he desied oes wihi bouds. The ew SPD-PD coo achieves acig accuacy wih vey as covegece speed ad is obus agais upedicabe disubaces ad uceaiies. I addiio i ca povide ea degees o eedom o he choices o he eaig gais. The ia acig eo ad he covegece ae ca be adjused by he swichig gai o he PD eedbac coo ha maes his coo scheme moe pomisig om he pacica viewpoi. Simuaio sudy demosaes he eeciveess o he poposed SPD-PD ieaive eaig coo. Rea appicaio shoud be a uue wo. REFERENCES [] S. Aimoo S. Kawamua ad F. Miyazai eeig opeaio o obos by eaig Joua o Robo Sysems Vo. pp [] K.L. Mooe M. Daheh ad S.P. haachayya Ieaive eaig coo: A suvey ad ew esus Joua o Roboic Sysems Vo. 9 No. 5 pp [3] D.A. isow M. Thaayi ad A.G. Aeye A suvey o ieaive eaig coo: A eaig-based mehod o high-peomace acig coo IEEE Coo Sysems Magazie Vo.6 No.3 pp [4] H.S. Ah Y.Q. Che ad K.L. Mooe Ieaive eaig coo: ie suvey ad caegoizaio IEEE Tasacios o Sysems Ma ad Cybeeics Pa C: Appicaios ad Reviews Vo. 37 No.6 pp [5] K.H. Pa A aveage opeao-based PD-ype ieaive eaig coo o vaiabe iiia sae eo IEEE Tas. o Auomaic Coo Vo. 5 No.6 pp [6] D.H. Owes ad G.S. Mude Uivesa adapive ieaive eaig coo Poc. o he 37 h IEEE Coeece o Decisio & Coo pp [7] N. Ama D.H. Owes ad E. Roges Ieaive eaig coo o discee ime sysems usig opima eedbac ad eedowad acios Poc. o he 34 h Coeece o Decisio & Coo pp [8] Z.H. Qu J. Dosey M. Dawso ad R.W. Johso A ew eaig coo scheme o obos Poceedigs o he 99 IEEE ICRA pp [9] J.X. Xu X.W. Wag ad L.T. Heg Aaysis o coiuous ieaive eaig coo sysems usig cue cyce eedbac Poc. o he Ameica Coo Coeece pp [] Y.Q. Che J.X. Xu ad T.H. Lee Cue ieaio acig eo assised ieaive eaig coo o uceai oiea discee sysem Poc. o 35h IEEE Co. Decisio ad Coo pp [] Y.Q. Che J.X. Xu ad T.H. Lee A ieaive eaig cooe usig cue ieaio acig eo iomaio ad iiia sae eaig Poc. o 35h IEEE Co. Decisio ad Coo pp [] P.R. Ouyag W.J. Zhag ad M.M. Gupa A Adapive Swichig Leaig Coo Mehod o Tajecoy Tacig o Robo Maipuaos Mechaoics Vo. 6 No. pp [3] D.Y. Pi D.Sebog J. Shou Y. Su ad Q. Li Aaysis o cue cyce eo assised ieaive eaig coo o discee oiea imevayig sysems IEEE Ieaioa Coeece o Sysems Ma ad Cybeeics 5 pp [4] S.J. Yu J.H. Wu ad X.W. Ya A PD-ype ope-cosed-oop ieaive eaig coo ad is covegece o discee sysems Poceedigs o he Fis Ieaioa Coeece o Machie Leaig ad Cybeeics pp [5] J.X. Xu L. Su T. Chai ad D. Ta High-ode ope ad cosed oop ieaive eaig coo scheme wih iiia sae eaig 8 h Ieaioa Coeece o Coo Auomaio Roboics ad Visio pp [6] M.K. Kag J.S. Lee ad K.L. Ha Kiemaic pah-acig o mobie obo usig ieaive eaig coo Joua o Roboic Sysems Vo. No

Supplementary Information

Supplementary Information Supplemeay Ifomaio No-ivasive, asie deemiaio of he coe empeaue of a hea-geeaig solid body Dea Ahoy, Daipaya Saka, Aku Jai * Mechaical ad Aeospace Egieeig Depame Uivesiy of Texas a Aligo, Aligo, TX, USA.

More information

The Central Limit Theorems for Sums of Powers of Function of Independent Random Variables

The Central Limit Theorems for Sums of Powers of Function of Independent Random Variables ScieceAsia 8 () : 55-6 The Ceal Limi Theoems fo Sums of Poes of Fucio of Idepede Radom Vaiables K Laipapo a ad K Neammaee b a Depame of Mahemaics Walailak Uivesiy Nakho Si Thammaa 86 Thailad b Depame of

More information

Comparing Different Estimators for Parameters of Kumaraswamy Distribution

Comparing Different Estimators for Parameters of Kumaraswamy Distribution Compaig Diffee Esimaos fo Paamees of Kumaaswamy Disibuio ا.م.د نذير عباس ابراهيم الشمري جامعة النهرين/بغداد-العراق أ.م.د نشات جاسم محمد الجامعة التقنية الوسطى/بغداد- العراق Absac: This pape deals wih compaig

More information

Journal of Xiamen University (Natural Science)

Journal of Xiamen University (Natural Science) 48 4 2009 7 () Joual of Xiame Uivesiy (Naual Sciece) Vol. 48 No. 4 J ul. 2009, 3 (, 36005) :,,.,,,.,.,. : ;;; : TP 393 :A :043820479 (2009) 0420493206,( dyamic age s). ( muliage sysems),, [ ], [2 ], [3

More information

Physics of Elastic Magnetic Filaments

Physics of Elastic Magnetic Filaments Ieaioa Scieific Cooquium Modeig fo Maeia Pocessig iga, Jue 8-9, 6 Physics of Easic Mageic Fiames I. Javaiis Absac The mode of a easic mageic fiame is deveoped. Mode of easic mageic fiame aows ivesigaig

More information

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR Reseh d ouiios i heis d hei Siees Vo. Issue Pges -46 ISSN 9-699 Puished Oie o Deee 7 Joi Adei Pess h://oideiess.e IPSHITZ ESTIATES FOR UTIINEAR OUTATOR OF ARINKIEWIZ OPERATOR DAZHAO HEN Dee o Siee d Ioio

More information

Viewing in 3D. Viewing in 3D. Planar Geometric Projections. Taxonomy of Projections. How to specify which part of the 3D world is to be viewed?

Viewing in 3D. Viewing in 3D. Planar Geometric Projections. Taxonomy of Projections. How to specify which part of the 3D world is to be viewed? Viewig i 3D Viewig i 3D How o speci which pa o he 3D wo is o e viewe? 3D viewig voume How o asom 3D wo cooiaes o D ispa cooiae? Pojecios Cocepua viewig pipeie: Xom o ee coos 3D cippig Pojec Xom o viewpo

More information

6.2 Improving Our 3-D Graphics Pipeline

6.2 Improving Our 3-D Graphics Pipeline 6.2. IMPROVING OUR 3-D GRAPHICS PIPELINE 8 6.2 Impovig Ou 3-D Gaphics Pipelie We iish ou basic 3D gaphics pipelie wih he implemeaio o pespecive. beoe we do his, we eview homogeeous coodiaes. 6.2. Homogeeous

More information

Robust Adaptive Control of Uncertain Nonlinear Systems in the Presence of Input Saturation and External Disturbance

Robust Adaptive Control of Uncertain Nonlinear Systems in the Presence of Input Saturation and External Disturbance 67 IEEE RANSACIONS ON AUOMAIC CONROL, VOL. 56, NO. 7, JULY Robus Adapive Cool of Uceai Noliea Sysems i he Pesece of Ipu Sauaio ad Exeal Disubace Chagyu We, Fellow, IEEE, Jig Zhou, Membe, IEEE, Zhiao Liu,

More information

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

INF 5460 Electronic noise Estimates and countermeasures. Lecture 13 (Mot 10) Amplifier Architectures

INF 5460 Electronic noise Estimates and countermeasures. Lecture 13 (Mot 10) Amplifier Architectures NF 5460 lecoic oise simaes ad couemeasues Lecue 3 (Mo 0) Amplifie Achiecues Whe a asiso is used i a amplifie, oscillao, file, seso, ec. i will also be a eed fo passive elemes like esisos, capacios ad coils

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Relations on the Apostol Type (p, q)-frobenius-euler Polynomials and Generalizations of the Srivastava-Pintér Addition Theorems

Relations on the Apostol Type (p, q)-frobenius-euler Polynomials and Generalizations of the Srivastava-Pintér Addition Theorems Tish Joal of Aalysis ad Nmbe Theoy 27 Vol 5 No 4 26-3 Available olie a hp://pbssciepbcom/ja/5/4/2 Sciece ad Edcaio Pblishig DOI:269/ja-5-4-2 Relaios o he Aposol Type (p -Fobeis-Ele Polyomials ad Geealizaios

More information

Spectrum of The Direct Sum of Operators. 1. Introduction

Spectrum of The Direct Sum of Operators. 1. Introduction Specu of The Diec Su of Opeaos by E.OTKUN ÇEVİK ad Z.I.ISMILOV Kaadeiz Techical Uivesiy, Faculy of Scieces, Depae of Maheaics 6080 Tabzo, TURKEY e-ail adess : zaeddi@yahoo.co bsac: I his wok, a coecio

More information

S, we call the base curve and the director curve. The straight lines

S, we call the base curve and the director curve. The straight lines Developable Ruled Sufaces wih Daboux Fame i iowsi -Space Sezai KIZILTUĞ, Ali ÇAKAK ahemaics Depame, Faculy of As ad Sciece, Ezica Uivesiy, Ezica, Tuey ahemaics Depame, Faculy of Sciece, Aau Uivesiy, Ezuum,

More information

Redes de Computadores

Redes de Computadores Redes de Compuadoes Deay Modes i Compue Newoks Maue P. Ricado Facudade de Egehaia da Uivesidade do Poo » Wha ae he commo muipexig saegies?» Wha is a Poisso pocess?» Wha is he Lie heoem?» Wha is a queue?»

More information

The Combination of Several RCBDs

The Combination of Several RCBDs Ausaia Joua of Basic ad Appied Scieces 5(4): 67-75 0 ISSN 99-878 The Comiaio of Sevea RCBDs Musofa Usma Pee Nuho 3 Faiz AM Efai ad 3 Jama I Daoud Depame of Mahemaics Facuy of Sciece Lampug Uivesiy Idoesia

More information

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of Oe of he commo descipios of cuilie moio uses ph ibles, which e mesuemes mde log he ge d oml o he ph of he picles. d e wo ohogol xes cosideed sepely fo eey is of moio. These coodies poide ul descipio fo

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Transistor configurations: There are three main ways to place a FET/BJT in an architecture:

Transistor configurations: There are three main ways to place a FET/BJT in an architecture: F3 Mo 0. Amplifie Achiecues Whe a asiso is used i a amplifie, oscillao, file, seso, ec. i will also be a eed fo passive elemes like esisos, capacios ad coils o povide biasig so ha he asiso has he coec

More information

Study on the Dynamic Performance of Heavy-duty Forging Manipulator

Study on the Dynamic Performance of Heavy-duty Forging Manipulator Sdy o he Dyamic Pefomace of Heavy-dy Fogig Maipao QINGSONG YANG, YUANXIN LUO, YONGQIN WANG, XINGCHUN YAN The Sae Key Lab of Mechaica Tasmissio Chogqig Uivesiy Rm. 30, No. 7 Teachig Bidig, No.174, Shapigba,

More information

Lower Bounds for Cover-Free Families

Lower Bounds for Cover-Free Families Loe Bouds fo Cove-Fee Families Ali Z. Abdi Covet of Nazaeth High School Gade, Abas 7, Haifa Nade H. Bshouty Dept. of Compute Sciece Techio, Haifa, 3000 Apil, 05 Abstact Let F be a set of blocks of a t-set

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

Communication Systems Lecture 25. Dong In Kim School of Info/Comm Engineering Sungkyunkwan University

Communication Systems Lecture 25. Dong In Kim School of Info/Comm Engineering Sungkyunkwan University Commuiaio Sysems Leure 5 Dog I Kim Shool o Io/Comm Egieerig Sugkyukwa Uiversiy 1 Oulie Noise i Agle Modulaio Phase deviaio Large SNR Small SNR Oupu SNR PM FM Review o Agle Modulaio Geeral orm o agle modulaed

More information

ECON 3710/4710 Demography of developing countries STABLE AND STATIONARY POPULATIONS. Lecture note. Nico Keilman

ECON 3710/4710 Demography of developing countries STABLE AND STATIONARY POPULATIONS. Lecture note. Nico Keilman ECON 37/47 Demogaphy of deveoping counies STAE AND STATIONARY POPUATIONS ecue noe Nico Keiman Requied eading: Sabe and saionay modes Chape 9 in D Rowand Demogaphic Mehods and Conceps Ofod Univesiy Pess

More information

Degree of Approximation of Fourier Series

Degree of Approximation of Fourier Series Ieaioal Mahemaical Foum Vol. 9 4 o. 9 49-47 HIARI Ld www.m-hiai.com h://d.doi.og/.988/im.4.49 Degee o Aoimaio o Fouie Seies by N E Meas B. P. Padhy U.. Misa Maheda Misa 3 ad Saosh uma Naya 4 Deame o Mahemaics

More information

Consider the time-varying system, (14.1)

Consider the time-varying system, (14.1) Leue 4 // Oulie Moivaio Equivale Defiiios fo Lyapuov Sabiliy Uifomly Sabiliy ad Uifomly Asympoial Sabiliy 4 Covese Lyapuov Theoem 5 Ivaiae- lie Theoem 6 Summay Moivaio Taig poblem i ool, Suppose ha x (

More information

Some Embedding Theorems and Properties of Riesz Potentials

Some Embedding Theorems and Properties of Riesz Potentials meica Joual o ahemaics ad Saisics 3 3(6) 445-453 DOI 593/jajms336 Some Embeddig Theoems ad Poeies o iesz Poeials ahim zaev * Fuad N liyev 3 Isiue o ahemaics ad echaics o Naioal cademy o Scieces o zebaija;

More information

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES Available olie a h://sciog Egieeig Maheaics Lees 2 (23) No 56-66 ISSN 249-9337 ABSLUE INDEED SUMMABILIY FACR F AN INFINIE SERIES USING QUASI-F-WER INCREASING SEQUENCES SKAIKRAY * RKJAI 2 UKMISRA 3 NCSAH

More information

On a Z-Transformation Approach to a Continuous-Time Markov Process with Nonfixed Transition Rates

On a Z-Transformation Approach to a Continuous-Time Markov Process with Nonfixed Transition Rates Ge. Mah. Noes, Vol. 24, No. 2, Ocobe 24, pp. 85-96 ISSN 229-784; Copyigh ICSRS Publicaio, 24 www.i-css.og Available fee olie a hp://www.gema.i O a Z-Tasfomaio Appoach o a Coiuous-Time Maov Pocess wih Nofixed

More information

On imploding cylindrical and spherical shock waves in a perfect gas

On imploding cylindrical and spherical shock waves in a perfect gas J. Fluid Mech. (2006), vol. 560, pp. 103 122. c 2006 Cambidge Uivesiy Pess doi:10.1017/s0022112006000590 Pied i he Uied Kigdom 103 O implodig cylidical ad spheical shock waves i a pefec gas By N. F. PONCHAUT,

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments

New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments Advace i Pue Maheaic 9-53 doi: 36/ap3 Pubihed Oie May (hp://wwwscirpog/oua/ap) New Reu o Ociaio of eve Ode Neua Diffeeia Equaio wih Deviaig Ague Abac Liahog Li Fawei Meg Schoo of Maheaica Sye Sciece aiha

More information

Available online at J. Math. Comput. Sci. 2 (2012), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 2 (2012), No. 4, ISSN: Available olie a h://scik.og J. Mah. Comu. Sci. 2 (22), No. 4, 83-835 ISSN: 927-537 UNBIASED ESTIMATION IN BURR DISTRIBUTION YASHBIR SINGH * Deame of Saisics, School of Mahemaics, Saisics ad Comuaioal

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Existence and Smoothness of Solution of Navier-Stokes Equation on R 3

Existence and Smoothness of Solution of Navier-Stokes Equation on R 3 Ieaioal Joual of Mode Noliea Theoy ad Applicaio, 5, 4, 7-6 Published Olie Jue 5 i SciRes. hp://www.scip.og/joual/ijma hp://dx.doi.og/.436/ijma.5.48 Exisece ad Smoohess of Soluio of Navie-Sokes Equaio o

More information

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P.

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P. Pogessio Sequece & Seies A set of umbes whose domai is a eal umbe is called a SEQUENCE ad sum of the sequece is called a SERIES. If a, a, a, a 4,., a, is a sequece, the the expessio a + a + a + a 4 + a

More information

APPLICATION OF A Z-TRANSFORMS METHOD FOR INVESTIGATION OF MARKOV G-NETWORKS

APPLICATION OF A Z-TRANSFORMS METHOD FOR INVESTIGATION OF MARKOV G-NETWORKS Joa of Aed Mahema ad Comaoa Meha 4 3( 6-73 APPLCATON OF A Z-TRANSFORMS METHOD FOR NVESTGATON OF MARKOV G-NETWORKS Mha Maay Vo Nameo e of Mahema Ceohowa Uey of Tehoogy Cęohowa Poad Fay of Mahema ad Come

More information

Neutron Slowing Down Distances and Times in Hydrogenous Materials. Erin Boyd May 10, 2005

Neutron Slowing Down Distances and Times in Hydrogenous Materials. Erin Boyd May 10, 2005 Neu Slwig Dw Disaces ad Times i Hydgeus Maeials i Byd May 0 005 Oulie Backgud / Lecue Maeial Neu Slwig Dw quai Flux behavi i hydgeus medium Femi eame f calculaig slwig dw disaces ad imes. Bief deivai f

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi Wold Alied cieces Joal (8): 898-95 IN 88-495 IDOI Pblicaios = h x g x x = x N i W whee is a eal aamee is a boded domai wih smooh boday i R N 3 ad< < INTRODUCTION Whee s ha is s = I his ae we ove he exisece

More information

Other quantum algorithms

Other quantum algorithms Chapte 3 Othe uatum agoithms 3. Quick emide of Gove s agoithm We peset hee a uick emide of Gove s agoithm. Iput: a fuctio f : {0,}! {0,}. Goa: fid x such that f (x) =. Seach pobem We have a uatum access

More information

Generalized Fibonacci-Type Sequence and its Properties

Generalized Fibonacci-Type Sequence and its Properties Geelized Fibocci-Type Sequece d is Popeies Ompsh Sihwl shw Vys Devshi Tuoil Keshv Kuj Mdsu (MP Idi Resech Schol Fculy of Sciece Pcific Acdemy of Highe Educio d Resech Uivesiy Udipu (Rj Absc: The Fibocci

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF FOURIER SERIES

ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF FOURIER SERIES M aheaical I equaliies & A pplicaios Volue 19, Nube 1 (216), 287 296 doi:1.7153/ia-19-21 ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF FOURIER SERIES W. ŁENSKI AND B. SZAL (Couicaed by

More information

Servomechanism Design

Servomechanism Design Sevomechanism Design Sevomechanism (sevo-sysem) is a conol sysem in which he efeence () (age, Se poin) changes as ime passes. Design mehods PID Conol u () Ke P () + K I ed () + KDe () Sae Feedback u()

More information

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to Compaiso Fuctios I this lesso, we study stability popeties of the oautoomous system = f t, x The difficulty is that ay solutio of this system statig at x( t ) depeds o both t ad t = x Thee ae thee special

More information

On The Estimation of Two Missing Values in Randomized Complete Block Designs

On The Estimation of Two Missing Values in Randomized Complete Block Designs Mahemaical Theoy and Modeling ISSN 45804 (Pape ISSN 505 (Online Vol.6, No.7, 06 www.iise.og On The Esimaion of Two Missing Values in Randomized Complee Bloc Designs EFFANGA, EFFANGA OKON AND BASSE, E.

More information

Spectral Simulation of Turbulence. and Tracking of Small Particles

Spectral Simulation of Turbulence. and Tracking of Small Particles Specra Siuaio of Turbuece ad Trackig of Sa Parices Hoogeeous Turbuece Saisica ie average properies RMS veociy fucuaios dissipaio rae are idepede of posiio. Hoogeeous urbuece ca be odeed wih radoy sirred

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1)

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1) Fourier Series Iroducio I his secio we will sudy periodic sigals i ers o heir requecy is said o be periodic i coe Reid ha a sigal ( ) ( ) ( ) () or every, where is a uber Fro his deiiio i ollows ha ( )

More information

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c) per I. Le α 7 d β 7. The α d β re he roos o he equio, such h α α, β β, --- α β d αβ. For, α β For, α β α β αβ 66 The seme is rue or,. ssume Cosider, α β d α β y deiiio α α α α β or some posiive ieer.

More information

Some Integral Mean Estimates for Polynomials

Some Integral Mean Estimates for Polynomials Iteatioal Mathematical Foum, Vol. 8, 23, o., 5-5 HIKARI Ltd, www.m-hikai.com Some Itegal Mea Estimates fo Polyomials Abdullah Mi, Bilal Ahmad Da ad Q. M. Dawood Depatmet of Mathematics, Uivesity of Kashmi

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

Relation (12.1) states that if two points belong to the convex subset Ω then all the points on the connecting line also belong to Ω.

Relation (12.1) states that if two points belong to the convex subset Ω then all the points on the connecting line also belong to Ω. Lectue 6. Poectio Opeato Deiitio A.: Subset Ω R is cove i [ y Ω R ] λ + λ [ y = z Ω], λ,. Relatio. states that i two poits belog to the cove subset Ω the all the poits o the coectig lie also belog to Ω.

More information

Optimal Designs with Ultra-Wide-Band for MIMO Channels in Statistical Models

Optimal Designs with Ultra-Wide-Band for MIMO Channels in Statistical Models Opima Desigs wih Ua-Wide-Bad fo MIMO Chaes i Saisica Modes Xu Huag ad Dhameda Shama Absac I is we kow ha he hid geeaio paeship pojecs spaia chae mode is a sochasic chae mode fo MIMO sysems ad mui-aea-based

More information

An Example file... log.txt

An Example file... log.txt # ' ' Start of fie & %$ " 1 - : 5? ;., B - ( * * B - ( * * F I / 0. )- +, * ( ) 8 8 7 /. 6 )- +, 5 5 3 2( 7 7 +, 6 6 9( 3 5( ) 7-0 +, => - +< ( ) )- +, 7 / +, 5 9 (. 6 )- 0 * D>. C )- +, (A :, C 0 )- +,

More information

هقارنت طرائق تقذير هعلواث توزيع كاها ري املعلوتني

هقارنت طرائق تقذير هعلواث توزيع كاها ري املعلوتني هقارنت طرائق تقذير هعلواث توزيع كاها ري املعلوتني يف حالت البياناث املفقودة باستخذام احملاكاة د أ. الباحثة ظافر حسين رشيد جامعة بغداد- كمية االدارة واالقتصاد قسم االحصاء آوات سردار وادي املستخلص Maxiu

More information

Jackson 4.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 4.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 4.7 Homewok obem Soution D. Chistophe S. Baid Univesity of Massachusetts Lowe ROBLEM: A ocaized distibution of chage has a chage density ρ()= 6 e sin θ (a) Make a mutipoe expansion of the potentia

More information

A new generation of tools for trawls Dynamic numerical simulation

A new generation of tools for trawls Dynamic numerical simulation A ew geeaio of oos fo aws Damic umeica simuaio Beoî INCENT IFREMER 8 ue F. Touec 5600 LORIENT Te : 33 (0) 97 87 38 04 emai : Beoi.ice@ifeme.f ABSTRACT IFREMER ad ECN have bee wokig ogehe fo amos e eas

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

T T V e g em D e j ) a S D } a o "m ek j g ed b m "d mq m [ d, )

T T V e g em D e j ) a S D } a o m ek j g ed b m d mq m [ d, ) . ) 6 3 ; 6 ;, G E E W T S W X D ^ L J R Y [ _ ` E ) '" " " -, 7 4-4 4-4 ; ; 7 4 4 4 4 4 ;= : " B C CA BA " ) 3D H E V U T T V e g em D e j ) a S D } a o "m ek j g ed b m "d mq m [ d, ) W X 6 G.. 6 [ X

More information

Consider a Binary antipodal system which produces data of δ (t)

Consider a Binary antipodal system which produces data of δ (t) Modulaion Polem PSK: (inay Phae-hi keying) Conide a inay anipodal yem whih podue daa o δ ( o + δ ( o inay and epeively. Thi daa i paed o pule haping ile and he oupu o he pule haping ile i muliplied y o(

More information

An Automatic Door Sensor Using Image Processing

An Automatic Door Sensor Using Image Processing An Auomaic Doo Senso Using Image Pocessing Depamen o Elecical and Eleconic Engineeing Faculy o Engineeing Tooi Univesiy MENDEL 2004 -Insiue o Auomaion and Compue Science- in BRNO CZECH REPUBLIC 1. Inoducion

More information

Suppose we have observed values t 1, t 2, t n of a random variable T.

Suppose we have observed values t 1, t 2, t n of a random variable T. Sppose we have obseved vales, 2, of a adom vaable T. The dsbo of T s ow o belog o a cea ype (e.g., expoeal, omal, ec.) b he veco θ ( θ, θ2, θp ) of ow paamees assocaed wh s ow (whee p s he mbe of ow paamees).

More information

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi d Iteatioal Cofeece o Electical Compute Egieeig ad Electoics (ICECEE 5 Mappig adius of egula Fuctio ad Cete of Covex egio Dua Wexi School of Applied Mathematics Beijig Nomal Uivesity Zhuhai Chia 363463@qqcom

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

On Interval Valued Generalized Difference Classes Defined by Orlicz Function

On Interval Valued Generalized Difference Classes Defined by Orlicz Function Tuih oua of Aayi ad Numbe Theoy, 03, Vo., No., 48-53 Avaiabe oie a hp://pub.ciepub.com/ja///0 Sciece ad ducaio Pubihig DOI:0.69/ja---0 O Ieva Vaued Geeaized Diffeece Cae Defied by Oicz Fucio Ayha i, Bipa

More information

Chapter 5. Long Waves

Chapter 5. Long Waves ape 5. Lo Waes Wae e s o compaed ae dep: < < L π Fom ea ae eo o s s ; amos ozoa moo z p s ; dosac pesse Dep-aeaed coseao o mass

More information

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T.

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T. Che 5. Dieeil Geome o Sces 5. Sce i meic om I 3D sce c be eeseed b. Elici om z =. Imlici om z = 3. Veco om = o moe geel =z deedig o wo mees. Emle. he shee o dis hs he geoghicl om =coscoscossisi Emle. he

More information

Physics 232 Exam I Feb. 14, 2005

Physics 232 Exam I Feb. 14, 2005 Phsics I Fe., 5 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio wih gul eloci o dissec. gie is i ie i is oud o e 8 c o he igh o he equiliiu posiio d oig o he le wih eloci o.5 sec..

More information

Numerical Solution of Sine-Gordon Equation by Reduced Differential Transform Method

Numerical Solution of Sine-Gordon Equation by Reduced Differential Transform Method Poceedigs of he Wold Cogess o Egieeig Vol I WCE, July 6-8,, Lodo, U.K. Nueical Soluio of Sie-Godo Equaio by Reduced Diffeeial Tasfo Mehod Yıldıay Kesi, İbahi Çağla ad Ayşe Beül Koç Absac Reduced diffeeial

More information

LTI Systems with Feedback, IIR Filter Design

LTI Systems with Feedback, IIR Filter Design Lectue 27 Outine: LTI Systems with Feedbac, IIR Fite Design Announcements: Last HW wi be posted, due Thu June 7, no ate HWs Pactice fina wi be posted today Fina exam announcements on next side Feedbac

More information

arxiv: v4 [math.pr] 20 Jul 2016

arxiv: v4 [math.pr] 20 Jul 2016 Submied o he Aals of Applied Pobabiliy ε-strong SIMULATION FOR MULTIDIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS VIA ROUGH PATH ANALYSIS axiv:1403.5722v4 [mah.pr] 20 Jul 2016 By Jose Blache, Xiyu Che

More information

ON GENERALIZED FRACTIONAL INTEGRAL OPERATORS. ( ρ( x y ) T ρ f(x) := f(y) R x y n dy, R x y n ρ( y )(1 χ )

ON GENERALIZED FRACTIONAL INTEGRAL OPERATORS. ( ρ( x y ) T ρ f(x) := f(y) R x y n dy, R x y n ρ( y )(1 χ ) Scieiae Mahemaicae Japoicae Olie, Vol., 24), 37 38 37 ON GENERALIZED FRACTIONAL INTEGRAL OPERATORS ERIDANI, HENDRA GUNAWAN 2 AND EIICHI NAKAI 3 Received Augus 29, 23; evised Apil 7, 24 Absac. We pove he

More information

! -., THIS PAGE DECLASSIFIED IAW EQ t Fr ra _ ce, _., I B T 1CC33ti3HI QI L '14 D? 0. l d! .; ' D. o.. r l y. - - PR Pi B nt 8, HZ5 0 QL

! -., THIS PAGE DECLASSIFIED IAW EQ t Fr ra _ ce, _., I B T 1CC33ti3HI QI L '14 D? 0. l d! .; ' D. o.. r l y. - - PR Pi B nt 8, HZ5 0 QL H PAGE DECAFED AW E0 2958 UAF HORCA UD & D m \ Z c PREMNAR D FGHER BOMBER ARC o v N C o m p R C DECEMBER 956 PREPARED B HE UAF HORCA DVO N HRO UGH HE COOPERAON O F HE HORCA DVON HEADQUARER UAREUR DEPARMEN

More information

Supplementary materials. Suzuki reaction: mechanistic multiplicity versus exclusive homogeneous or exclusive heterogeneous catalysis

Supplementary materials. Suzuki reaction: mechanistic multiplicity versus exclusive homogeneous or exclusive heterogeneous catalysis Geeal Pape ARKIVOC 009 (xi 85-03 Supplemetay mateials Suzui eactio: mechaistic multiplicity vesus exclusive homogeeous o exclusive heteogeeous catalysis Aa A. Kuohtia, Alexade F. Schmidt* Depatmet of Chemisty

More information

ARITHMETICO GEOMETRIC PROCESS MAINTENANCE MODEL FOR DETERIORATING SYSTEM UNDER RANDOM ENVIRONMENT

ARITHMETICO GEOMETRIC PROCESS MAINTENANCE MODEL FOR DETERIORATING SYSTEM UNDER RANDOM ENVIRONMENT D..Mahesaa Reddy e a. / Ieaioa Joua of gieeig Sciece ad Techoogy IJST ARITHMTIO GOMTRI PROSS MAITA MODL FOR DTRIORATIG SYSTM UDR RADOM VIROMT D..Mahesaa Reddy ad D. B.Vekaa Ramudu2 Picipa, Si Baaji P.G.

More information

Time Domain Modelling of Electromagnetic Field Propagation via Wave Potentials

Time Domain Modelling of Electromagnetic Field Propagation via Wave Potentials BP: Compaioal lecomageics Time Domai Modellig o lecomageic ield Popagaio via Wave Poeials N. Geogieva Y. Rickad McMase Uivesi McMase Uivesi Depame o lecical ad Compe gieeig McMase Uivesi 8 Mai See Wes

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f TAMKANG JOURNAL OF MATHEMATIS Volume 33, Numbe 4, Wine 2002 ON THE OUNDEDNESS OF A GENERALIED FRATIONAL INTEGRAL ON GENERALIED MORREY SPAES ERIDANI Absac. In his pape we exend Nakai's esul on he boundedness

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

LESSON 15: COMPOUND INTEREST

LESSON 15: COMPOUND INTEREST High School: Expoeial Fuctios LESSON 15: COMPOUND INTEREST 1. You have see this fomula fo compoud ieest. Paamete P is the picipal amou (the moey you stat with). Paamete is the ieest ate pe yea expessed

More information

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

Technical Report: Bessel Filter Analysis

Technical Report: Bessel Filter Analysis Sasa Mahmoodi 1 Techical Repot: Bessel Filte Aalysis 1 School of Electoics ad Compute Sciece, Buildig 1, Southampto Uivesity, Southampto, S17 1BJ, UK, Email: sm3@ecs.soto.ac.uk I this techical epot, we

More information

Homework 1 Solutions CSE 101 Summer 2017

Homework 1 Solutions CSE 101 Summer 2017 Homewok 1 Soutions CSE 101 Summe 2017 1 Waming Up 1.1 Pobem and Pobem Instance Find the smaest numbe in an aay of n integes a 1, a 2,..., a n. What is the input? What is the output? Is this a pobem o a

More information

Multilevel-DFT based Low-Complexity Hybrid Precoding for Millimeter Wave MIMO Systems

Multilevel-DFT based Low-Complexity Hybrid Precoding for Millimeter Wave MIMO Systems Muieve-DFT based Low-Copexiy ybid Pecodig fo Miiee Wave MIMO yses Yu-si Liu, Chiag-e Che, Cheg-Rug Tsai, ad -Yeu (dy Wu, Feow, IEEE Gaduae Isiue of Eecoics Egieeig aioa Taiwa Uivesiy Taipei, Taiwa {ike,

More information

-HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL

-HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL UPB Sc B See A Vo 72 I 3 2 ISSN 223-727 MUTIPE -HYBRID APACE TRANSORM AND APPICATIONS TO MUTIDIMENSIONA HYBRID SYSTEMS PART II: DETERMININ THE ORIINA Ve PREPEIŢĂ Te VASIACHE 2 Ace co copeeă oă - pce he

More information

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005. Techc Appedx fo Iveoy geme fo Assemy Sysem wh Poduc o Compoe eus ecox d Zp geme Scece 2005 Lemm µ µ s c Poof If J d µ > µ he ˆ 0 µ µ µ µ µ µ µ µ Sm gumes essh he esu f µ ˆ > µ > µ > µ o K ˆ If J he so

More information

NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: PHY 312 COURSE TITLE: MATHEMATICAL METHODS OF PHYSICS

NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: PHY 312 COURSE TITLE: MATHEMATICAL METHODS OF PHYSICS NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: PHY 3 COURSE TITLE: MATHEMATICAL METHODS OF PHYSICS PHY3 COURSE GUIDE COURSE GUIDE PHY3 Couse Team Ouwaoyi K. Ogubamike

More information

GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND THEIR MODIFIED VERSIONS

GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND THEIR MODIFIED VERSIONS GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND THEIR MODIFIED VERSIONS HENDRA GUNAWAN Absac. Associaed o a fucio ρ :(, ) (, ), le T ρ be he opeao defied o a suiable fucio space by T ρ f(x) := f(y) dy, R

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

MATH 6101 Fall 2008 Series and a Famous Unsolved Problem

MATH 6101 Fall 2008 Series and a Famous Unsolved Problem MATH 60 Fall 2008 Series ad a Famous Usolved Problem Problems = + + + + = (2- )(2+ ) 3 3 5 5 7 7 9 2-Nov-2008 MATH 60 2 Problems ( 4) = + 25 48 2-Nov-2008 MATH 60 3 Problems ( )! = + 2-Nov-2008 MATH 60

More information

UBI External Keyboard Technical Manual

UBI External Keyboard Technical Manual UI Eer eyor ei u EER IORIO ppiio o Ue ouiio e Eer eyor rie uer 12911 i R 232 eyor iee or oeio o e re o UI Eyoer prier Eyoer 11 Eyoer 21 II Eyoer 41 Eyoer 1 Eyoer 1 e eyor o e ue or oer UI prier e e up

More information

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3 The Cumulive Disribuio Fucio (cd) ONE RANDOM VARIABLE cd is deied s he probbiliy o he eve { x}: F ( ) [ ] x P x x - Applies o discree s well s coiuous RV. Exmple: hree osses o coi x 8 3 x 8 8 F 3 3 7 x

More information