arxiv: v4 [math.pr] 20 Jul 2016

Size: px
Start display at page:

Download "arxiv: v4 [math.pr] 20 Jul 2016"

Transcription

1 Submied o he Aals of Applied Pobabiliy ε-strong SIMULATION FOR MULTIDIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS VIA ROUGH PATH ANALYSIS axiv: v4 [mah.pr] 20 Jul 2016 By Jose Blache, Xiyu Che ad Jig Dog Columbia Uivesiy ad Wuha Uivesiy ad Nohwese Uivesiy Coside a mulidimesioal diffusio pocess X = {X : [0, 1]}. Le ε > 0 be a deemiisic, use defied, oleace eo paamee. Ude sadad egulaiy codiios o he dif ad diffusio coefficies of X, we cosuc a pobabiliy space, suppoig boh X ad a explici, piecewise cosa, fully simulaable pocess X ε such ha sup X ε X < ε 0 1 wih pobabiliy oe. Moeove, he use ca adapively choose ε 0, ε so ha X ε also piecewise cosa ad fully simulaable ca be cosuced codiioal o X ε o esue a eo smalle ha ε wih pobabiliy oe. Ou cosucio equies a deailed sudy of coiuiy esimaes of he Iô map usig Lyos heoy of ough pahs. We appoximae he udelyig Bowia moio, joily wih he Lévy aeas wih a deemiisic ε eo i he udelyig ough pah meic. 1. Ioducio. Coside he Iô Sochasic Diffeeial Equaio SDE 1.1 dx = µxd σxdz, X0 = x0 whee Z is a d -dimesioal Bowia moio, ad µ : R d R d ad σ : R d R d d saisfy suiable egulaiy codiios. We shall assume, i paicula, ha boh µ ad σ ae Lipschiz coiuous so ha a sog soluio o he SDE is guaaeed o exis. Addiioal assumpios o he fis ad secod ode deivaives of µ ad σ, which ae sadad i he heoy of ough pahs, will be discussed i he sequel. Ou coibuio i his pape is he joi cosucio of X = {X : [0, 1]} ad a family of pocesses X ε = {X ε : [0, 1]}, fo each ε 0, 1, suppoed o a pobabiliy space Ω, F, P, ad such ha he followig popeies hold: MSC 2010 subjec classificaios: Pimay 34K50, 65C05, 82B80; secoday 97K60 Keywods ad phases: sochasic diffeeial equaio, Moe Calo mehod, Bowia Moio, Lévy aea, Rough pah 1

2 2 J BLANCHET, X. CHEN AND J. DONG T1 The pocess X ε is piecewise cosa, wih fiiely may discoiuiies i [0, 1]. T2 The pocess X ε ca be simulaed exacly ad, sice i akes oly fiiely may values, is pah ca be fully soed. T3 We have ha wih P -pobabiliy oe 1.2 sup X ε X < ε. [0,1] T4 Fo ay m > 1 ad 0 < ε m <... < ε 1 < 1 we ca simulae X εm codiioal o X ε1,...,x εm 1. We efe o he class of pocedues which achieve he cosucio of such family {X ε : ε 0, 1} as Toleace-Efoced Simulaio TES o ε-sog simulaio mehods. Thoughou he pape we use o deoe he max-om o R d. This pape povides he fis cosucio of a Toleace-Efoced Simulaio pocedue fo mulidimesioal SDEs i subsaial geealiy. All ohe TES o ε-sog simulaio pocedues up o ow ae applicable o oe dimesioal pocesses o mulidimesioal pocesses wih cosa diffusio maix i.e. σ x = σ. Le us discuss some cosideaios ha moivae ou sudy. We fis discuss how his pape elaes o he cue lieaue o ε-sog simulaio of sochasic pocesses, which is a ece aea of eseach. The pape of [6] povides he cosucio of X ε saisfyig oly T1 o T3, i oe dimesio. I paicula, boud 1.2 is saisfied fo a give fixed ε 0 = ε > 0 ad i is o clea how o joily simulae {X εm } m 1 as ε m 0 applyig he echique i [6]. The moivaio of cosucig X ε0 fo [6] came fom he desie o poduce exac samples fom a oe dimesioal diffusio X saisfyig 1.1, ad also assumig σ cosa. The auhos i [6] wee ieesed i exedig he applicabiliy of a algoihm ioduced by Beskos ad Robes, see [2]. The pocedue of Beskos ad Robes, applicable o oe dimesioal diffusios, imposed sog boudedess assumpios o he dif coefficie ad is deivaive. The echique i [6] eabled a exesio which is fee of such boudedess assumpios by usig a localizaio echique ha allowed o apply he ideas behid he algoihm i [2]; see also [3] fo aohe appoach which elimiaes boudedess assumpios. All of hese developmes ae i he oe-dimesioal case. The assumpio of a cosa diffusio coefficie comes a basically o cos i geealiy whe cosideig oe dimesioal diffusios because oe ca always apply Lampei s oe-o-oe asfomaio. Such asfoma-

3 ε-strong SIMULATION FOR SDES 3 io allows o ecas he simulaio poblem o oe ivolvig a diffusio wih cosa σ. Lampei s asfomaio cao be geeally applied i highe dimesios. The pape of [4] exeds he wok of [6] i ha hei algoihms saisfy T1 o T4, bu also i he coex of oe dimesioal pocesses. The pape [11] o oly povides a addiioal exesio which allows o deal wih oe dimesioal SDEs wih jumps, bu also coais a compehesive discussio o exac ad ε-sog simulaio fo SDEs. Popey T4 i he defiiio of TES is desiable because i povides aohe appoach a cosucig ubiased esimaos fo expecaios of he fom Ef X, whee f is, say, a coiuous fucio of he sample pah X. I ode o see his, le us assume fo simpliciy ha f is posiive ad Lipschiz coiuous i he uifom om wih Lipschiz cosa K. The, le T be ay posiive adom vaiable wih a sicly posiive desiy g o [0, ad defie 1.3 Z := I f X > T /g T. Obseve ha [ E[Z] = E[E [Z X]] = E 0 I f X > g ] g d = E[f X], so Z is a ubiased esimao fo Ef X. Theefoe, if Popeies T1 o T4 hold, i is possible o simulae Z by oig ha f X ε > T Kε implies f X > T ad if f X ε < T Kε, he f X T. Sice T4 allows o keep simulaig as ε becomes smalle ad T is idepede of X ε wih a posiive desiy g, he oe eveually is able o simulae Z exacly. The majo obsacle ivolved i developig exac samplig algoihms fo mulidimesioal diffusios is he fac ha σ cao be assumed o be cosa. Moeove, eve i he case of mulidimesioal diffusios wih cosa σ, he oe dimesioal algoihms developed so fa ca oly be exeded o he case i which he dif coefficie µ is he gadie of some fucio, ha is, if µ x = v x fo some v. The easo is ha i his case oe ca epese he likelihood aio L, bewee he soluio o 1.1 ad Bowia moio assumig σ = I fo simpliciy ivolvig a Riema iegal as follows 1.4 L = exp µ X s dx s = exp v X exp v X 0 exp µ X s 2 2 ds 0 λ X s ds,

4 4 J BLANCHET, X. CHEN AND J. DONG fo λ x = v x v x 2 2. The fac ha he sochasic iegal ca be asfomed io a Riema iegal faciliaes he execuio of accepaceejecio because oe ca iepe up o a cosa ad usig localizaio as i [6] he expoeial of he iegal of λ as he pobabiliy ha o aivals occu i a Poisso pocess wih a sochasic iesiy. Such eve i.e. o aivals ca be simulaed by hiig. So, ou moivaio i his pape is o ivesigae a ovel appoach ha allows o sudy ε-sog simulaio fo mulidimesioal diffusios i subsaial geealiy, wihou imposig he assumpio ha σ is cosa o ha a Lampei-ype asfomaio ca be applied. Give he pevious discussio o he coecios bewee exac samplig ad ε-sog simulaio, ad he limiaios of he cue echiques, we believe ha ou esuls hee povide a impoa sep i he developme of exac samplig algoihms fo geeal mulidimesioal diffusios. Fo example, i coas o exisig echiques, which demad L o be expessed i ems of a Riema iegal as idicaed i 1.4, ou esuls hee allow o appoximae diecly L i ems of he sochasic iegal epeseaio ad hus oe does o eed o assume ha µ x = v x. We pla o epo o hese implicaios i fuue papes. Ou esuls aleady allow o obai ubiased esimao of expecaios of sample pah fucioals via 1.3. Howeve, i is oed i [4] ha he expeced umbe of adom vaiables equied o simulae Z is ypically ifiie. The ece pape [11] discusses via umeical examples he pacical limiaios of hese ypes of esimaos. The wok of [12], also poposes ubiased esimaos fo he expecaio of Lipschiz coiuous fucios of X1 usig adomized mulilevel Moe Calo. Neveheless, hei algoihm also exhibis ifiie expeced emiaio ime, excep whe oe ca simulae he Lévy aeas exacly, which cuely ca be doe oly i he coex of wo dimesioal SDEs usig he esuls i [9]. The auhos i [1] also use ough pah aalysis fo Moe Calo esimaio, bu hei focus is o coecios o mulilevel echiques ad o o ε-sog simulaio. I his pape we coceae oly o wha is possible o do i ems of ε-sog simulaio pocedues ad how o eable he use of ough pah heoy fo ε-sog simulaio. We shall sudy efficie implemeaios of he algoihms poposed i a sepaae pape. Ohe eseach aveues ha we pla o ivesigae, ad which leveage off ou developme i his pape, ivolve quaificaio of model uceaiy usig he fac ha ou ε-sog simulaio algoihms i he ed ae uifom fo cases wih a lage class of dif ad diffusio coefficies.

5 ε-strong SIMULATION FOR SDES 5 Fially, we oe ha i ode o build ou Toleace-Efoced Simulaio pocedue we had o obai ew ools fo he aalysis of Lévy aeas ad associaed codiioal lage deviaios esuls fo Lévy aeas give he icemes of Bowia moio. We believe ha hese echical esuls migh be of idepede iees. The es of he pape is ogaized as follows. I Secio 2 we descibe he wo mai esuls of he pape. The fis of hem, Theoem 2.1, povides a eo boud bewee he soluio o he SDE descibed i 1.1 ad a suiable piecewise cosa appoximaio. The secod esul, Theoem 2.2, efes o he pocedues ha ae ivolved i simulaig he bouds, joily wih he piecewise cosa appoximaio, heeby yieldig 1.2. Secio 3 is divided io wo subsecios ad i builds he elemes behid he poof of Theoem 2.2. As i us ou, oe eeds o simulae bouds o he so-called Hölde oms of he udelyig Bowia moio ad he coespodig Lévy aeas. Secio 4 lays ou he deails of he simulaio of he Bowia moio ad a uppe boud of is α-hölde om ad Secio 5 lays ou he deails of he simulaio of he Lévy aeas ad a uppe boud of is 2α-Hölde om. Secio 6 is also divided i seveal pas, coespodig o he elemes of ough pah heoy equied o aalyze he SDE descibed i 1.1 as a coiuous map of Bowia moio ude a suiable meic descibed i Secio 2. While he fial fom of he esimaes i Secio 6 migh be somewha diffee ha hose obaied i he lieaue o ough pah aalysis, he echiques ha we use hee ae ceaily sadad i ha lieaue. We have chose o pese he deails because he echiques migh o be well kow o he Moe Calo simulaio commuiy ad also because ou emphasis is i fidig explici cosas i.e. bouds ha ae ameable o simulaio. 2. Mai Resuls. Ou appoach cosiss i sudyig he pocess X as a asfomaio of he udelyig Bowia moio Z. Such asfomaio is kow as he Iô-Lyos map ad is coiuiy popeies ae sudied i he heoy of ough pahs, pioeeed by T. Lyos, i [10]. A ough pah is a effecive way o summaize a iegula pah ifomaio. The heoy of ough pahs allows o defie he soluio o a SDE such as 1.1 i a pahby-pah basis fee of pobabiliy by imposig cosais o he egulaiy of he ieaed iegals of he udelyig pocess Z. Namely, iegals of he fom 2.1 A s, = s Z i u Z i s dz j u. The heoy esuls i diffee iepeaios of he soluio o 1.1

6 6 J BLANCHET, X. CHEN AND J. DONG depedig o how he ieaed iegals of Z ae iepeed. I his pape, we iepe he iegal i 2.1 i he sese of Iô. I us ou ha he Iô-Lyos map is coiuous ude a suiable α- Hölde meic defied i he space of ough pahs. I paicula, such meic ca be expessed as he maximum of he followig wo quaiies: Z Zs Z α := sup 0 s< 1 s α, A s, A 2α := sup max 1 d s 2α. 0 s< 1 As we shall discuss, coiuiy esimaes of he Iô-Lyos map ca be give explicily i ems of hese wo quaiies. I he case of Bowia moio, as we coside hee, we have ha α 1/3, 1/2. I is show i [7], ha ude suiable egulaiy codiios o µ ad σ, which we shall discuss momeaily, he Eule scheme povides a almos sue appoximaio i uifom om o he soluio o he SDE 1.1. Ou fis esul povides a explici chaaceizaio of all of he pahdepede quaiies ha ae ivolved i he fial eo aalysis such as Z α ad A 2α, he diffeece bewee ou aalysis ad wha has bee doe i pevious developmes is ha ulimaely we mus be able o impleme he Eule scheme joily wih he pah-depede quaiies ha ae ivolved i he eo aalysis. So, i is o sufficie o ague ha hee exiss a pah-depede cosa ha seves as a boud of some so, we acually mus povide a suiable epeseaio ha ca be simulaed i fiie ime. I ode o povide ou fis esul, we ioduce some oaios. Le D deoe he dyadic disceizaio of ode ad deoe he mesh of he disceizaio. Specifically, D := { 0, 1,..., 2 } whee k = k/2 fo k = 0, 1, 2,..., 2 ad = 1/2. Give ˆX 0 = x0, defie { ˆX : D } by he followig ecusio: ˆX i k1 = ˆX i k µ i ˆX k σ ˆX k Z j k1 Z j k 2.4 d d d j=1 l=1 m=1 d j=1 l σ ˆX k σ l,m ˆX k à m,j k, k1, whee à i,i k, k1 = A i,i k, k1 = Z i k1 Z i k 2 /2 /2, ad à k, k1 = 0 fo i j. We le ˆX = ˆX whee = max{ k :

7 ε-strong SIMULATION FOR SDES 7 k } fo [0, 1]. We deoe R l, m := m k=l1 ad fo fixed β 1 α, 2α, wie Γ R := sup sup {A k 1, k à i,i k, k1 }. max 0 s< 1,s, D 1 d R s, s β 2α β We oice ha whe i = j, R i,i l, m = 0; whe i j, R l, m = m k=l1 A k 1, k. We also edefie Z α ad A 2α as. Z α := sup A 2α := sup Z Zs sup 0 s< 1,s, D s α, sup 0 s< 1,s, D A s, max 1 d s 2α. The ew defiiios ae equivale o 2.2 ad 2.3 sice boh Z ad A ae coiuous pocesses. I is well kow ha a soluio o X ca be cosuced pah-by-pah see [7] ad Secio 6. The ex esul chaaceizes a explici boud fo he eo obaied by appoximaig X usig ˆX. Theoem 2.1. Suppose ha hee exiss a cosa M such ha µ M, µ M ad σ i M fo i = 0, 1, 2, 3, whee σ i deoes he i-h deivaive of σ. If Z α K α <, A 2α K 2α <, ad Γ R < K R, we ca compue G explicily i ems of M, K α, K 2α ad K R, such ha sup ˆX X G 2α β. [0,1] Remak: A ecipe ha explais sep-by-sep how o compue G i ems of algebaic expessios ivolvig M, K α, K 2α ad K R is give i Pocedue A i he appedix o his secio. Usig Theoem 2.1, we ca poceed o sae he mai coibuio of his pape. Theoem 2.2. I he coex of Theoem 2.1, hee is a explici Moe Calo pocedue ha allows us o simulae adom vaiables K α, K 2α, ad K R joily wih {Z : D } fo ay 1. Cosequely, give ay

8 8 J BLANCHET, X. CHEN AND J. DONG deemiisic ε > 0 we ca selec ε such ha G 2α β ε X ε = ˆX so ha ε ad he se 2.5 sup X ε X ε, [0,1] wih pobabiliy oe. Remak: A explici descipio of he algoihm ivolved i he Moe Calo pocedue of Theoem 2.2 is give i Algoihm II a he ed of Secio 5.3, ad he discussio ha follows i. Give { } Z : D ε so ha 2.5 holds, he discussio i he emak ha follows Algoihm II explais how o fuhe simulae {Z : D } fo ay > ε. This efieme is useful i ode o saisfy he impoa popey T4 give i he Ioducio. I deail, oce K α, K 2α, ad K R have bee simulaed he G has also bee simulaed ad evaluaed. Cosequely, give ay sequece ε m < ε m 1 <... < ε 1 we jus eed o obai i such ha G 2α β i ε i. The simulae {Z : D i } ad cosuc ˆX i accodig o 2.4. We le X εi = ˆX i ad, owig o Theoem 2.1, we immediaely obai wih pobabiliy oe, as desied. sup X εi X ε i [0,1] 2.1. O Relaxig Boudedess Assumpios. The cosucio of ˆX i ode o saisfy 2.5 assumes ha µ M, µ 1 M ad σ i M fo i = 0, 1, 2, 3. Alhough hese assumpios ae sog, hee we explai how o elax hem. Theoem 2.2 exeds diecly o he case i which µ ad σ ae Lipschiz coiuous, wih µ diffeeiable ad σ hee imes diffeeiable. Sice µ ad σ ae Lipschiz coiuous we kow ha X has a sog soluio which is o-explosive. We ca always cosuc µ M ad σ M so ha µ i x = µ i M x fo x c M ad i = 0, 1, ad σ i x = σ i M x fo x c M fo i = 0, 1, 2, 3. Also we ca cosuc c M, whee c M as M, ad µ M M, µ 1 M M ad σ i M M fo i = 0, 1, 2, 3. Fo M 1 we coside he SDE 1.1 wih µ M ad σ M as dif ad diffusio coefficies, especively, ad le X M be he coespodig soluio o 1.1. We sa by pickig some M 0 1 such ha ε < c M0 ad le M = M 0. The u Algoihm II o poduce { ˆX M : [0, 1]}, which

9 accodig o Theoem 2.2 saisfies, ε-strong SIMULATION FOR SDES 9 sup ˆX M X M ε. [0,1] Noe ha oly Seps 5 o 8 i Algoihm II deped o he SDE 1.1, hough he evaluaio of G, which depeds o M ad so we wie G M := G. If sup [0,1] ˆX M c M ε, he we mus have ha X = X M fo [0, 1] ad we ae doe. Ohewise, we le M 2M ad u agai oly Seps 5 o 8 of Algoihm II. We epea doublig M ad e-uig Seps 5 o 8 updaig G M uil we obai a soluio fo which sup [0,1] ˆX M c M ε. Eveually his mus occu because lim sup X M X = 0 M [0,1] almos suely ad X is o explosive The Evaluaio of G. We ex summaize he way o calculae G i ems of M, K α, K 2α ad K R. We wie d = max{d, d }. Pocedue A. 1. Fid δ ad C i δ > 0 fo i = 1, 2, 3 ha saisfies he followig elaios: C 1 δ C 3 δδ 2α Mδ 1 α dmk α d 3 M 2 K 2α δ α C 2 δ C 3 δδ α d 3 M 2 K 2α 2 C 3 δ α {MC 1δ dmc 1 δ 2 K α d 2 MC 2 δk α 2 d 3 M 2 C 1 δk 2α } Refe o he poof of Lemma 6.1 fo oe paicula mehod o fid such C i δ s. 2. Se C 1 = 2 δ C 1δ, C 2 = 2 δ C 2δ MC 1 dmc 1 K α ad C 3 = α MC 1 dmc 2 1K α d 2 MC 2 K α 2 d 3 M 2 C 1 K 2α 3. Fid δ ad B i δ fo i = 1, 2, 3 ha saisfies he followig elaios: B 1 δ >B 3 δ δ 2α 2Mδ 1 α 2MK α 4M 2 K 2α δ α B 2 δ >B 3 δ δ α 4M 2 K 2α B 3 δ 4 > α {MB 1δ MB 1 δ 2 K α MB 2 δ K α 2M 2 B 1 δ K 2α }

10 10 J BLANCHET, X. CHEN AND J. DONG 4. Se B = 2 δ B 1 δ 5. Se G 1 = 1 BC 3 6. Fid δ ad C 4 δ such ha Bδ α 2 αβ 2 C 4 δ 21 2 Bδ α 2 αβ 1 B d 3 M 2 K R 2 d 3 M 2 C 1 K R 7. Se C 4 = 1 Bδ α C 4 δ 3 M 2 K R 2 d 3 M 2 C 1 K R /δ 8. Se G 2 = C 4 d 3 M 2 K R 9. Se G = G 1 G 2 Lemma 2.1. Give K α, K 2α, K R ad M, Pocedue A ca be execued. Poof. We pove he lemma by povidig oe paicula mehod o fid such δ ad C i δ s, i = 1, 2, 3. The mehod o fid δ, B i δ s, fo i = 1, 2, 3, follows exacly he same aioale. Se C 1 δ = dm Z α 1/2, C 2 δ = d 3 M 2 A 2α 1/2 ad C 3 δ = α MC 1 δ dmc 1 δ 2 Z α d 2 MC 2 δ Z α d 2 M 2 Z α 2 d 3 M 2 C 1 δ A α. The we ca pick δ small eough, such ha C 3 δδ 2α Mδ 1 α d 3 M 2 A 2α δ α < 1/2 ad C 3 δδ α < 1/2. 3. The mai idea of he algoihmic developme. Based o Theoem 2.2, ou mai ask is o calculae/simulae he uppe boud fo Z α, A 2α ad Γ R especively. I his secio, we will ioduce he mai idea of ou algoihmic developme. The developme ca be decomposed io wo asks. The fis oe is o fid a ifiie sum epeseaio of he objecs of iees. The secod oe is o ucae he ifiie sum up o a fiie bu adom level so ha he eo iduced by he emaiig ems i he summaio is suiably coolled. The secod ask calls fo ovel algoihmic cosucios. Simulaig ifiiely may ems is impossible. We eed o fid a efficie way o exac eough ifomaio o he emaiig ems afe he ucaio, so ha we ca obai a almos sue boud o he coibuio of he ems ha ae o simulaed. We ex cay ou he wo asks oe by oe Ifiie sum epeseaio of Bowia moio ad Lévy aea. We sa by ioducig a wavele syhesis of Bowia moio, {Z : 0 1}, called he Lévy-Ciesielski cosucio of Bowia moio Seele [13]. Fis we eed o defie a sep fucio H o [0, 1] by H = I 0 < 1/2 I 1/2 1.

11 We he defie a family of fucios ε-strong SIMULATION FOR SDES 11 H k = 2/2 H2 1 k 1 fo all 0 ad 1 k 2 1. Se H0 0 = 1. The oe obais he followig ifiie sum epeseaio of Bowia moio. Theoem 3.1 Lévy-Ciesielski Cosucio. If {Wk : 1 k 2 1, 0} is a sequece of idepede sadad omal adom vaiables, he he seies defied by 3.1 Z = W H 0 0 s ds 2 1 =1 k=1 W k 0 H k s ds coveges uifomly o [0, 1] wih pobabiliy oe. Moeove, he pocess {Z : [0, 1]} is a sadad Bowia moio o [0, 1]. Figue 1 demosaes he basic idea of he Lévy-Ciesielski Cosucio usig popeies of he Bowia bidge. Specifically, as Z1 N0, 1, we se Z1 = W0 0. Codiioal o he value of Z0 = 0 ad Z1, Z1/2 NZ1/2, 1/4. Thus we se Z1/2 = Z1/2 1/2W1 1. I geeal, codiioal o he value of Z 1 k ad Z 1 k1, fo k = 0, 1,..., 2 1, Z 2k1 N Z 1 k Z 1 k1 /2, 1 Thus we se Z 2k1 = Z 1 k Z 1 k1 /2 1/2 1 W k1. Eveually we will simulae he seies up o a fiie bu adom level N 1 o be discussed lae. By level we mea he ode of dyadic disceizaio. As we ae simulaig he disceizaio levels sequeially, we ofe efe o ime whe discussig levels. We ex aalyze he Lévy aea, A k, k1, fo 1 i, j d, 1, 0 k 2 1. Usig he algebaic popey A k, k1 =A 1 2k, 1 2k1 Z i 1 2k1 A 1 Zi 1 2k 2k1, 1 2k2 Zj 1 2k2 Zj 1 2k1, we have he followig ifiie sum epeseaio of A k, k1.

12 12 J BLANCHET, X. CHEN AND J. DONG Fig 1. Lévy-Ciesielski Cosucio of Bowia Moio o [0, 1] N0,1 N0, 1 4 N0,1 N0, 1 8 N0, 1 N0, N0, Lemma 3.1. Fo 1, 0 k 2 1, A k, k1 = h=1 2 h 1 l=1 { Z i h 2 h k2l 1 Z i h 2 h k2l 2 Z j h 2 h k2l Z j h 2 h k2l 1 }. The ie summaio ems i he expessio fo A k, k1 moivae he defiiio of he followig family of pocesses L k : k = 0, 1,..., 2 1, 1. L 0 := 0 L k := L k 1 Z i 2k 1 Z i 2k 2 Z j 2k Z j 2k 1 fo k = 1, 2,..., 2 1. Usig his defiiio ad Lemma 3.1 we ca succicly wie A k, k1 as 3.2 A k, k1 = h=1 L h 2 h k 1 L h 2 h k The idea of ecod beakes. To ucae he ifiie sum up o a fiie bu adom level, we use a saegy called ecod beakes. Specifically, we fis defie a sequece of ecod beakes. We he fomulae he fuue ifomaio we eed o kow as a sequece of yes o o quesios. Specifically, he yes o o quesio is fomulaed as will hee be a

13 ε-strong SIMULATION FOR SDES 13 ew ecod beake? ad asweig he yes/o quesio is equivale o simulaig a popely defied Beoulli adom vaiable. The defiiio of he ecod beakes eed o saisfy he followig wo codiios: C1. The followig eve happes wih pobabiliy oe: beyod some adom bu fiie ime, hee will be o moe ecod beakes. C2. By kowig ha hee ae o moe ecod beakes, he coibuio of he ems ha we have o simulaed ye ae well ude cool i.e. bouded by a use defied oleace eo. We ex explai how he above saegy is applied o he Bowia moio ad he Lévy aea especively. We have d idepede Bowia moios ad we will use Wi,k fo i {1,..., d } o deoe he, k coefficie i he expasio 3.1 fo he i-h Bowia moio. Fo Z α, we say a ecod is boke a i,, k, fo 1 i d, 0 ad 1 k 2 1, if Wi,k > 4 1. Le N 1 := max{ 1 : W i,k > 4 1 fo some 1 k 2 1, 1 i d }. I is he las ime he ecod beake happes. The followig Lemma shows ha codiio C1 is saisfied E[N 1 ] < implies P N 1 < = 1. Lemma 3.2. Thee exiss a iege valued adom vaiable N 1, wih E[N 1 ] <, such ha fo all > N 1, 1 k 2 1 ad 1 i d Wi,k 4 1. We ex check codiio C2. Defie V = max 1 k 2 1 Wk. We have he followig auxiliay lemma. Lemma 3.3. Z α 2 2α1 = α V.

14 14 J BLANCHET, X. CHEN AND J. DONG Oce we foud N 1, we have N 1 Z α 2 2α1 2 1/2 α V 2 2α3 =0 =0 =N /2 α 1 N 1 2 2α1 2 1/2 α V 2 2α3 C 2 1/2N 111/2 α 1 2 1/21/2 α. whee C = max N1 1{2 /21/2 α 1}. ad Fo he Lévy aea, we fis oice ha whe i = j, sup = sup A i,i s, sup 0 s< 1,s, D s 2α B Bs 2 s 2 sup 0 s< 1,s, D 2 s 2α Z 2 α 1, 2 R i,i l, m = 0. Whe i j, he ecod beake is defied fo he adom walk L s. Specifically, fo L, we say a ecod is boke a i, j,, k, k, fo 1 i, j d, i j, 1, 0 k < k < 2 1, if L k L k > k k β 2α, whee β 1 α, 2α. Le N 2 := max{ 1 : L k L k > k k β 2α fo some 0 k < k 2 1, 1 i, j d, i j}. I is he las ime he ecod beake happes. The followig lemma shows ha codiio C1 is saisfied. Lemma 3.4. Thee exiss a iege valued adom vaiable N 2, wih E[N 2 ] = o 1 2α 2, such ha fo all > N 2 ad all 0 l < m 2 1 we have L m L l m lβ 2α fo α 1/3, 1/2 ad β 1 α, 2α. We ex check codiio C2. The followig coollay follows diecly fom 3.2 ad he defiiio of R.

15 Coollay 3.1. Fo i j, R l, m = ε-strong SIMULATION FOR SDES 15 h=1 L h 2 h m L h 2 h l. The we have he followig bouds fo A 2α ad Γ R based o he N 2. Lemma 3.5. defie The ad Γ L := max Suppose ha N 2 is chose accodig o Lemma 3.4. We { 1, max 1 d,i j max Γ R max <N 2 0 l<m α β 1 2 2α β Γ L { L m L l m l β 2α 2 1 α 2 A 2α Γ R 1 2 2α Z 2 α 1 2 α. }}. I wha follows, we shall explai how o simulae he adom umbes N 1 ad N 2 joily wih he wavele cosucio usig he ecod beake saegy ioduced i he pevious secio. Specifically, we fis fid all he ecod beakes i sequece ad he simulae he es of he pocess codiioal o he ifomaio obaied by kowig he locaio of all he fiiely may ecod beakes. The challege lies i he fac ha he pobabiliy of success of he Beoulli ials, which coespods o he yes/o quesios defied i ems of he ecod beakes, is o kow o us. We sa wih he pocedue o simulae N 1 i Secio 4, which is buil o a sadwichig idea. The codiioal o he value of N 1, we ioduce he pocedue o simulaio N 2 i Secio 5 based o a accepace-ejecio scheme, whee he poposal disibuio is buil o some expoeial ilig. 4. Toleace-Efoced Simulaio of Bouds o α-hölde Noms. We fis oe ha N 1 is o a soppig ime wih espec o he filaio geeaed by {Wi,k : 0 k 2 1, 1 i d : 1}. Fo he simpliciy of demosaio, we shall focus o he 1-dimesioal case. Fo d > 1, we apply he same pocedue fo each Bowia moio. I wha follows i his subsecio, we shall dop he subscipio i. We call a pai, k a ecod-boke-pai if Wk > 4 1. All pais boh ecod-boke-pais ad o ecod-boke-pais ca be oally odeed lexicogaphically, i.e. usig 2 1 k. The disibuio of subseque

16 16 J BLANCHET, X. CHEN AND J. DONG pais a which ecods ae boke is o difficul o compue because of he idepedece of Wk s. So, usig a sequeial accepace / ejecio pocedue we ca simulae all of he ecod-boke-pais. Codiioal o hese pais, he disibuio of he {Wk : 0 k 2 1 : 1} is saighfowad o descibe. Pecisely, if k, is a ecod-boke-pai, he Wk is codiioed o Wk > 4 1, ad hus is saighfowad o simulae. Similaly, if k, is o a ecod-boke-pai, he Wk is codiioed o Wk 4 1, ad also ca be easily simulaed. The simulaio of he ecod-boke-pais has bee sudied i [5]. The idea is o fid all he ecod beakes sequeially uil hee ae o moe ecod beakes. The challege lies i samplig he Beoulli adom vaiable coespodig o he quesio whehe hee will be o moe ecod beakes i he fuue. We ake samplig he fis beake as a example. The pobabiliy ha hee ae o moe ecod beakes beyod 1 is p1 := 2 1 =1 k=0 P W k 4 1, which ivolves evaluaig he poduc of ifiie may ems ad we do o kow is value i closed fom. Howeve, we ca fid a sequece of uppe boud ad lowe bouds of p1, which ae defied as U h 1 = h P =1 whee = 2 1 k ad W k 4 log 2 1 D h 1 = 1 h 1 42 /2 U h especively. The uppe ad lowe bouds saisfy ha D h 1 < D h1 1 < p1 < U h 1 < U h1 1 ad lim h D h 1 = p1 = lim h U h 1. We also have ha U h 1 U h1 1 is equal o he pobabiliy ha he fis ecod beake happes a posiio h. Thus we ca check whehe he Beoulli ial is a success o failue by updaig he uppe ad lowe bouds sequeially. Moeove, if he Beoulli ial is a failue hee ae moe ecod beakes beyod he cue idex, we also kow he idex of he ex ecod beake. We syhesize algoihm 2W i [5] fo ou puposes ex. Algoihm I: Simulae N 1 joily wih he ecod-boke-pais Oupu: A veco S which gives all he idices l = 2 k such ha, k is a boke-ecod-pai.

17 ε-strong SIMULATION FOR SDES 17 Sep 0: Iiialize R = 0 ad S o be a empy aay. Sep 1: Se U = 1, D = 0. Simulae V Uifom0, 1. Sep 2: While U > V > D, se R R 1 ad U P Wk 4 log 2 R 1 U ad D 1 R 1 42 /2 U. Sep 3: If V U, add R o he ed of S, i.e. S = [S, R], ad eu o Sep 1. Sep 4: If V D, N 1 = log 2 maxs. Sep 5: Oupu S. Ed of Algoihm I Remak: Obseve ha fo evey l = 2 1 k S, we ca geeae Wk codiioal o he eve { Wk > 4 1}; fo ohe l i.e. l / S, geeae Wk give { W k 4 1}. Noe ha a he ed of Algoihm 1 ad afe simulaig Wk fo N 1 oe ca compue N 1 K α = 2 2α1 2 1/2 α V 2 2α3 C 2 1/2N 111/2 α 1 2 1/21/2 α, =0 whee C = max N1 1{2 /21/2 α 1}. 5. Toleace-Efoced Simulaio fo Bouds o 2α-Hölde Noms of Lévy Aeas. The simulaio of N 2, is a lo moe complicaed, compaig o N 1, because hee is fai amou of depedece o he sucue of he L k s as oe vaies. Le us povide a geeal idea of ou simulaio pocedue i ode o se he sage fo he defiiios ad esimaes ha mus be sudied fis. Defie F =σ { Wi,k m : 1 k 2m 1 : m }. ad fo he codiioal expecaio give F we wie E [ ] := E[ F ]. Suppose we have simulaed {W i,k : 0 k 2 1, 1 i d : N} fo some N ad defie τ 1 N = if{ N 1 : L m L l > m l β 2α fo some 0 l < m 2 1 }. Because of Lemma 3.4 we have ha he eve {τ 1 N = } has posiive pobabiliy. I wha follows, we will explai how o simulae a Beoulli

18 18 J BLANCHET, X. CHEN AND J. DONG adom vaiable wih pobabiliy of success P τ 1 N = F N. If such Beoulli is a success, he we have ha N 2 = N ad we would have basically cocluded he difficul pa of he simulaio pocedue he es of he pocess ca be simulaed ude a seies of codiioig eves whose pobabiliy iceases o oe as gows. If he Beoulli is a failue i.e. is value is zeo, he we will fid τ 1 N ad simule all he ifomaio up o τ 1 N. We epea he above Beoulli ial wih updaed pobabiliy of success uil we obai a successful Beoulli ial. Now, pa of he poblem is ha Algoihm I has bee aleady execued, so N N 1, i ohe wods, while he adom vaiables {Wi,k : 1 k 2 1 } ae idepede fo fixed > N, hey ae o loge ideically disibued. Isead, Wi,k is sadad Gaussia codiioal o he eve { Wi,k 4 1}. Neveheless, if is lage eough, all of he eves { W i,k 4 1} will occu wih high pobabiliy. So, we shall fis poceed o explai how o simulae a Beoulli adom vaiable wih pobabiliy of success P τ 1 = F assumig is a deemiisic umbe. The pocedue acually will poduce boh he oucome of he Beoulli ial ad if such oucome is a failue i.e. τ 1 <, also he sample pah {W m i,k : 1 k 2m 1, < m τ 1 }. Ou pocedue is based o accepace / ejecio usig a caefully chose poposal disibuio fo he Wi,k s, based o expoeial ilig of L k s, codiioal o F. To his ed, we will eed o compue he codiioal mome geeaig fucio codiioal o F of L k s ad he family of disibuios iduced ove Wi,k s ad W j,k s ude he expoeially ilig. This will be doe i Secio 5.1. The, we eed some lage deviaio esimaes o boud he likelihood aio of a ceai adomizaio pocedue. These bouds ae developed i Secio 5.2. These ae he mai elemes eeded o simulae N 2 ogehe wih he wavele cosucio. We ioduce he acual adomizaio pocedue ad he deails of he algoihm i Secio Codiioal Mome Geeaig Fucios ad Associaed Expoeial Tilig. I his secio we chaaceize he disibuio of {W m i,k : 1 k 2 m 1 : m 1} ude he expoeial ilig codiioal o F. I ode o educe he legh of some of he equaios ha follow, we wie, fo each {1, 2,..., 2 }, 5.1 Λ i := Z i Z i 1. The we have he followig ecusive elaios fo Λ i s.

19 ε-strong SIMULATION FOR SDES 19 Lemma 5.1. Fo k = 1, 2,..., 2 1 Λ i 2k 1 = 1 2 Λ 1 i 1 k 1/2 1 W i,k. Fom Lemma 5.1, we ca see ha Λ i 2k = 1 2 Λ 1 i 1 k 1/2 1 W i,k, F = σ { Z m k Zm k : 0 k < k 2 m 1, m }. Assume ha k < k, we will ieaively compue he codiioal mome geeaig fucio as { E [exp θ 0 L m k }] 5.2 L m k [ [ { = E E 1...E m 1 [exp θ 0 L m k }] ]] L m k.... Recall ha, fo 1 k 2 1, L k = k =1 We shall sa fom he expecaio of exp codiioal o F m 1. Λ i Coollay 5.1. Fo i j, E m 1 [exp θ 0 Λ m i m 2 1 Λ m j = 1 θ /2 m exp θ 1 Λj m 1 exp η 1 Λ m 1 j m 1 whee 2 1 Λ j 2. θ 0 Λ m i ] m 2 m 1 2 η1 Λ m 1 i θ 1 := θ 0 1 θ m1 1 /4, η1 := θ 2 0 Moeove, defie P m, m E m 1 [I = Wi, m W m i, A, W m j, B A, Wj, m B E m 1 [exp θ 0 Λ m i exp m 2 1 m 2 1 Λ m 1 i m 1 2, Λ m j m 1 m 2 1 θ m1 m /8. θ 0 Λ m i Λ m j m 2 1 m 2 ] Λ m j m 2 ],

20 20 J BLANCHET, X. CHEN AND J. DONG he ude P, ad give F m, m m 1, we have ha Wi, m, Wj, m follows a Gaussia disibuio wih covaiace maix Σ m m1 1 = 1 θ0 2 2 m1 1 θ 0 m1 θ 0 m1 1, ad mea veco µ m m = Σ m m θ 0 1/2 θ 0 1/2 m1 Λm 1 j m 1 m1 Λm 1 i m 1 /2 /2. So, fom Coollay 5.1 we coclude ha E m 1 [exp θ 0 k =k1 Λ m i = 1 θ0 2 2 k k/2 m1 exp 5.3 exp η 1 k =k1 Λ m 1 j m 2 1 θ 1 k Λ m j =k1 ] m 2 Λ m 1 j m 1 2 k η1 =k1 m 1 Λ m 1 i Λ m 1 i m 1 2. m 1 If m 2, we ca coiue akig he coespodig codiioal expecaio give F m 2. Due o he ecusive aue of 5.2 ad he liea ad quadaic ems ha aise i 5.3, i is coveie o coside m 1 =1 2 m 1 =1 θ 1 m 1 η 1 m 1 Λ m 1 j Λ m 1 j m 1 m 1 Λ m 1 i m 1 2 Λ m 1 j m 1 2, whee θ 1 m 1 = θ1 I {k 1,..., k }, η 1 m 1 = η1 I {k 1,..., k }. We also ioduce he followig oaios o simply he peseaio of ou ilig paamees. Due o he diffeece i he ecusive elaio fo Λ i

21 η l m l ε-strong SIMULATION FOR SDES 21 bewee odd ad eve s, we ecusively defie fo l = 2,..., m. 5.5 θ l m l = θ l 1 m l1 2 1 θ l 1 m l1 2, θ l m l = θ l 1 m l1 2 1 θ l 1 m l1 2, η l m l = η l 1 m l1 2 1 η l 1 m l1 2, = η l 1 η l 1, ad se ρ l h l m l m l η l = ηl h l m l m l1 2 1 m l2 θ l m l = 1 2 m l2 η l = 1 2 m l2 η l m l 4 4θ l θ l = θl m l 8 m l m l 4 h l 1 4 θl m l m l m l {θ l η l {θ l m l 2 gl m l m l m l 2 4η l ρ l m l η l η l m l1 2, m l2 m l m l m l 1 ρ l 2 m l }, m l 2 ρl m l m l }. 2, Fially, we decompose 5.4 io wo pas he coss em ad he quadaic em by defiig A m l = θ l m l1 Λ m l1 j m l1 2 1 Λ m l1 i m l1 2 1 θ l 1 2 m l1 Λ m l1 j m l1 2 Λ m l1 i m l1 2, B = η l 1 m l1 m l η l m l1 2 Λ m l1 j Λ m l1 j m l1 2 1 m l1 2 2 Λ m l1 j m l Λ m l1 j m l1 2 2,

22 22 J BLANCHET, X. CHEN AND J. DONG ad C m l = 1 2 m l1 η l The 5.4 ca be wie as 2 m 2 =1 A m 2 m l 1 1 ρ l B m 2, ad he followig esul is key i evaluaig 5.2. m l Coollay 5.2. Fo i j, l = 2, 3,..., m ad = 1, 2,..., 2 m l ] E m l [exp A m l B m l =C m l exp θ l m l Λ i m l Λ j m l exp η 2 2 l Λ i Λj. Moeove, defie P m l1, m l1 E m l [I = m l m l m l 2 1/2. Wi, m l1 A, Wj, m l1 B A, Wj, m l1 B exp A m l ] B m l ], E m l [exp A B W m l1 i, m l m l he ude P, ad give F m l1, m l1 m l, we have ha Wi, m l1, Wj, m l1 follows a Gaussia disibuio wih covaiace maix Σ m l1 1 = 1 ρ l m l1 2 m l 1 2 m l1 η l m l 1 g l m l g l m l 1 2 m l1 η l whee g l m l = m l2 θ l m l 1 2 m l2 η l m l 1 m l 2.

23 ε-strong SIMULATION FOR SDES 23 ad mea veco µ m m l1 = 1/2 m l1 Σ m l1 Λi m l Λ j m l m l1 η l m l 1 η l m l 1 2 Λ j 2 Λ i m l θ l m l m l θ l m l. Usig Coollay 5.2 we coclude ha 2 m l exp A E m l 2 m l = =1 C m l =1 exp m l 2 m l 1 =1 B A m l m l 1 B m l 1. Theefoe, combiig Coollay 5.1 ad epeaedly ieaig he pevious expessio we coclude ha [ ] E expθ 0 {L m k L m k} = 1 θ0 2 2 k k/2 m m 5.6 exp 2 l=2 2 m l =1 C θ m Λ i Λ j =1 m l 2 =1 { η m Λ i 2 Λ j 2} Codiioal Lage Deviaios Esimaes fo L k. We wish o esimae, fo 1 i, j d, i j, k > k ad k, k {0, 1,..., 2 m 1 }, P L m k L m k > k k β 2α m exp θ 0 k k β 2α m {E [expθ 0 {L m k L m k}] E [exp θ 0 {L m k L m k}]}. We boow some iuiio fom he poof of Lemma 3.4 ad selec 5.7 θ 0 m, k γ, k := θ 0 = k k 1/2. 2α m

24 24 J BLANCHET, X. CHEN AND J. DONG We will dop he depedece o m, k, k fo beviy. I addiio, we pick γ 1/4 ad α α, 1/2 so ha exp θ 0 k k β 2α m = exp γ k k β 1/2 2α α 2α 1 m [ ] Ou ex ask is o cool he E expθ 0 {L m k L m k}, which is he pupose of he followig esul, poved i he appedix o his secio. Lemma 5.2. Fo i j, suppose ha θ 0 is chose accodig o 5.7, ad is chose such ha 5.8 max 2 { Λ i, Λ j } α ad fo ε 0 0, 1/2 m 5.9 Λ i Λ j ε 0m l β 2α =l1 fo all 0 l < m 2 wih α α, 1/2, he E [expθ 0 {L m k L m k}] 4 exp ε 0 γk k β 1/2. Remak: I is vey impoa o oe ha due o Lemma { 3.2 we ca always coiue simulaig he Wi,k W s maybe codiioal o } i,k 4 1 i case > N 1 o make sue ha 5.8 holds fo some. Similaly, codiio 5.9 ca be simulaeously efoced wih 5.8 because of Lemma 3.4. Acually, Lemma 3.2 ad Lemma 3.4 idicae ha codiios 5.8 ad 5.9 will occu eveually fo all lage ha some adom heshold. Ou simulaio algoihms will ulimaely deec such heshold, bu Lemma 5.2 does o equie ha we kow ha heshold. As a cosequece of Lemma 5.2, usig Cheoff s boud, we obai he followig poposiio. Poposiio 5.1. Fo i j, if is chose such ha 5.8 ad 5.9 hold, he P L m k L m k > k k β 2α 8 exp 1 2 γ k k β 1/2 2α α 2α 1 m m.

25 ε-strong SIMULATION FOR SDES Joi Toleace-Efoced Simulaio fo α-hölde Noms ad Poof of Theoem Defie C m = { L m k L m k > k k β 2α m fo some 0 k < k < 2 m 1, 1 i, j d, i j}, ad pu τ 1 = if{m 1 : C m occus}. We wie C m fo he compleme of C m, so ha P τ 1 < = m=1 P C m m 1 l=1 C l. To faciliae he explaaio, we ex ioduce a few moe oaios. Le ω :m := {W l i,k : 0 k 2 1, 1 i d, < l m}. I addiio, defie v k, k m :=8 exp 1 2 γ k k β 1/2 2α α 2α 1 m ad I 0 k < k 2 m 1 I m 1 b m := v k, k m 0 k<k 2 m 1 q k, k m := v k, k m b m P,k,k,m ω :m = E [I ω :m exp E [exp We also deoe { ψ m, i, j, k, k := log E [exp θ 0 θ 0 {L m L m ] θ 0 {L m k L m k} ]. k L m k} }] k L m k Obseve ha b m = 8 exp 1 2 γ k k β 1/2 2α α 2α 1 m 0 k<k 2 m 1 2 2m3 exp 1 2 γ 2α α 2α 1 m.

26 26 J BLANCHET, X. CHEN AND J. DONG Thus, b m 0 as. The we ca selec ay pobabiliy mass fucio {gm : m 1}, e.g. gm = e 1 /m 1! fo m 1, by assumig ha is sufficiely lage, gm d 2 b m Now coside he followig pocedue, which we called Pocedue Aux, Aux fo auxilia, which is give fo pedagogical puposes, because as we shall see sholy i is o diecly applicable bu useful o udesad he aue of he mehod ha we shall ulimaely use. Pocedue Aux Ipu: We assume ha we have simulaed {Wi,k : 0 k < 2l : l }}. Oupu: A Beoulli F wih paamee P τ 1 <, ad if F = 1, also ω :τ1 = {Wi,k l : 1 k 2l 1, 1 i d, < l τ 1 } codiioal o he eve τ 1 <. Sep 1: Sample M accodig o g m. Sep 2: Give M = m sample I ad J I J uifomly ove he se {1, 2,..., d }.The, sample K, K fom q k, k m. Sep 3: Give M = m, I = i,j = j,k = k, ad K = k, simulae ω :m fom P,k,k,m o Coollay 5.2. Sep 4: Compue. Noe ha simulaio fom P,k,k,m ca be doe accodig Ξ m, i, j, k, k, ω :m = 1, gm d d 1 1 q k, k m exp θ 0 {L m k L m k} ψ m, i, j, k, k ad N m = I 1 d,i j 1 h<h 2 m 1 L m h L m h > h h β 2α Sep 5: Simulae U uifomly disibued o [0, 1] idepede of eveyhig else ad oupu { } L m F =I{U < I k L m k > k k β 2α m m 1 C l=1 l Ξ m, i, j, k, k, ω :m /N m}. m.

27 If F = 1, also oupu ω :m. Ed of Pocedue Aux We fis oice ha whe ε-strong SIMULATION FOR SDES 27 L m k L m k > k k β 2α m, gm d d 1 1 q k, k m exp θ 0 {L m k L m k} ψ m, i, j, k, k > 1. Thus Ξ m, i, j, k, k, ω :m < 1. Tha is o say he likelihood aio fucio is bouded ad he Beoulli adom vaiable F is well defied. We claim ha he oupu F is disibued as a Beoulli adom vaiable wih paamee P τ 1 <. Moeove, we claim ha if F = 1, he, ω :M is disibued accodig o P ω:τ1 τ 1 <. We fis veify he claim ha he oucome i Sep 5 follows a Beoulli wih paamee P τ 1 <. I ode o see his, le Q deoe he disibuio iduced by Pocedue Aux. Noe ha Q U < I { L M K L M K > K K β 2α Ξ M, I, J, K, K, ω :M /N m { L =E Q M [I K L M K > K K β 2α Ξ M, I, J, K, K, ω :M /N m] = E Q [I m=1 1 d 1 k<k 2 m 1 dp 1 ω :m N m ] = = dp,m,k,k E m=1 1 d 1 k<k 2 m 1 m=1 P C m m 1 l=1 C l =P τ 1 <. { L m { L I m M k L m M } } M 1 l=1 C l M 1 l=1 C l k > k k β 2α m k L m k > k k β 2α N m m } m 1 C l=1 l } m 1 C l=1 l

28 28 J BLANCHET, X. CHEN AND J. DONG Similaly, fo he secod claim, Q ω :M A U < I = = E ω Q :m A, m=1 C M M 1 l=1 dp I,J,K,K,m dp C l Ξ M, I, J, K, K, ω :M ω :m I P ω :m A, τ 1 = m /P τ 1 < m=1 =P ω:τ1 A τ 1 < C m M 1 l=1 The deficiecy of Pocedue Aux is ha i does o ecogize ha > N 1. Le us ow accou fo his fac ad oe ha codiioal o F N1 we have ha Wi,k s ae i.i.d. N0, 1 bu codiioal o { W i,k 4 1} fo all > N 1. Defie H m = { W h i,k 4 h 1 : 0 k 2 h 1, < h m}. I ode o simulae P N1 τ 1 N 1 < we modify sep 3 of Pocedue Aux. Specifically, we have Pocedue B Ipu: We assume ha we have simulaed {Wi,k l : 0 k < 2l : l }. So, he Wi,k m s ae i.i.d. N0, 1 bu codiioal o { W m i,k < 4 m 1} fo all m >. We also assume ha codiios 5.8 ad 5.9 hold i Lemma 5.2; oe he discussio followig Lemma 5.2 which oes ha his ca be assumed a he expese of simulaig addiioal Wi,k m s wih { W m i,k < 4 m 1} if m > N 1. Oupu: A Beoulli F wih paamee P τ 1 <, H, ad if F = 1, also ω :τ1 = {W l i,k : 1 k 2, 1 i d, < l τ 1 } codiioal o τ 1 < ad o H. Sep 1: Sample M accodig o g m. Sep 2: Give M = m sample I ad J I J uifomly ove he se {1, 2,..., d }.The, sample K, K fom q k, k m. Sep 3: Give M = m, I = i,j = j,k = k, ad K = k, simulae ω :m fom P,m,k,k. Noe ha simulaio fom P,m,k,k ca be doe accodig o Coollay 5.2. Check if Hm occus. If yes, coiue o Sep 4; ohewise, go back o Sep 1. C l /P τ 1 <

29 ε-strong SIMULATION FOR SDES 29 Sep 4: Compue Ξ m, i, j, k, k, ω :m = 1, gm d d 1 1 q k, k m exp θ 0 {L m k L m k} ψ m, i, j, k, k ad N m = I 1 d,i j 1 k<k 2 m 1 L m k L m k > k k β 2α Sep 5: Simulae U uifomly disibued o [0, 1] idepede of eveyhig else ad oupu { } I Hm L m k L m k > k k β 2α m M 1 l=1 C l P H m F = I{U < P H Ξ m, i, j, k, k, ω :m /N m} Noice ha P H m /P H = P Hm ad ca be compued i fiie seps. If F = 1, also oupu ω :m. Ed of Pocedue B Le Q deoe he disibuio iduced by Pocedue B. Followig he same aalysis as ha give fo Pocedue Aux, we ca veify ha { } I Hm L m k L m k > k k β 2α m M 1 l=1 C l P H m Q U < P H Ξ m, i, j, k, k, ω :m /N m = P τ 1 < H. Ad if he Beoulli ial is a success, he, ω :M is disibued accodig o P ω:τ1 τ 1 <, H. Fially, if τ 1 =, we may sill eed o simulae ω :m fo ay m 1, bu ow, codiioal o {τ 1 =, H }. Noe ha P ω :m A τ 1 =, H = P ω :m A, τ 1 =, H P τ 1 =, H = E Iω :m A,τ 1 > m, HmP m τ 1 m =, H m P τ 1 =, H. m.

30 30 J BLANCHET, X. CHEN AND J. DONG Thus we ca sample ω :m fom P ad accep he pah wih pobabiliy Iτ 1 > m, H mp m τ 1 m =, H m. This clealy ca be doe sice we ca easily simulae Beoulli s wih pobabiliy P m τm =, H m We summaize he algoihm as follows: = P m τ 1 m = H m P m H m. Algoihm II: Simulae N 1 ad N 2 joily wih Wi,k s fo 1 N 0, whee N 0 is chose such ha sup [0,1] ˆX N 0 X ε Ipu: The paamees equied o u Algoihm I, ad Pocedues A ad B. These ae he ilig paamees θ 0 s. Sep 1: Simulae N 1 joily wih Wi,k m s fo 0 m N 1 usig Algoihm I see he emak ha follows afe Algoihm I. Le = N 1. Sep 2: If ay of he codiios 5.8 ad 5.9 fom Lemma 5.2 ae o saisfied keep simulaig Wi,k m s fo m > uil he fis level m > fo which codiios 5.8 ad 5.9 ae saisfied. Redefie o be such fis level m. Sep 3: Ru Pocedue B ad obai as oupu F ad if F = 1 also obai ω :τ. Sep 4: If τ < i.e. F = 1 se τ ad go back o Sep 2. Ohewise, go o Sep 4. Sep 5: Calculae G accodig o Pocedue A ad solve fo N 0 such ha G 2α β N 0 < ε. Sep 6: If N 0 > sample ω :N0 fom P ad sample a Beoulli adom vaiable, I wih pobabiliy of success P N0 τn 0 =, H N 0. Sep 7: If I = 0, go back o Sep 6. Sep 8: Oupu ω 0:N0. Ed of Algoihm II We obai {W l i,k : 0 k < 2l, l N 0, 1 i d} fom Algoihm II. We have fom ecusios i Lemma 5.1 how o obai 5.10 {Z i l Z i l 1 : 1 2 l, 1 l N 0, 1 i d} ad he we ca compue { ˆX N 0 : D N0 } usig equaio 2.4. Remak: Obseve ha afe compleio of Algoihm II, oe ca acually coiue he simulaio of icemes i ode o obai a appoximaio

31 ε-strong SIMULATION FOR SDES 31 wih a eo ε < ε. I paicula, his is doe by epeaig Seps 4 o 8. Sa fom Sep 4 wih = N 0. The value of G has bee compued, i does o deped o ε. Howeve, oe eeds o ecompue N 0 := N 0 ε such ha < ε. The we ca impleme Seps 5 o 8 wihou chage. Oe obais a oupu ha, as befoe, ca be asfomed io 5.10 via he ecusios 5.1, yieldig { ˆX N 0ε : D N0 ε } wih a guaaeed eo smalle ha ε i uifom om wih pobabiliy 1. G 2α β N 0 6. Rough Diffeeial Equaios, Eo Aalysis, ad The Poof of Theoem 2.1. The aalysis i his secio follows closely he discussio fom [7] Secio 3 ad Secio 7; see also [8] Chape 10. We made some modificaios o accou fo he dif of he pocess ad also o be able o explicily calculae he cosa G. Le us sa wih he defiiio of a soluio o 1.1 usig he heoy of ough diffeeial equaios. We fis povide a defiiio of he soluio of 1.1 i a pahwise sese, followig [7]. Defiiio 6.1. X is a soluio of 1.1 o [0, 1] if X0 = x0 ad fo almos evey sample pah {Z j : j = 1, 2,..., d} i holds X i X i s µ i Xs s σ XsZ j Z j s d d d j=1 l=1 m=1 d j=1 l σ Xsσ l,m XsA m,j s, = o s fo i = 1, 2,..., d ad 0 s < 1, whee A saisfies 6.1 A, = A, s A s, Z i s Z i Z j Z j s fo 0 < s < 1. The pevious defiiio is moivaed by he followig Taylo-ype developme,

32 32 J BLANCHET, X. CHEN AND J. DONG X i h =X i X i d j=1 h h h µ i Xudu µ i Xudu d j=1 h σ XudZ j u σ X µxu σxzu Z dz j u X i µ i Xh σ XZ j h Z j d d d j=1 l=1 m=1 d j=1 l σ Xσ l,m X h Z m u Z m dz j u. The pevious Taylo developme suggess defiig A s, := s Z iu Z i sdz j u. Depedig o how oe iepes As,, e.g. via Iô o Saoovich iegals, oe obais a soluio X which is iepeed i he coespodig coex. I ode o obai he Iô iepeaio of he soluio o equaio 1.1 via defiiio 6.1 we shall iepe he iegals i he sese of Iô. I addiio, as we shall explai, some echical codiios i addiio o he sadad Lipschiz coiuiy ypically equied o obai a sog soluio mus be imposed i ode o efoce he exisece of a uique soluio o 6.1. Thee ae wo souces of eos whe usig ˆX i equaio 2.4 o appoximae X. Oe is he disceizaio o he dyadic gid, bu assumig ha A k, k1 is kow; his ype of aalysis is he oe ha is mos commo i he lieaue o ough pahs see [7]. The secod souce of eo aises due o he fac ha A k, k1 is o kow fo i j. Thus we divide he poof of Theoem 2.1 io wo seps wo poposiios, each dealig wih oe souce of eo. Simila o ˆX, we defie {X : D } by he followig ecusio:

33 give X 0 = X0, ε-strong SIMULATION FOR SDES 33 Xi k1 =X i k µ ix k σ X k Z j k1 Z j k 6.2 d d d j=1 l=1 m=1 d j=1 l σ X k σ l,mx k A m,j k, k1, ad fo [0, 1], we le X = X, whee i his coex = max{s D : s }. Poposiio 6.1. Ude he codiios of Theoem 2.1, we ca compue a cosa G 1 explicily i ems of M, Z α ad A 2α, such ha fo lage eough X X G 1 3α 1. The poof of Poposiio 6.1 will be give afe ioducig some defiiios ad key auxiliay esuls. We deoe Ii, := Xi Xi µ i X σ X Z j Z j ad Ji, := Ii, d d d j=1 l=1 m=1 d j=1 l σ X σ l,m X A m,j,. The followig lemmas ioduce he mai echical esuls fo he poof of Poposiio 6.1. Lemma 6.1. Ude he codiios of Theoem 2.1, hee exis cosas C 1, C 2 ad C 3 ha deped oly o M, Z α ad A 2α, such ha fo ay lage eough ad, D, X X C 1 α, I, C 2 2α, ad J, C 3 3α.

34 34 J BLANCHET, X. CHEN AND J. DONG Poof. Fo s,, s, D, we have he followig impoa ecusios: ad J i, I i, =I i, s I i s, µ i X s µ i X s σ X s σ X Z j Z j s d j=1 =Ji, s Ji s, µ i X s µ i X s d d [σ X s σ X l σ X Xl s X l j=1 l=1 d d l σ X Il, s l σ X µ i X s ]Z j Z j s l=1 6.3 d d d j=1 l=1 m=1 l=1 [ l σ X sσ l,m X s l σ X σ l,m X ] A m,j s, We ex divide he poof io wo pas. We fis pove ha hee exiss a small eough cosa δ > 0 ad hee lage eough cosas C 1 δ, C 2 δ ad C 3 δ, all idepede of, such ha fo < δ, X X C 1 δ α, I, C 2 δ 2α ad J, C 3 δ 3α. We pove i by iducio. Fis we have J, = 0 ad J, = 0. Suppose he esul hold fo all pais of 0, 0 D wih 0 0 <. We he pick s D as he lages poi bewee ad such ha s /2. The we also have s > /2 ad s < /2. Fo simpliciy of oaio, we deoe d = max{d, d }. As Xi Xi s =Ji s, µ i X s s σ X sz j Z j s d d d j=1 l=1 m=1 d j=1 l σ X sσ l,m X sa m,j s,,

35 ε-strong SIMULATION FOR SDES 35 we have X i X i s C 3 δ s 3α M s dm Z α s α d 3 M 2 A 2α s 2α C 3 δδ 2α Mδ 1 α dm Z α d 3 M 2 A 2α δ α s α C 1 δ s α fo C 1 δ C 3 δδ 2α Mδ 1 α dm Z α d 3 M 2 A 2α δ α. Ad as Ii s, = Ji s, we have d d d j=1 l=1 m=1 l σ X sσ l,m X sa m,j s,, I i s, C 3 δ s 3α d 3 M 2 A 2α s 2α C 3 δδ α d 3 M 2 A 2α s 2α C 2 δ s 2α fo C 2 δ C 3 δδ α d 3 M 2 A 2α. We ow aalyze he ecusio 6.3 em by em. Fis, σ X s σ X ad µ i X s µ i X MC 1 δ s α, d l σ X Xl s X l MC 1δ 2 s 2α, l=1 d l σ X Il, s dmc 2 δ s 2α, l=1 d l σ X µ i X s dm 2 s l=1 l σ X sσ l,m X s l σ X σ l,m X 2M 2 C 1 δ s α. The J i, J i, s J i s, MC 1 δ dmc 1 δ 2 Z α d 2 MC 2 δ Z α d 2 M 2 Z α 2 d 3 M 2 C 1 δ A α 3α

36 36 J BLANCHET, X. CHEN AND J. DONG Likewise, we have The fo J i s, J i s, s J i s, MC 1 δ dmc 1 δ 2 Z α d 2 MC 2 δ Z α d 2 M 2 Z α 2 d 3 M 2 C 1 δ A α s 3α = J i s, MC 1 δ dmc 1 δ 2 Z α d 2 MC 2 δ Z α d 2 M 2 Z α 2 d 3 M 2 C 1 δ A α s 3α. J i, J i, s J i s, 2MC 1 δ dmc 1 δ 2 Z α d 2 MC 2 δ Z α d 2 M 2 Z α 2 d 3 M 2 C 1 δ A α s 3α {2 1 3α C 3 δ 2MC 1 δ dmc 1 δ 2 Z α d 2 MC 2 δ Z α d 2 M 2 Z α 2 d 3 M 2 C 1 δ A α } s 3α C 3 δ s 3α, α C 3 δ 2MC 1 δ dmc 1 δ 2 Z α d 2 MC 2 δ Z α d 2 M 2 Z α 2 d 3 M 2 C 1 δ A α. Theefoe, if we delibeaely choose δ, C 1 δ, C 2 δ ad C 3 δ such ha C 1 δ C 3 δδ 2α Mδ 1 α dm Z α d 3 M 2 A 2α δ α C 2 δ C 3 δδ α d 3 M 2 A 2α 2 C 3 δ α MC 1δ dmc 1 δ 2 Z α d 2 MC 2 δ Z α 6.4 d 2 M 2 Z α 2 d 3 M 2 C 1 δ A α The we have fo < δ, X X C 1 δ α, I, C 2 δ 2α, J, C 3 δ 3α,

37 ε-strong SIMULATION FOR SDES 37 The exisece of δ, C 1 δ, C 2 δ ad C 3 δ, saisfyig he sysem of iequaliies 6.4, follows fom Lemma 2.1. We ow exed he aalysis o he case whe > δ. Fo lage eough < δ/2, if > δ, we ca always fid pois s i D ad = s 0 < s 1 < < s k = such ha max 1 i k s i s i 1 < δ ad mi 1 i k s i s i 1 δ/2. The X i X i k Xi s l Xi s l 1 kc 1 δ α 2 δ C 1δ α l=1 Le C 1 = 2 δ C 1δ ad we ca wie X X C 1 α. Nex, I i, k { Ii s l 1, s l µ i X s l µ i X s 0 s l s l 1 l=1 σ ii X s l σ ij X s 0 Z j s l1 Z j s l } d j=1 k[c 2 δ 2α MC 1 1α dmc 1 Z α 2α ] 2 δ C 2δ MC 1 dmc 1 Z α 2α By seig C 2 = 2 δ C 2δ MC 1 dmc 1 Z α, we have I, C 2 2α. Now followig he same iducio aalysis o Ji s, as we did i he case s < δ, we have J i, 2 2 3α C 3 3α If we choose C 3 = 2MC 1 dmc 2 1 Z α d 2 MC 2 Z α 2 d 3 M 2 C 1 A α 3α α MC 1 dmc 2 1 Z α d 2 MC 2 Z α 2 d 3 M 2 C 1 A α, he J, C 3 s 3α. Lemma 6.2. Le x0 ad x0 R d be wo diffee vecos. We deoe X ad X fo D as he -h dyadic appoximaio defied by 6.2 wih iiial value x0 ad x0 especively. Ude he codiios of

38 38 J BLANCHET, X. CHEN AND J. DONG Theoem 2.1, hee exiss a cosa B, idepede of, such ha fo D, X X X 0 X 0 B α X 0 X 0. Moeove, Poof. Le X X 1 B X 0 X 0. Y i,h = X i X i X h 0 X h 0 We defie 0/0 = 0. The followig he ecusio 6.2, we have Y i k1 =Yi k µ ix k µ i X k X 0 X 0 d j=1 6.5 d σ X k σ X k X 0 X 0 Z j k1 Z j k d d j=1 l=1 m=1 l σ X k σ l,mx k lσ X k σ l.m X k X 0 X 0 A m,j k, k1 The 6.2 ad 6.5 ogehe defie a ecusio o geeae X, X ad Y. Followig Lemma 6.1, hee exiss a cosa B ha depeds oly o M, Z α ad A 2α, such ha Thus, Y Y 0 B α. X X X 0 X 0 B α X 0 X 0, ad X X 1 B X 0 X 0. We ae ow eady o pove Poposiio 6.1.

39 ε-strong SIMULATION FOR SDES 39 Poof of Poposiio 6.1. Fom Lemma 6.1 we have X X C 1 α. By Azela-Ascoli Theoem, hee exis a subsequece of {X } ha coveges uifomly o some coiuous fucio X o [0, 1]. Moeove we have X X C 1 α ad X i X i µ i X σ XZ j Z j d d d j=1 l=1 m=1 d j=1 l σ Xσ l.m XA m,j, < C 2 3α Theefoe, he limi X is a soluio o he SDE. Le X,s ; Xs := X s X 0 = Xs. Specifically, we have X,0 ; X0 = X wih X 0 = X0, ad X, ; X = X. The we ca wie X m X m = m X, k m; X k X, k 1 m; X k 1 k=1 By Lemma 6.2, X, k m ; X k X, k 1 m ; X k 1 1B X k X, k 1 k ; X k 1. We also have X i k X, k 1 i k ; X k 1 d = X i k X i k 1 µ ix k 1 k k 1 σ X k 1 Z j k Z j k 1 d d d j=1 l=1 m=1 C 3 k k 1 3α Thus, X m X m j=1 l σ X k 1 σ l,mx k 1 A m,j k 1, k m X, k m; X k X, k 1 m; X k 1 k=1 m1 BC 3 3α 1 BC 3 3α 1. Nex we u o he aalysis of he eo iduced by appoximaig he Lévy aea.

40 40 J BLANCHET, X. CHEN AND J. DONG Poposiio 6.2. Ude he codiios of Theoem 2.1, we ca compue a cosa G 2 explicily i ems of M, Z α, A 2α ad Γ R, such ha fo lage eough whee β 1 α, 2α. ˆX X G 2 2α β, The poof of Poposiio 6.2 uses a simila echique as he poof of Poposiio 6.1 ad also elies o some auxiliay esuls. Le Ui s, := ˆX i X,s i ; ˆX s d d d l σ ˆX sσ l,m ˆX srm,js,. j=1 l=1 m=1 We fis pove he followig echical esul. Lemma 6.3. Ude he codiios of Theoem 2.1, hee exiss a cosa C 4, ha depeds oly o M, Z α, A 2α ad Γ R, such ha U, C 4 αβ 2α β Poof. Fo 0 < s < 1,, s, D, we have U i, =Ui, s Ui s, [ X,s i d d j=1 l=1 m=1 ; ˆX s X, i d Fom Lemma 6.2, X,s i ; ˆX ˆX i s X, s; ˆX ] l σ ˆX sσ l,m ˆX s l σ ˆX σ l,m ˆX Rm,js, ; ˆX s X, i ; ˆX B s α ˆX s X, s; ˆX i ˆX i s X, i s; ˆX Fom Lemma 6.1, l σ ˆX sσ l,m ˆX s l σ ˆX σ l,m ˆX Rm,js, 2M 2 C 1 s α Γ R s β 2α β 2M 2 C 1 Γ R αβ 2α β

41 ε-strong SIMULATION FOR SDES 41 Theefoe, U, U, s U s, B s α ˆX s X, s; ˆX 2 d 3 M 2 C 1 Γ R αβ 2α β U, s U s, B s α U, s d d d B s α max{ l σ ˆX σ l,m ˆX Rm,j, s } i j=1 l=1 m=1 2 d 3 M 2 C 1 Γ R αβ 2α β 1 B s α U, s U s, 6.6 B d 3 M 2 Γ R 2 d 3 M 2 C 1 Γ R αβ 2α β whee d = max{d, d }. Like he poof of Lemma 6.1, we divide he poof io wo pas. We fis pove ha hee exis a small eough cosa δ > 0 ad a lage eough cosa C 4 δ, boh idepede of, such ha fo < δ, U, C 4 δ αβ 2α β. Ad we pove i by iducio. Fis we have U = 0 k, k ad U = 0. Suppose he boud holds fo all pais 0, k, 0 D wih k1 0 0 <. We pick s D as he lages poi bewee ad such ha s 1/2. The we also have s > 1/2 ad s < 1/2. ad U, 1 B s α U, s U s, B d 3 M 2 Γ R 2 d 3 M 2 C 1 Γ R αβ 2α β U s, 1 B α U s, s U s, B d 3 M 2 Γ R 2 d 3 M 2 C 1 Γ R s αβ 2α β U s, B d 3 M 2 Γ R 2 d 3 M 2 C 1 Γ R αβ 2α β Theefoe, U, 1 Bδ α U, s U s, 2B d 3 M 2 Γ R 2 d 3 M 2 C 1 Γ R αβ 2α β 2 Bδα 2 αβ C 4 δ αβ 2α β 2B d 3 M 2 Γ R 2 d 3 M 2 C 1 Γ R αβ 2α β

Comparing Different Estimators for Parameters of Kumaraswamy Distribution

Comparing Different Estimators for Parameters of Kumaraswamy Distribution Compaig Diffee Esimaos fo Paamees of Kumaaswamy Disibuio ا.م.د نذير عباس ابراهيم الشمري جامعة النهرين/بغداد-العراق أ.م.د نشات جاسم محمد الجامعة التقنية الوسطى/بغداد- العراق Absac: This pape deals wih compaig

More information

The Central Limit Theorems for Sums of Powers of Function of Independent Random Variables

The Central Limit Theorems for Sums of Powers of Function of Independent Random Variables ScieceAsia 8 () : 55-6 The Ceal Limi Theoems fo Sums of Poes of Fucio of Idepede Radom Vaiables K Laipapo a ad K Neammaee b a Depame of Mahemaics Walailak Uivesiy Nakho Si Thammaa 86 Thailad b Depame of

More information

Supplementary Information

Supplementary Information Supplemeay Ifomaio No-ivasive, asie deemiaio of he coe empeaue of a hea-geeaig solid body Dea Ahoy, Daipaya Saka, Aku Jai * Mechaical ad Aeospace Egieeig Depame Uivesiy of Texas a Aligo, Aligo, TX, USA.

More information

Available online at J. Math. Comput. Sci. 2 (2012), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 2 (2012), No. 4, ISSN: Available olie a h://scik.og J. Mah. Comu. Sci. 2 (22), No. 4, 83-835 ISSN: 927-537 UNBIASED ESTIMATION IN BURR DISTRIBUTION YASHBIR SINGH * Deame of Saisics, School of Mahemaics, Saisics ad Comuaioal

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Spectrum of The Direct Sum of Operators. 1. Introduction

Spectrum of The Direct Sum of Operators. 1. Introduction Specu of The Diec Su of Opeaos by E.OTKUN ÇEVİK ad Z.I.ISMILOV Kaadeiz Techical Uivesiy, Faculy of Scieces, Depae of Maheaics 6080 Tabzo, TURKEY e-ail adess : zaeddi@yahoo.co bsac: I his wok, a coecio

More information

On a Z-Transformation Approach to a Continuous-Time Markov Process with Nonfixed Transition Rates

On a Z-Transformation Approach to a Continuous-Time Markov Process with Nonfixed Transition Rates Ge. Mah. Noes, Vol. 24, No. 2, Ocobe 24, pp. 85-96 ISSN 229-784; Copyigh ICSRS Publicaio, 24 www.i-css.og Available fee olie a hp://www.gema.i O a Z-Tasfomaio Appoach o a Coiuous-Time Maov Pocess wih Nofixed

More information

Relations on the Apostol Type (p, q)-frobenius-euler Polynomials and Generalizations of the Srivastava-Pintér Addition Theorems

Relations on the Apostol Type (p, q)-frobenius-euler Polynomials and Generalizations of the Srivastava-Pintér Addition Theorems Tish Joal of Aalysis ad Nmbe Theoy 27 Vol 5 No 4 26-3 Available olie a hp://pbssciepbcom/ja/5/4/2 Sciece ad Edcaio Pblishig DOI:269/ja-5-4-2 Relaios o he Aposol Type (p -Fobeis-Ele Polyomials ad Geealizaios

More information

6.2 Improving Our 3-D Graphics Pipeline

6.2 Improving Our 3-D Graphics Pipeline 6.2. IMPROVING OUR 3-D GRAPHICS PIPELINE 8 6.2 Impovig Ou 3-D Gaphics Pipelie We iish ou basic 3D gaphics pipelie wih he implemeaio o pespecive. beoe we do his, we eview homogeeous coodiaes. 6.2. Homogeeous

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND THEIR MODIFIED VERSIONS

GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND THEIR MODIFIED VERSIONS GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND THEIR MODIFIED VERSIONS HENDRA GUNAWAN Absac. Associaed o a fucio ρ :(, ) (, ), le T ρ be he opeao defied o a suiable fucio space by T ρ f(x) := f(y) dy, R

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Consider the time-varying system, (14.1)

Consider the time-varying system, (14.1) Leue 4 // Oulie Moivaio Equivale Defiiios fo Lyapuov Sabiliy Uifomly Sabiliy ad Uifomly Asympoial Sabiliy 4 Covese Lyapuov Theoem 5 Ivaiae- lie Theoem 6 Summay Moivaio Taig poblem i ool, Suppose ha x (

More information

Existence and Smoothness of Solution of Navier-Stokes Equation on R 3

Existence and Smoothness of Solution of Navier-Stokes Equation on R 3 Ieaioal Joual of Mode Noliea Theoy ad Applicaio, 5, 4, 7-6 Published Olie Jue 5 i SciRes. hp://www.scip.og/joual/ijma hp://dx.doi.og/.436/ijma.5.48 Exisece ad Smoohess of Soluio of Navie-Sokes Equaio o

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique MASSACHUSETTS ISTITUTE OF TECHOLOGY 6.265/5.070J Fall 203 Lecure 4 9/6/203 Applicaios of he large deviaio echique Coe.. Isurace problem 2. Queueig problem 3. Buffer overflow probabiliy Safey capial for

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

On imploding cylindrical and spherical shock waves in a perfect gas

On imploding cylindrical and spherical shock waves in a perfect gas J. Fluid Mech. (2006), vol. 560, pp. 103 122. c 2006 Cambidge Uivesiy Pess doi:10.1017/s0022112006000590 Pied i he Uied Kigdom 103 O implodig cylidical ad spheical shock waves i a pefec gas By N. F. PONCHAUT,

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES Available olie a h://sciog Egieeig Maheaics Lees 2 (23) No 56-66 ISSN 249-9337 ABSLUE INDEED SUMMABILIY FACR F AN INFINIE SERIES USING QUASI-F-WER INCREASING SEQUENCES SKAIKRAY * RKJAI 2 UKMISRA 3 NCSAH

More information

ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF FOURIER SERIES

ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF FOURIER SERIES M aheaical I equaliies & A pplicaios Volue 19, Nube 1 (216), 287 296 doi:1.7153/ia-19-21 ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF FOURIER SERIES W. ŁENSKI AND B. SZAL (Couicaed by

More information

ECE-314 Fall 2012 Review Questions

ECE-314 Fall 2012 Review Questions ECE-34 Fall 0 Review Quesios. A liear ime-ivaria sysem has he ipu-oupu characerisics show i he firs row of he diagram below. Deermie he oupu for he ipu show o he secod row of he diagram. Jusify your aswer.

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

Lecture 6: October 16, 2017

Lecture 6: October 16, 2017 Ifomatio ad Codig Theoy Autum 207 Lectue: Madhu Tulsiai Lectue 6: Octobe 6, 207 The Method of Types Fo this lectue, we will take U to be a fiite uivese U, ad use x (x, x 2,..., x to deote a sequece of

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

Transistor configurations: There are three main ways to place a FET/BJT in an architecture:

Transistor configurations: There are three main ways to place a FET/BJT in an architecture: F3 Mo 0. Amplifie Achiecues Whe a asiso is used i a amplifie, oscillao, file, seso, ec. i will also be a eed fo passive elemes like esisos, capacios ad coils o povide biasig so ha he asiso has he coec

More information

S, we call the base curve and the director curve. The straight lines

S, we call the base curve and the director curve. The straight lines Developable Ruled Sufaces wih Daboux Fame i iowsi -Space Sezai KIZILTUĞ, Ali ÇAKAK ahemaics Depame, Faculy of As ad Sciece, Ezica Uivesiy, Ezica, Tuey ahemaics Depame, Faculy of Sciece, Aau Uivesiy, Ezuum,

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler Fiite -idetities elated to well-ow theoems of Eule ad Gauss Joha Cigle Faultät fü Mathemati Uivesität Wie A-9 Wie, Nodbegstaße 5 email: oha.cigle@uivie.ac.at Abstact We give geealizatios of a fiite vesio

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

Outline. Review Homework Problem. Review Homework Problem II. Review Dimensionless Problem. Review Convection Problem

Outline. Review Homework Problem. Review Homework Problem II. Review Dimensionless Problem. Review Convection Problem adial diffsio eqaio Febay 4 9 Diffsio Eqaios i ylidical oodiaes ay aeo Mechaical Egieeig 5B Seia i Egieeig Aalysis Febay 4, 9 Olie eview las class Gadie ad covecio boday codiio Diffsio eqaio i adial coodiaes

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues Alied Maheaical Sciece Vol. 8 o. 5 747-75 The No-Tucaed Bul Aival Queue M x /M/ wih Reei Bali Sae-Deede ad a Addiioal Seve fo Loe Queue A. A. EL Shebiy aculy of Sciece Meofia Uiveiy Ey elhebiy@yahoo.co

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

Highly connected coloured subgraphs via the Regularity Lemma

Highly connected coloured subgraphs via the Regularity Lemma Highly coeced coloued subgaphs via he Regulaiy Lemma Hey Liu 1 Depame of Mahemaics, Uivesiy College Lodo, Gowe See, Lodo WC1E 6BT, Uied Kigdom Yuy Peso 2 Isiu fü Ifomaik, Humbold-Uivesiä zu Beli, Ue de

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

PRICING AMERICAN PUT OPTION WITH DIVIDENDS ON VARIATIONAL INEQUALITY

PRICING AMERICAN PUT OPTION WITH DIVIDENDS ON VARIATIONAL INEQUALITY Joual of Mahemaical cieces: Aaces a Applicaios olume 37 06 Pages 9-36 Aailable a hp://scieificaacescoi DOI: hp://oiog/0864/msaa_700609 PRICIG AMERICA PUT OPTIO ITH DIIDED O ARIATIOAL IEQUALITY XIAOFAG

More information

INF 5460 Electronic noise Estimates and countermeasures. Lecture 13 (Mot 10) Amplifier Architectures

INF 5460 Electronic noise Estimates and countermeasures. Lecture 13 (Mot 10) Amplifier Architectures NF 5460 lecoic oise simaes ad couemeasues Lecue 3 (Mo 0) Amplifie Achiecues Whe a asiso is used i a amplifie, oscillao, file, seso, ec. i will also be a eed fo passive elemes like esisos, capacios ad coils

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Fresnel Dragging Explained

Fresnel Dragging Explained Fresel Draggig Explaied 07/05/008 Decla Traill Decla@espace.e.au The Fresel Draggig Coefficie required o explai he resul of he Fizeau experime ca be easily explaied by usig he priciples of Eergy Field

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

Statistical Optics and Free Electron Lasers

Statistical Optics and Free Electron Lasers Saisical Opics ad Fee leco Lases ialuca eloi uopea XFL Los Ageles UCLA Jauay 5 h 07 Saisical Opics ad Fee leco Lases Theoy ialuca eloi UCLA Los Ageles Jauay 5 h 07 is difficul if o impossible o coceive

More information

ON GENERALIZED FRACTIONAL INTEGRAL OPERATORS. ( ρ( x y ) T ρ f(x) := f(y) R x y n dy, R x y n ρ( y )(1 χ )

ON GENERALIZED FRACTIONAL INTEGRAL OPERATORS. ( ρ( x y ) T ρ f(x) := f(y) R x y n dy, R x y n ρ( y )(1 χ ) Scieiae Mahemaicae Japoicae Olie, Vol., 24), 37 38 37 ON GENERALIZED FRACTIONAL INTEGRAL OPERATORS ERIDANI, HENDRA GUNAWAN 2 AND EIICHI NAKAI 3 Received Augus 29, 23; evised Apil 7, 24 Absac. We pove he

More information

Generalized Fibonacci-Type Sequence and its Properties

Generalized Fibonacci-Type Sequence and its Properties Geelized Fibocci-Type Sequece d is Popeies Ompsh Sihwl shw Vys Devshi Tuoil Keshv Kuj Mdsu (MP Idi Resech Schol Fculy of Sciece Pcific Acdemy of Highe Educio d Resech Uivesiy Udipu (Rj Absc: The Fibocci

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

LESSON 15: COMPOUND INTEREST

LESSON 15: COMPOUND INTEREST High School: Expoeial Fuctios LESSON 15: COMPOUND INTEREST 1. You have see this fomula fo compoud ieest. Paamete P is the picipal amou (the moey you stat with). Paamete is the ieest ate pe yea expessed

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

Redes de Computadores

Redes de Computadores Redes de Compuadoes Deay Modes i Compue Newoks Maue P. Ricado Facudade de Egehaia da Uivesidade do Poo » Wha ae he commo muipexig saegies?» Wha is a Poisso pocess?» Wha is he Lie heoem?» Wha is a queue?»

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES The Aals of Probabiliy 996, Vol, No 3, 3077 GAUSSIAN CAOS AND SAMPLE PAT PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES BY MICAEL B MARCUS AND JAY ROSEN Ciy College of CUNY ad College

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

Capítulo. of Particles: Energy and Momentum Methods

Capítulo. of Particles: Energy and Momentum Methods Capíulo 5 Kieics of Paicles: Eegy ad Momeum Mehods Mecáica II Coes Ioducio Wok of a Foce Piciple of Wok & Eegy pplicaios of he Piciple of Wok & Eegy Powe ad Efficiecy Sample Poblem 3. Sample Poblem 3.

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

Variance and Covariance Processes

Variance and Covariance Processes Vaiance and Covaiance Pocesses Pakash Balachandan Depamen of Mahemaics Duke Univesiy May 26, 2008 These noes ae based on Due s Sochasic Calculus, Revuz and Yo s Coninuous Maingales and Bownian Moion, Kaazas

More information

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists CSE 41 Algorihms ad Daa Srucures 10/14/015 Skip Liss This hadou gives he skip lis mehods ha we discussed i class. A skip lis is a ordered, doublyliked lis wih some exra poiers ha allow us o jump over muliple

More information

CSE 202: Design and Analysis of Algorithms Lecture 16

CSE 202: Design and Analysis of Algorithms Lecture 16 CSE 202: Desig ad Aalysis of Algorihms Lecure 16 Isrucor: Kamalia Chaudhuri Iequaliy 1: Marov s Iequaliy Pr(X=x) Pr(X >= a) 0 x a If X is a radom variable which aes o-egaive values, ad a > 0, he Pr[X a]

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n!

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n! 0 Combiatoial Aalysis Copyight by Deiz Kalı 4 Combiatios Questio 4 What is the diffeece betwee the followig questio i How may 3-lette wods ca you wite usig the lettes A, B, C, D, E ii How may 3-elemet

More information

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of Oe of he commo descipios of cuilie moio uses ph ibles, which e mesuemes mde log he ge d oml o he ph of he picles. d e wo ohogol xes cosideed sepely fo eey is of moio. These coodies poide ul descipio fo

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 7, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( xyz,, ) = 0, mulivariable Taylor liear expasio aroud f( xyz,, ) f( xyz,, ) + f( xyz,, )( x

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( x, y, z ) = 0, mulivariable Taylor liear expasio aroud f( x, y, z) f( x, y, z) + f ( x, y,

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi Wold Alied cieces Joal (8): 898-95 IN 88-495 IDOI Pblicaios = h x g x x = x N i W whee is a eal aamee is a boded domai wih smooh boday i R N 3 ad< < INTRODUCTION Whee s ha is s = I his ae we ove he exisece

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models Oulie Parameer esimaio for discree idde Markov models Juko Murakami () ad Tomas Taylor (2). Vicoria Uiversiy of Welligo 2. Arizoa Sae Uiversiy Descripio of simple idde Markov models Maximum likeliood esimae

More information

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to Compaiso Fuctios I this lesso, we study stability popeties of the oautoomous system = f t, x The difficulty is that ay solutio of this system statig at x( t ) depeds o both t ad t = x Thee ae thee special

More information

Economics 8723 Macroeconomic Theory Problem Set 2 Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 2 Professor Sanjay Chugh Spring 2017 Deparme of Ecoomics The Ohio Sae Uiversiy Ecoomics 8723 Macroecoomic Theory Problem Se 2 Professor Sajay Chugh Sprig 207 Labor Icome Taxes, Nash-Bargaied Wages, ad Proporioally-Bargaied Wages. I a ecoomy

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

Reinforcement learning

Reinforcement learning Lecue 3 Reinfocemen leaning Milos Hauskech milos@cs.pi.edu 539 Senno Squae Reinfocemen leaning We wan o lean he conol policy: : X A We see examples of x (bu oupus a ae no given) Insead of a we ge a feedback

More information