MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

Size: px
Start display at page:

Download "MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING"

Transcription

1 MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens and exenal foces, especively. M, K, C, ae he sysem (nxn) maices of mass, siffness, and viscous damping coefficiens. he soluion o Eq. () is deemined uniquely if vecos of iniial displacemens o and iniial velociies d = 0 () V = d o ae specified. Fo fee vibaions, he exenal foce veco F () =0, and Eq. () educes o M+C+K=0 A soluion o Eq. (2) is of he fom (2) = e α ψ (3) whee in geneal α is a complex numbe. Subsiuion of Eq. (3) ino Eq. (2) leads o he following chaaceisic equaion: 2 ( α ) α M + α C + K Ψ = f Ψ = 0 (4) MEEN 67 HD Modal Analysis of MDOF Sysems wih Viscous Damping L. San Andés 2008

2 whee f( α ) is a nxn squae maix. he sysem of homogeneous equaions (4) has a nonivial soluion if he deeminan of he sysem of equaion equals zeo, i.e. ( α ) Δ α = = = + α+ α + α + α 2 3 f 0 c0 c c2 c3... c (5) he oos of he chaaceisic polynomial Δ ( α ) given by Eq. (5) can be of hee ypes: a) Real and negaive, α < 0, coesponding o ove damped modes. b) Puely imaginay, α = ± iω, fo undamped modes. c) Complex conjugae pais of he fom, α = ζω ± iωd, fo unde damped modes. Clealy if he eal pa of any α > 0, i means he sysem is unsable. he consiuen soluion, eq. (3), is hen wien as he supeposiion of he oos α and is associaed vecos ψ saisfying Eq. (4), i.e. = C Ψ e α () Ψ = Ψ Ψ... Ψ nx2 n n (7) o leing [ ] [ 2 2 ] (6) wie Eq. (6) as Ψ (8) () = [ ]{ Ce α } Only if sysem is defined by symmeic maices. Ohewise, he complex oos may be no conjugae pais. MEEN 67 HD Modal Analysis of MDOF Sysems wih Viscous Damping L. San Andés

3 Howeve, a ansfomaion of he fom, [ ] () 2 nx nx = Ψ q (9) is no possible since his implies he exisence of - modal coodinaes which is no physically appaen when he numbe of physical coodinaes is only n. o ovecome his appaen difficuly, efomulae he poblem in a slighly diffeen fom. Le Y be a - ows veco composed of he physical velociies and displacemens, i.e. Y=, and 0 Q= F () (0) be a modified foce veco. hen wie M+C+K=F () as 0 M -M 0 + = 0 M C 0 K o whee F (.a) AY+BY=Q 0 M -M 0 A=, B= M C 0 K (.b) (2) A and B ae x maices, in geneal symmeic if he M, C, K maices ae also symmeic. MEEN 67 HD Modal Analysis of MDOF Sysems wih Viscous Damping L. San Andés

4 Fo fee vibaions, Q=0, and a soluion o Eq. (.b) is sough of he fom: =Y=Φ e α Subsiuion of Eq. (3) ino Eq. (.b) gives: (3) [ α A+B] Φ = 0 (4) which can be wien in he familia fom: whee DΦ= Φ α (5) - - M 0 0 M D=-B A= -, o 0 -K M C wih I as he nxn ideniy maix. Fom Eq. (5) wie 0 I D= - - -K M -K C (6) D Ι = = 0 α α Φ f Φ (7) he eigenvalue poblem has a nonivial soluion if ( α ) 0 Δ = = f α (8) Fom Eq. (8) deemine eigenvalues{ α }, =, 2.., and associaed eigenvecos{ Φ }. Each eigenveco mus saisfy he elaionship: DΦ = Φ (9) α MEEN 67 HD Modal Analysis of MDOF Sysems wih Viscous Damping L. San Andés

5 and can be wien as Ψ Φ = 2 Ψ whee Ψ is a nx veco saisfying: 0 I Ψ Ψ = K M -K C Ψ α Ψ fom he fis ow of Eq. (20) deemine ha: 2 I Ψ = Ψ o α (20) 2 Ψ = α Ψ (2) and fom he second ow of Eq. (20) wih subsiuion of he elaionship in Eq. (2) obain α K M - K C -I Ψ =0 α (23) fo =, 2,.. Noe ha muliplying Eq. (23) by (-α K) gives + + = 2 2 Mα Cα K Ψ 0 (4) i.e. he oiginal eigenvalue poblem. Soluion of Eq. (23) delives he -eigenpais α Ψ Ψ (24) α ; Φ = =,2,.. In geneal, he j-componens of he eigenvecos numbes wien as Ψ ae complex Ψ = α + ib = δ j j j j i e φ j j=,2 n whee δ and φ ae he magniude and he phase angle. MEEN 67 HD Modal Analysis of MDOF Sysems wih Viscous Damping L. San Andés

6 Noe: fo viscous damped sysems, no only he ampliudes bu also he phase angles ae abiay. Howeve, he aios of ampliudes and phase diffeences ae consan fo he elemens of he eigenvecos i.e. ( δ δ ) ( φ φ ) / = cons and = cons fo j, k =, 2,..N j k jk j k jk Ψ A consiuen soluion of he homogeneous equaion (fee vibaion poblem) is hen given as: = Y= C e α Φ = (25) Le he (oos) α be wien in he fom α = ζ ω + iω (26) and wie Eq. (25) as d = ( + i ) Y= = C e ζ ω ω Φ d (27) and since Φ α Ψ = Ψ, he veco of displacemens is jus = Ψ = ( + i ) C e ζ ω ω d (27) ORHOGONALIY OF DAMPED MODES he eigenvalues α and coesponding eigenvecos Φ saisfy he equaion: MEEN 67 HD Modal Analysis of MDOF Sysems wih Viscous Damping L. San Andés

7 α ΑΦ + B Φ = 0 (28) Conside wo diffeen eigenvalues (no complex conjugaes): { αs; s} and { αq; q} Φ Φ, hen if is easy o demonsae ha: and infe (29) and Α = Α B=B (a symmeic sysem), i ( αs αq) Φ A Φ = 0 Φs AΦ q=0 ; Φ fo s ΒΦ q=0 αs αq s q A his ime, consuc a modal damped maix Φ (x) fomed by he columns of he modal vecosφ, i.e. [..... ] Φ= Φ Φ Φ Φ Φ (30) 2 n And wie he ohogonaliy popey as: ΦΑΦ=σ Φ ΒΦ=β (3) Whee σ and β ae (x) diagonal maices. Now, in he geneal case, he equaions of moion on he physical coodinaes ae of second ode and given by: M+C+K=F () MEEN 67 HD Modal Analysis of MDOF Sysems wih Viscous Damping L. San Andés

8 Wih he definiion Y =, Eqs. () ae conveed ino fis ode diffeenial equaions: 0 Α Y+Β Y=Q= F () (32) Whee 0 M -M 0 A=, B= M C 0 K (2) o uncouple he se of fis-ode equaions (32), a soluion of he following fom is assumed: = Y = Φ z = ΦZ () () () (33) Subsiuion of Eq. (33) ino Eq. (32) gives: ΑΦΖ+ ΒΦΖ=Q (34) Pemuliply his equaion by he damped modes o ge: Φ Α Φ Ζ+ ΦΒΦΖ=Φ Q σζ+β Ζ=G o = Φ and use he ohogonaliy popey 2 of Φ Q Eq. (36) epesens a se of uncoupled fis ode equaions: (35) (36) MEEN 67 HD Modal Analysis of MDOF Sysems wih Viscous Damping L. San Andés σ z + β z = g 2 he esul below is only valid fo symmeic sysems, i.e. wih M,K and C as symmeic maices. Fo he moe geneal case, see he exbook of Meiovich o find a discussion on LEF and RIGH eigenvecos.

9 σ σ z + β z = g (37) z + β z = g () 2N 2N 2N 2N 2N σ = Φ ΑΦ β = Φ B Φ = α σ, =, 2..2N whee ; since α ΑΦ + Β Φ = 0. In addiion, g = Φ Q () α = β / σ (38) (39) Iniial condiions ae also deemined fom Y o o o = wih he ansfomaion σζ =Φ o ΑYo (40.a) Ζ = o σ Φ ΑY o =, 2, (40.b) he geneal soluion of he fis ode equaion σ z + β z = g, wih iniial condiion z( 0) = z = o, is deived fom he Convoluion inegal α α ( τ) = 0 ( τ ) τ (4) z z e g e d o σ wih α = β / σ MEEN 67 HD Modal Analysis of MDOF Sysems wih Viscous Damping L. San Andés

10 Once each of he z() soluions ae obained, hen eun o physical coodinaes o ge: Y = = Φ z = ΦZ = () () () (33=43) and since given by: Φ α Ψ = Ψ, he physical displacemen dynamic esponse is = Ψ = z () () (44) and he velociy veco is coespondingly equal o: = α Ψ = z () () (45) See he accompanying MAHCAD wokshee wih a deailed example fo discussion in class. MEEN 67 HD Modal Analysis of MDOF Sysems wih Viscous Damping L. San Andés

MU+CU+KU=F MU+CU+KU=0

MU+CU+KU=F MU+CU+KU=0 MEEN 67 Handout # MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING ^ Symmetic he motion of a n-dof linea system is descibed by the set of 2 nd ode diffeential equations MU+CU+KU=F t whee U (t) and F

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

Orthotropic Materials

Orthotropic Materials Kapiel 2 Ohoopic Maeials 2. Elasic Sain maix Elasic sains ae elaed o sesses by Hooke's law, as saed below. The sesssain elaionship is in each maeial poin fomulaed in he local caesian coodinae sysem. ε

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that ODEs, Homework #4 Soluions. Check ha y ( = is a soluion of he second-order ODE ( cos sin y + y sin y sin = 0 and hen use his fac o find all soluions of he ODE. When y =, we have y = and also y = 0, so

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing.

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing. MECHANICS APPLICATIONS OF SECOND-ORDER ODES 7 Mechanics applicaions of second-order ODEs Second-order linear ODEs wih consan coefficiens arise in many physical applicaions. One physical sysems whose behaviour

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Variance and Covariance Processes

Variance and Covariance Processes Vaiance and Covaiance Pocesses Pakash Balachandan Depamen of Mahemaics Duke Univesiy May 26, 2008 These noes ae based on Due s Sochasic Calculus, Revuz and Yo s Coninuous Maingales and Bownian Moion, Kaazas

More information

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES In igid body kinemaics, we use he elaionships govening he displacemen, velociy and acceleaion, bu mus also accoun fo he oaional moion of he body. Descipion of he moion of igid

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

On Control Problem Described by Infinite System of First-Order Differential Equations

On Control Problem Described by Infinite System of First-Order Differential Equations Ausalian Jounal of Basic and Applied Sciences 5(): 736-74 ISS 99-878 On Conol Poblem Descibed by Infinie Sysem of Fis-Ode Diffeenial Equaions Gafujan Ibagimov and Abbas Badaaya J'afau Insiue fo Mahemaical

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u Genealized Mehods of Momens he genealized mehod momens (GMM) appoach of Hansen (98) can be hough of a geneal pocedue fo esing economics and financial models. he GMM is especially appopiae fo models ha

More information

The sudden release of a large amount of energy E into a background fluid of density

The sudden release of a large amount of energy E into a background fluid of density 10 Poin explosion The sudden elease of a lage amoun of enegy E ino a backgound fluid of densiy ceaes a song explosion, chaaceized by a song shock wave (a blas wave ) emanaing fom he poin whee he enegy

More information

ME 391 Mechanical Engineering Analysis

ME 391 Mechanical Engineering Analysis Fall 04 ME 39 Mechanical Engineering Analsis Eam # Soluions Direcions: Open noes (including course web posings). No books, compuers, or phones. An calculaor is fair game. Problem Deermine he posiion of

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can. 1 Cicula Moion Radians One evoluion is equivalen o 360 0 which is also equivalen o 2π adians. Theefoe we can say ha 360 = 2π adians, 180 = π adians, 90 = π 2 adians. Hence 1 adian = 360 2π Convesions Rule

More information

The Production of Polarization

The Production of Polarization Physics 36: Waves Lecue 13 3/31/211 The Poducion of Polaizaion Today we will alk abou he poducion of polaized ligh. We aleady inoduced he concep of he polaizaion of ligh, a ansvese EM wave. To biefly eview

More information

Chapter Finite Difference Method for Ordinary Differential Equations

Chapter Finite Difference Method for Ordinary Differential Equations Chape 8.7 Finie Diffeence Mehod fo Odinay Diffeenial Eqaions Afe eading his chape, yo shold be able o. Undesand wha he finie diffeence mehod is and how o se i o solve poblems. Wha is he finie diffeence

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

On the Semi-Discrete Davey-Stewartson System with Self-Consistent Sources

On the Semi-Discrete Davey-Stewartson System with Self-Consistent Sources Jounal of Applied Mahemaics and Physics 25 3 478-487 Published Online May 25 in SciRes. hp://www.scip.og/jounal/jamp hp://dx.doi.og/.4236/jamp.25.356 On he Semi-Discee Davey-Sewason Sysem wih Self-Consisen

More information

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2 " P 1 = " #P L L,

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2  P 1 =  #P L L, Lecue 36 Pipe Flow and Low-eynolds numbe hydodynamics 36.1 eading fo Lecues 34-35: PKT Chape 12. Will y fo Monday?: new daa shee and daf fomula shee fo final exam. Ou saing poin fo hydodynamics ae wo equaions:

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba THE INTEACTION OF ADIATION AND MATTE: SEMICLASSICAL THEOY PAGE 26 III. EVIEW OF BASIC QUANTUM MECHANICS : TWO -LEVEL QUANTUM SYSTEMS : The lieaue of quanum opics and lase specoscop abounds wih discussions

More information

Modal Testing (Lecture 1)

Modal Testing (Lecture 1) Modal Tesing Lecue D. Hamid Ahmadian School of Mechanical Engineeing Ian Univesiy of Science and Technology ahmadian@ius.ac.i Oveview Inoducion o Modal Tesing Applicaions of Modal Tesing Philosophy of

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore Soluions of Sample Problems for Third In-Class Exam Mah 6, Spring, Professor David Levermore Compue he Laplace ransform of f e from is definiion Soluion The definiion of he Laplace ransform gives L[f]s

More information

Math Final Exam Solutions

Math Final Exam Solutions Mah 246 - Final Exam Soluions Friday, July h, 204 () Find explici soluions and give he inerval of definiion o he following iniial value problems (a) ( + 2 )y + 2y = e, y(0) = 0 Soluion: In normal form,

More information

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

Let ( α, β be the eigenvector associated with the eigenvalue λ i

Let ( α, β be the eigenvector associated with the eigenvalue λ i ENGI 940 4.05 - Sabiliy Analysis (Linear) Page 4.5 Le ( α, be he eigenvecor associaed wih he eigenvalue λ i of he coefficien i i) marix A Le c, c be arbirary consans. a b c d Case of real, disinc, negaive

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Pressure Vessels Thin and Thick-Walled Stress Analysis

Pressure Vessels Thin and Thick-Walled Stress Analysis Pessue Vessels Thin and Thick-Walled Sess Analysis y James Doane, PhD, PE Conens 1.0 Couse Oveview... 3.0 Thin-Walled Pessue Vessels... 3.1 Inoducion... 3. Sesses in Cylindical Conaines... 4..1 Hoop Sess...

More information

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions Inenaional Mahemaical Foum, Vol 8, 03, no 0, 463-47 HIKARI Ld, wwwm-hikaicom Combinaoial Appoach o M/M/ Queues Using Hypegeomeic Funcions Jagdish Saan and Kamal Nain Depamen of Saisics, Univesiy of Delhi,

More information

PHYS PRACTICE EXAM 2

PHYS PRACTICE EXAM 2 PHYS 1800 PRACTICE EXAM Pa I Muliple Choice Quesions [ ps each] Diecions: Cicle he one alenaive ha bes complees he saemen o answes he quesion. Unless ohewise saed, assume ideal condiions (no ai esisance,

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II Module 3: The Damped Oscillaor-II Lecure 3: The Damped Oscillaor-II 3. Over-damped Oscillaions. This refers o he siuaion where β > ω (3.) The wo roos are and α = β + α 2 = β β 2 ω 2 = (3.2) β 2 ω 2 = 2

More information

Sharif University of Technology - CEDRA By: Professor Ali Meghdari

Sharif University of Technology - CEDRA By: Professor Ali Meghdari Shaif Univesiy of echnology - CEDRA By: Pofesso Ali Meghai Pupose: o exen he Enegy appoach in eiving euaions of oion i.e. Lagange s Meho fo Mechanical Syses. opics: Genealize Cooinaes Lagangian Euaion

More information

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member Verificaion Example Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro Caegory: Isoropic Linear Elasiciy, Dynamics, Member Verificaion Example: 0104 Canilever Beam wih Periodic Exciaion 0104 Canilever Beam

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

r r r r r EE334 Electromagnetic Theory I Todd Kaiser

r r r r r EE334 Electromagnetic Theory I Todd Kaiser 334 lecoagneic Theoy I Todd Kaise Maxwell s quaions: Maxwell s equaions wee developed on expeienal evidence and have been found o goven all classical elecoagneic phenoena. They can be wien in diffeenial

More information

Control Volume Derivation

Control Volume Derivation School of eospace Engineeing Conol Volume -1 Copyigh 1 by Jey M. Seizman. ll ighs esee. Conol Volume Deiaion How o cone ou elaionships fo a close sysem (conol mass) o an open sysem (conol olume) Fo mass

More information

NUMERICAL SIMULATION FOR NONLINEAR STATIC & DYNAMIC STRUCTURAL ANALYSIS

NUMERICAL SIMULATION FOR NONLINEAR STATIC & DYNAMIC STRUCTURAL ANALYSIS Join Inenaional Confeence on Compuing and Decision Making in Civil and Building Engineeing June 14-16, 26 - Monéal, Canada NUMERICAL SIMULATION FOR NONLINEAR STATIC & DYNAMIC STRUCTURAL ANALYSIS ABSTRACT

More information

Section 7.4 Modeling Changing Amplitude and Midline

Section 7.4 Modeling Changing Amplitude and Midline 488 Chaper 7 Secion 7.4 Modeling Changing Ampliude and Midline While sinusoidal funcions can model a variey of behaviors, i is ofen necessary o combine sinusoidal funcions wih linear and exponenial curves

More information

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t Lecue 6: Fiis Tansmission Equaion and Rada Range Equaion (Fiis equaion. Maximum ange of a wieless link. Rada coss secion. Rada equaion. Maximum ange of a ada. 1. Fiis ansmission equaion Fiis ansmission

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

P h y s i c s F a c t s h e e t

P h y s i c s F a c t s h e e t P h y s i c s F a c s h e e Sepembe 2001 Numbe 20 Simple Hamonic Moion Basic Conceps This Facshee will:! eplain wha is mean by simple hamonic moion! eplain how o use he equaions fo simple hamonic moion!

More information

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance:

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance: Problem Se # Problem : a) Using phasor noaion, calculae he volage and curren waves on a ransmission line by solving he wave equaion Assume ha R, L,, G are all non-zero and independen of frequency From

More information

Low-complexity Algorithms for MIMO Multiplexing Systems

Low-complexity Algorithms for MIMO Multiplexing Systems Low-complexiy Algoihms fo MIMO Muliplexing Sysems Ouline Inoducion QRD-M M algoihm Algoihm I: : o educe he numbe of suviving pahs. Algoihm II: : o educe he numbe of candidaes fo each ansmied signal. :

More information

Risk tolerance and optimal portfolio choice

Risk tolerance and optimal portfolio choice Risk oleance and opimal pofolio choice Maek Musiela BNP Paibas London Copoae and Invesmen Join wok wih T. Zaiphopoulou (UT usin) Invesmens and fowad uiliies Pepin 6 Backwad and fowad dynamic uiliies and

More information

The Method of Images in Velocity-Dependent Systems

The Method of Images in Velocity-Dependent Systems >1< The Mehod of Images in Velociy-Dependen Sysems Dan Censo Ben Guion Univesiy of he Negev Depamen of Elecical and Compue Engineeing Bee Sheva, Isael 8415 censo@ee.bgu.ac.il Absac This sudy invesigaes

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Dual Hierarchies of a Multi-Component Camassa Holm System

Dual Hierarchies of a Multi-Component Camassa Holm System Commun. heo. Phys. 64 05 37 378 Vol. 64, No. 4, Ocobe, 05 Dual Hieachies of a Muli-Componen Camassa Holm Sysem LI Hong-Min, LI Yu-Qi, and CHEN Yong Shanghai Key Laboaoy of uswohy Compuing, Eas China Nomal

More information

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem.

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem. Noes, M. Krause.. Problem Se 9: Exercise on FTPL Same model as in paper and lecure, only ha one-period govenmen bonds are replaced by consols, which are bonds ha pay one dollar forever. I has curren marke

More information

arxiv: v1 [math.fa] 3 Jan 2019

arxiv: v1 [math.fa] 3 Jan 2019 DAMPED AND DIVERGENCE EXACT SOLUTIONS FOR THE DUFFING EQUATION USING LEAF FUNCTIONS AND HYPERBOLIC LEAF FUNCTIONS A PREPRINT arxiv:9.66v [mah.fa] Jan 9 Kazunori Shinohara Deparmen of Mechanical Sysems

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

The Global Trade and Environment Model: GTEM

The Global Trade and Environment Model: GTEM The Global Tade and Envionmen Model: A pojecion of non-seady sae daa using Ineempoal GTEM Hom Pan, Vivek Tulpulé and Bian S. Fishe Ausalian Bueau of Agiculual and Resouce Economics OBJECTIVES Deive an

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

Servomechanism Design

Servomechanism Design Sevomechanism Design Sevomechanism (sevo-sysem) is a conol sysem in which he efeence () (age, Se poin) changes as ime passes. Design mehods PID Conol u () Ke P () + K I ed () + KDe () Sae Feedback u()

More information

Quantum Algorithms for Matrix Products over Semirings

Quantum Algorithms for Matrix Products over Semirings CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2017, Aicle 1, pages 1 25 hp://cjcscsuchicagoedu/ Quanum Algoihms fo Maix Poducs ove Semiings Fançois Le Gall Haumichi Nishimua Received July 24, 2015; Revised

More information

2. v = 3 4 c. 3. v = 4c. 5. v = 2 3 c. 6. v = 9. v = 4 3 c

2. v = 3 4 c. 3. v = 4c. 5. v = 2 3 c. 6. v = 9. v = 4 3 c Vesion 074 Exam Final Daf swinney (55185) 1 This pin-ou should have 30 quesions. Muliple-choice quesions may coninue on he nex column o page find all choices befoe answeing. 001 10.0 poins AballofmassM

More information

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2 156 Thee ae 9 books sacked on a shelf. The hickness of each book is eihe 1 inch o 2 F inches. The heigh of he sack of 9 books is 14 inches. Which sysem of equaions can be used o deemine x, he numbe of

More information

Math Week 15: Section 7.4, mass-spring systems. These are notes for Monday. There will also be course review notes for Tuesday, posted later.

Math Week 15: Section 7.4, mass-spring systems. These are notes for Monday. There will also be course review notes for Tuesday, posted later. Mah 50-004 Week 5: Secion 7.4, mass-spring sysems. These are noes for Monday. There will also be course review noes for Tuesday, posed laer. Mon Apr 3 7.4 mass-spring sysems. Announcemens: Warm up exercise:

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS

ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS Mem. Fac. Inegaed As and Sci., Hioshima Univ., Se. IV, Vol. 8 9-33, Dec. 00 ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS YOSHIO AGAOKA *, BYUNG HAK KIM ** AND JIN HYUK CHOI ** *Depamen of Mahemaics, Faculy

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION Inenaional Jounal of Science, Technology & Managemen Volume No 04, Special Issue No. 0, Mach 205 ISSN (online): 2394-537 STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

Second-Order Differential Equations

Second-Order Differential Equations WWW Problems and Soluions 3.1 Chaper 3 Second-Order Differenial Equaions Secion 3.1 Springs: Linear and Nonlinear Models www m Problem 3. (NonlinearSprings). A bod of mass m is aached o a wall b means

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

Chapter 7. Interference

Chapter 7. Interference Chape 7 Inefeence Pa I Geneal Consideaions Pinciple of Supeposiion Pinciple of Supeposiion When wo o moe opical waves mee in he same locaion, hey follow supeposiion pinciple Mos opical sensos deec opical

More information

Introduction to Physical Oceanography Homework 5 - Solutions

Introduction to Physical Oceanography Homework 5 - Solutions Laure Zanna //5 Inroducion o Phsical Oceanograph Homework 5 - Soluions. Inerial oscillaions wih boom fricion non-selecive scale: The governing equaions for his problem are This ssem can be wrien as where

More information

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2.

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2. THE BERNOULLI NUMBERS The Bernoulli numbers are defined here by he exponenial generaing funcion ( e The firs one is easy o compue: (2 and (3 B 0 lim 0 e lim, 0 e ( d B lim 0 d e +e e lim 0 (e 2 lim 0 2(e

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Fundamenal Jounal of Mahemaical Phsics Vol 3 Issue 013 Pages 55-6 Published online a hp://wwwfdincom/ MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Univesias

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Gauge invariance and the vacuum state. Dan Solomon Rauland-Borg Corporation 3450 W. Oakton Skokie, IL Please send all correspondence to:

Gauge invariance and the vacuum state. Dan Solomon Rauland-Borg Corporation 3450 W. Oakton Skokie, IL Please send all correspondence to: Gauge invaiance and he vacuum sae 1 Gauge invaiance and he vacuum sae by Dan Solomon Rauland-Bog Copoaion 345 W. Oakon Skokie, IL 676 Please send all coespondence o: Dan Solomon 164 Bummel Evanson, IL

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differenial Equaions 5. Examples of linear differenial equaions and heir applicaions We consider some examples of sysems of linear differenial equaions wih consan coefficiens y = a y +... + a

More information

Section 3.8, Mechanical and Electrical Vibrations

Section 3.8, Mechanical and Electrical Vibrations Secion 3.8, Mechanical and Elecrical Vibraions Mechanical Unis in he U.S. Cusomary and Meric Sysems Disance Mass Time Force g (Earh) Uni U.S. Cusomary MKS Sysem CGS Sysem fee f slugs seconds sec pounds

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information