Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Size: px
Start display at page:

Download "Mathematical Statistics. 1 Introduction to the materials to be covered in this course"

Transcription

1 Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig o A (eve). 3. Exreme value heory A) e I(A) X i iid N(, ) wih W = max i X i We will prove W log C a.s. P (W C + x) F (x) x 4. Mulivariae Normal Disribuio X. X k N(µ, Σ) 5. Expoeial Family Ee it X = exp[i T µ 2 T Σ] s p θ (x) = exp[ η i (θ)t i (x) B(θ)]h(x) i= 6. Sufficiecy & Facorizaio Thm p θ, θ Ω, T (x) is a saisic. If P (X A T = ) doe o deped o θ, he we say T is a sufficie saisic. If p θ (x) = g θ (T (x))h(x), he T is sufficie. 7. Rao-Blackwell Theorem Ubiasedess, uiqueess, Basu s hoerem, compleeess ad MVUE (i.e. miimum variace ubiased esimaors).

2 8. If ime permis, we will sudy some of he followig: Weak covergece of probabiliy measures. i.e. µ wih =, 2, 3, are measures, µ µ Empirical Processes Le X i ; i be iid radom variables wih disribuio N(, ). The i= δ x i F (x) where δ xi = { x A o.w. sup A A So δ xi (A) µ(a) i= If A is VC class, he garaeed o go o. X X Radom Marices.. X X If X ij s are radom, wha s he disribuio of he eigevalues? How abou as? 2 Probabiliy 2. Probabiliy measure ad probabiliy spaces 9. Ω is a se.. If F is a se of subses of Ω. (i) Ω F (ii) A c F if A F (iii) If A F, A 2 F, he i= A i F The F is called a σ-algebra or σ-field.. If F is a σ-algebra, he (i) φ F (ii) If A, A 2, are i F, he i= A i F 2

3 (iii) If B, B 2,, B are i F he i= A i F, i= A i F. 2. Eg. Ω =, 2,. F =all subses of Ω. The F is σ-algebra. I is geeraed by he se F =fiie subse of Ω. i.e. F is he smalles σ-algebra coaiig F. 3. Eg. Ω = R. F = (a, b), < a < b <. The smalles σ-algebra coaiig F, deoed by B(R ), is called he Borel σ-algebra of R. 4. For ay F F, assig a umber o F, call i P (F ) ad saisfies he followig properies (i) P (Ω = ) (ii) P (A c ) = P (A) for ay A F (iii) P ( i= A i) = i= P (A i) provided A is are disjoi, or muually exclusive, i.e. A i Aj = φ for ay i j. If (i),(ii) ad (iii) are rue, he P : F [, ] is called probabiliy. Righ ow, (Ω, F, P ) is a riple which is called a probabiliy space. 5. Eg. Ω =, 2,, F ={all subses of Ω}. Defie P (F ) = i F 2 i for F F. The P is a probabiliy. 6. Eg. Ω = [, ], B = σ algebra geeraed by {9a, b], [a, b), < a < b }. Oe ca verify ha B = [, ] B(R ). P (B) = he Lebesque measure of B for ay B B.(The r.v. geeraes his P is uiform.), defies a probabiliy over ([, ], B) 7. If X : Ω R, i.e. X(ω) is a real umber for ay ω Ω, saisifies ha X (B) = {w Ω, X(ω) B} F for ay B B(R ) he we say X is a radom variable. 8. Eg. For ay F F, defie F (ω) = { if ω F o.w. of F is a radom variable.. The F, he idicaor fucio 9. (Ω, F, P ) ad X is a r.v. Defie µ(b) = P (X B) = P (ω Ω; X(ω) B) for B B(Re ). Noe ha µ is a probabiliy o (R, B(R )), call µ he disribuio of X. 2. Verify: X is a r.v. iff {X x} F for ay x R. (HW) 3

4 2. Def. If r.v. X & Y geerae he same disribuio, he we say X & Y are ideically disribued, deoed by X d = Y, or L(X ) = L(Y) (law). 22. Eg. X U[, ], he X d = X. Acually, P ( X B) = P (X B) =Leb measure of (-B)=Leb measure of B. Problem. Le X be a radom variable ad p is a posiive umber such ha P ( X x) /x p for ay x >. Show ha E( X α ) p/(p α) for ay < α < p. Sep. 7, Wedesday, 23. Le X be a radom variable, he P ( X /r ) E X r P ( X > /r ), where r >. = = 2. I geeral, if g(x), X is a sricly icreasig coiuous fucio, le a = g(), =,, 2,..., he P (X a ) Eg (X) P (X > a ). = = Noice ha he firs saeme is jus a geeral case of he secod case, so we are goig o prove he secod oe. Proof: Le Φ(X) = g (X) ad Y = j j Φ(X)<j+, Z = (j + ) (j<φ(x) j+). j= j= Y j= = Φ(X) Φ(X) (j Φ(X)<j+) j= (j Φ(X)<j+) = Φ(X) ( Φ(X)) Φ(X) Z Φ(X) j= = Φ(X) Φ(X)> = Φ(X) (j<φ(x) j+) 4

5 Firs, P (X a ) = = = = = P (Φ(X) ) = = j= j= = P (j Φ(X) < j + ) j P (j Φ(X) < j + ) jp (j Φ(X) < j + ) j= = EY Similarly, = P (X > a ) = EZ. 3. E X p = p P ( X > ) p d = p P ( X ) p d, forp >. Proof: Noice ha X p = p = p = p Take expecaio o boh sides, we have: X o p d E X p = pe( usig Fubii s Theorem, = p p (< X ) d p ( X ) d X o p d) P ( X > ) p d 4. Cheroff s boud (simple example of large deviaios.) Le X, X 2,..., X be iid r.v. 5

6 wih mea µ. S = S i=, a > µ. The we like o sudy P ( P ( S a) P (S a), for all > = P (e S e a ) Thus, > a). e a Ee S, by Markov s Iequaliy = e a (Ee x ) = e (a logeex ) P ( S a) If (>)e (a logeex ) = e Sup (>)(a logm X ()) le M X () = Ee X, Thus, P ( S a) e I(a), where I(a) = Sup (>) (a logm X ()). Compare o Chevychev s iequaliy: 9/22 Cheroff s boud P ( S > a) P ( S µ a µ) V ar(x ) (a µ) 2 i.i.d Le X, X, X 2,..., X r.v s wih M() = Ee X <, <, R +, S = X i. The P ( S a) e A a > µ = EX Where P ( S b) e B b Defie: I(x) = sup R {x log M()}, he ()I(x) o [µ, + ] ad o(, µ) (2)I( ) is covex (3)I(x) = sup {x log M()} if x µ I(x) = sup {x log M()} if x µ < µ = EX A = I(a) = sup{a log M()} B = I(b) = sup{b log M()} 6

7 (4)I(x) = x = µ Proof: (4)Assume I(x ) =, log Ee Le, x lim X log M() x µ as, ad x µ So we ge x = µ. (3) x log M() > Lopiale = lim Ee X X Ee x M() = Ee X e µ Similarly, x log M() <, so x log M() (x µ) I(x) = sup{x log M()} If x > µ ad <, he x log M() < Bu I(x), so I(x) = sup {x log M()} Cheroff s boud: Geeral case Proof: P ( S A) 2e I(A) closed se A, where I(A) = if x A I(x) a, b s. b µ a, a A, b A ad A (, b] [a, + ) P ( S S A) P ( a) + P ( S b) e I(a) + e I(b) 2exp{ mi (I(a), I(b))} sup allsuch(a,b)pairs mi{i(a), I(b)} = if x A I(x) Comme: ()Lower boud: (2) lim if Wha s large deviaio? log P (S A) if I(x) A ope x A P ( S a) C e I(a) as where a µ for some C µ are probabiliy measures, if a fucio I(x) saisfies ()I(x) (2){x : I(x) l} is b.d.d. ad closed se l 7

8 (3) lim sup log µ (A) if x A I(x) A closed lim if log µ (B) if x B I(x) B ope The we say {µ } saisfies Large Deviaio Priciple (LDP) wih rae fucio I(x). Noe of Sa8, 9/24/Fall 23 Characerisic Fucio: X is a radom variable, he he characerisic fucio of X is ϕ X () = Ee ix = E(cos(x) + i si(x) where is a real umber, i =, e is = cos(s) + i si(s). Example. X Ber(p), P (X = ) = p, P (X = ) = q = p. ϕ X () = Ee ix = q + pe i Example 2. X Bi(, p). There are wo mehods o calculae he characerisic fucio. Mehod : P (X = k) = ( k) p k q k, so ϕ X () = Ee ix = ( e ik k = k= k= = (q + pe i ) ) p k q k ( ) (pe i ) k q k k Mehod 2: X = X + + X, X i s are i.i.d Ber(p), he Example 3. X N(µ, σ 2 ), he ϕ X () = Ee ix = E(e ix e ix2 e ix ) = Ee ix Ee ix2 Ee ix = (Ee ix ) = (q + pe i ) σ2 (iµ ϕ X () = e 2 2), R 8

9 Example 4. X Uif[, ], he ϕ X () = 2 Levy s Iversio Formular e ix dx = 2i (ei e i ) = (cos + i si (cos i si )) 2i = si Theorem: X is a radom variable wih characerisic fucio ϕ(). The, for ay a < b, Proof: Le Firs, [ c lim c + 2π e ia e ib i ] P (X = a) + P (X = b) ϕ()d = P (a < X < b) + 2 I(c) = e ia e ib 2π i = ( 2π E i = 2π E ( ϕ()d e ia e ib ) e ix d ) e i(x a) e i(x b) d i Similarly, The, e i(x a) i d = i = i = 2 = 2 = 2 [cos((x a)) + i si((x a))]d i si((x a)) d si((x a)) d si((x a)) d(x a) (x a) (x a) e i(x b) i I(c) = π E [ (x a) si d (x b) d = 2 si d si c(x b) d ] si d 9

10 (x b) si Le J c (x) = d c(x a) (i) Suppose x > a ad x < b, he (ii) Suppose x > b, he J c (x) si x x dx = π J c (x) as c + (iii) Suppose x < a, he (iv) Suppose x = a, he (v) Suppose x = b, he Le s summarize, J c (x) as c + J c (x) J c (x) si x x dx = π 2 si x x dx = π 2 Sice si x x Theorem: If lim J c(x) = π(a < x < b) + π ((x = a) + (x = b)) c 2 dx = π, we have sup J c (x) <. By domia covergece heorem, c lim I(c) = c π lim EJ c(x) = P (a < x < b) + c ϕ() d <, he he disribuio fucio of X has a bouded probabiliy desiy fucio give by. Levy s Iversio Formula P (x = a) + P (x = b) 2 f(y) = 2π e iy ϕ()d Friday Suppose X has characerisic fucio φ(), he lim [ c 2π e ia e ib i φ()d] = P (a < X < b) + P (X = a) + P (X = b) 2 Give φ(), how do we ge disribuio of X? Noe: we ca o recover he radom variable X because differe radom variables could have he same disribuio. (e.g. X U[, ], he X U[, ]).

11 2. Discussio Give φ(), we recover F (x) = P (X < x). From he iversio formula, I kow ha P (a < X < b) for a ad b such ha P (X = a) =, P (X = b) =. Noe: D = a : P (X = a) is couable, i.e. discoious pois are couable. So I kow he value of F (b) F (a) for a, b R D. Le a R D, ad a, he I ge F (b) for ay b R D. Now for ay x D, choose b x, defie So I obai F (x) for ay x R 3. Proposiio F (x) = lim b x F (b ) If cdf F (x) ad G(x) are ideical o H, where he closure of H is R, he F (x) G(x), x R. Proof: x H, choose x H ad x x. Sice F (x ) = G(x ),. Now le, we he have F (x ) = G(x ), because F (x) ad G(x) are righ-coiuous. 4. Theroem If d <, he X does have ay discoiuous pois ad he desiy of X is give by f(x) = e ix φ()d 2π Also, f(x) is bouded. Noe: desiy of f(x) ca be ubouded. For example, f(x) = { x < 2 x < x < 5. Proof: Noe: e ia e ib i = b a e ix dx b a e ix dx = b a

12 Claim: No discoiuous pois. I fac, by he iversio formula, P (X = a) + P (X = b) 2 P (X = a) + P (X = b) + P (a < X < b) 2 c e ia e ib = lim φ()d c 2π i (b a) lim φ() d 2π c (b a) φ() d If P (X = a) >, he pick b = a + ɛ, ɛ > ad ɛ, ad b is a coiuous poi of F (x). Le, he P (X = a) P (X = a) = 6. So far he iversio formula becomes Now, Sice e ia e ib i b a Therorem, 2π f(a) = F (a) e ia e ib φ()d = F (b) F (a) i F (b) F (a) = lim b a b a = 2π lim e ia e ib φ()d b a i b a is bouded ad φ() d <, so by Domiaed Covergece F (a) = 2π = 2π i ( e ia ) φ()d e ia φ()d 2

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is Exercise 7 / page 356 Noe ha X i are ii from Beroulli(θ where 0 θ a Meho of momes: Sice here is oly oe parameer o be esimae we ee oly oe equaio where we equae he rs sample mome wih he rs populaio mome,

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique MASSACHUSETTS ISTITUTE OF TECHOLOGY 6.265/5.070J Fall 203 Lecure 4 9/6/203 Applicaios of he large deviaio echique Coe.. Isurace problem 2. Queueig problem 3. Buffer overflow probabiliy Safey capial for

More information

Inference of the Second Order Autoregressive. Model with Unit Roots

Inference of the Second Order Autoregressive. Model with Unit Roots Ieraioal Mahemaical Forum Vol. 6 0 o. 5 595-604 Iferece of he Secod Order Auoregressive Model wih Ui Roos Ahmed H. Youssef Professor of Applied Saisics ad Ecoomerics Isiue of Saisical Sudies ad Research

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Lecture 2: Concentration Bounds

Lecture 2: Concentration Bounds CSE 52: Desig ad Aalysis of Algorithms I Sprig 206 Lecture 2: Cocetratio Bouds Lecturer: Shaya Oveis Ghara March 30th Scribe: Syuzaa Sargsya Disclaimer: These otes have ot bee subjected to the usual scrutiy

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

2.1. Convergence in distribution and characteristic functions.

2.1. Convergence in distribution and characteristic functions. 3 Chapter 2. Cetral Limit Theorem. Cetral limit theorem, or DeMoivre-Laplace Theorem, which also implies the wea law of large umbers, is the most importat theorem i probability theory ad statistics. For

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Completeness of Random Exponential System in Half-strip

Completeness of Random Exponential System in Half-strip 23-24 Prepri for School of Mahemaical Scieces, Beijig Normal Uiversiy Compleeess of Radom Expoeial Sysem i Half-srip Gao ZhiQiag, Deg GuaTie ad Ke SiYu School of Mahemaical Scieces, Laboraory of Mahemaics

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Statistical Theory MT 2008 Problems 1: Solution sketches

Statistical Theory MT 2008 Problems 1: Solution sketches Statistical Theory MT 008 Problems : Solutio sketches. Which of the followig desities are withi a expoetial family? Explai your reasoig. a) Let 0 < θ < ad put fx, θ) = θ)θ x ; x = 0,,,... b) c) where α

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Statistical Theory MT 2009 Problems 1: Solution sketches

Statistical Theory MT 2009 Problems 1: Solution sketches Statistical Theory MT 009 Problems : Solutio sketches. Which of the followig desities are withi a expoetial family? Explai your reasoig. (a) Let 0 < θ < ad put f(x, θ) = ( θ)θ x ; x = 0,,,... (b) (c) where

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory ST525: Advaced Statistical Theory Departmet of Statistics & Applied Probability Tuesday, September 7, 2 ST525: Advaced Statistical Theory Lecture : The law of large umbers The Law of Large Numbers The

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Lecture 3 : Random variables and their distributions

Lecture 3 : Random variables and their distributions Lecture 3 : Radom variables ad their distributios 3.1 Radom variables Let (Ω, F) ad (S, S) be two measurable spaces. A map X : Ω S is measurable or a radom variable (deoted r.v.) if X 1 (A) {ω : X(ω) A}

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall Midterm Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall Midterm Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/5.070J Fall 0 Midterm Solutios Problem Suppose a radom variable X is such that P(X > ) = 0 ad P(X > E) > 0 for every E > 0. Recall that the large deviatios rate

More information

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models Oulie Parameer esimaio for discree idde Markov models Juko Murakami () ad Tomas Taylor (2). Vicoria Uiversiy of Welligo 2. Arizoa Sae Uiversiy Descripio of simple idde Markov models Maximum likeliood esimae

More information

Probability and Random Processes

Probability and Random Processes Probability ad Radom Processes Lecture 5 Probability ad radom variables The law of large umbers Mikael Skoglud, Probability ad radom processes 1/21 Why Measure Theoretic Probability? Stroger limit theorems

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002 ECE 330:541, Stochastic Sigals ad Systems Lecture Notes o Limit Theorems from robability Fall 00 I practice, there are two ways we ca costruct a ew sequece of radom variables from a old sequece of radom

More information

Applying the Moment Generating Functions to the Study of Probability Distributions

Applying the Moment Generating Functions to the Study of Probability Distributions 3 Iformaica Ecoomică, r (4)/007 Applyi he Mome Geerai Fucios o he Sudy of Probabiliy Disribuios Silvia SPĂTARU Academy of Ecoomic Sudies, Buchares I his paper, we describe a ool o aid i provi heorems abou

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

ECE-314 Fall 2012 Review Questions

ECE-314 Fall 2012 Review Questions ECE-34 Fall 0 Review Quesios. A liear ime-ivaria sysem has he ipu-oupu characerisics show i he firs row of he diagram below. Deermie he oupu for he ipu show o he secod row of he diagram. Jusify your aswer.

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

The universal vector. Open Access Journal of Mathematical and Theoretical Physics [ ] Introduction [ ] ( 1)

The universal vector. Open Access Journal of Mathematical and Theoretical Physics [ ] Introduction [ ] ( 1) Ope Access Joural of Mahemaical ad Theoreical Physics Mii Review The uiversal vecor Ope Access Absrac This paper akes Asroheology mahemaics ad pus some of i i erms of liear algebra. All of physics ca be

More information

Lecture 14: Graph Entropy

Lecture 14: Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS Sprig 2013 Lecture 14: Graph Etropy March 19, 2013 Lecturer: Mahdi Cheraghchi Scribe: Euiwoog Lee 1 Recap Bergma s boud o the permaet Shearer s Lemma Number

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

1 Convergence in Probability and the Weak Law of Large Numbers

1 Convergence in Probability and the Weak Law of Large Numbers 36-752 Advaced Probability Overview Sprig 2018 8. Covergece Cocepts: i Probability, i L p ad Almost Surely Istructor: Alessadro Rialdo Associated readig: Sec 2.4, 2.5, ad 4.11 of Ash ad Doléas-Dade; Sec

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

On The Eneström-Kakeya Theorem

On The Eneström-Kakeya Theorem Applied Mahemaics,, 3, 555-56 doi:436/am673 Published Olie December (hp://wwwscirporg/oural/am) O The Eesröm-Kakeya Theorem Absrac Gulsha Sigh, Wali Mohammad Shah Bharahiar Uiversiy, Coimbaore, Idia Deparme

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

CSE 202: Design and Analysis of Algorithms Lecture 16

CSE 202: Design and Analysis of Algorithms Lecture 16 CSE 202: Desig ad Aalysis of Algorihms Lecure 16 Isrucor: Kamalia Chaudhuri Iequaliy 1: Marov s Iequaliy Pr(X=x) Pr(X >= a) 0 x a If X is a radom variable which aes o-egaive values, ad a > 0, he Pr[X a]

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

Glivenko-Cantelli Classes

Glivenko-Cantelli Classes CS28B/Stat24B (Sprig 2008 Statistical Learig Theory Lecture: 4 Gliveko-Catelli Classes Lecturer: Peter Bartlett Scribe: Michelle Besi Itroductio This lecture will cover Gliveko-Catelli (GC classes ad itroduce

More information

Central Limit Theorem using Characteristic functions

Central Limit Theorem using Characteristic functions Cetral Limit Theorem usig Characteristic fuctios RogXi Guo MAT 477 Jauary 20, 2014 RogXi Guo (2014 Cetral Limit Theorem usig Characteristic fuctios Jauary 20, 2014 1 / 15 Itroductio study a radom variable

More information

Lecture 2 February 8, 2016

Lecture 2 February 8, 2016 MIT 6.854/8.45: Advaced Algorithms Sprig 206 Prof. Akur Moitra Lecture 2 February 8, 206 Scribe: Calvi Huag, Lih V. Nguye I this lecture, we aalyze the problem of schedulig equal size tasks arrivig olie

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Introduction to Probability. Ariel Yadin

Introduction to Probability. Ariel Yadin Itroductio to robability Ariel Yadi Lecture 2 *** Ja. 7 ***. Covergece of Radom Variables As i the case of sequeces of umbers, we would like to talk about covergece of radom variables. There are may ways

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

Transform Techniques. Moment Generating Function

Transform Techniques. Moment Generating Function Transform Techniques A convenien way of finding he momens of a random variable is he momen generaing funcion (MGF). Oher ransform echniques are characerisic funcion, z-ransform, and Laplace ransform. Momen

More information

F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mathematics

F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mathematics F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mahemaics Prelim Quesio Paper Soluio Q. Aemp ay FIVE of he followig : [0] Q.(a) Defie Eve ad odd fucios. [] As.: A fucio f() is said o be eve fucio if

More information

MA541 : Real Analysis. Tutorial and Practice Problems - 1 Hints and Solutions

MA541 : Real Analysis. Tutorial and Practice Problems - 1 Hints and Solutions MA54 : Real Aalysis Tutorial ad Practice Problems - Hits ad Solutios. Suppose that S is a oempty subset of real umbers that is bouded (i.e. bouded above as well as below). Prove that if S sup S. What ca

More information

Asymptotics. Hypothesis Testing UMP. Asymptotic Tests and p-values

Asymptotics. Hypothesis Testing UMP. Asymptotic Tests and p-values of the secod half Biostatistics 6 - Statistical Iferece Lecture 6 Fial Exam & Practice Problems for the Fial Hyu Mi Kag Apil 3rd, 3 Hyu Mi Kag Biostatistics 6 - Lecture 6 Apil 3rd, 3 / 3 Rao-Blackwell

More information

MATH 413 FINAL EXAM. f(x) f(y) M x y. x + 1 n

MATH 413 FINAL EXAM. f(x) f(y) M x y. x + 1 n MATH 43 FINAL EXAM Math 43 fial exam, 3 May 28. The exam starts at 9: am ad you have 5 miutes. No textbooks or calculators may be used durig the exam. This exam is prited o both sides of the paper. Good

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Review Answers for E&CE 700T02

Review Answers for E&CE 700T02 Review Aswers for E&CE 700T0 . Deermie he curre soluio, all possible direcios, ad sepsizes wheher improvig or o for he simple able below: 4 b ma c 0 0 0-4 6 0 - B N B N ^0 0 0 curre sol =, = Ch for - -

More information

Solutions to HW Assignment 1

Solutions to HW Assignment 1 Solutios to HW: 1 Course: Theory of Probability II Page: 1 of 6 Uiversity of Texas at Austi Solutios to HW Assigmet 1 Problem 1.1. Let Ω, F, {F } 0, P) be a filtered probability space ad T a stoppig time.

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

1 Solutions to selected problems

1 Solutions to selected problems 1 Soluions o seleced problems 1. Le A B R n. Show ha in A in B bu in general bd A bd B. Soluion. Le x in A. Then here is ɛ > 0 such ha B ɛ (x) A B. This shows x in B. If A = [0, 1] and B = [0, 2], hen

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 3 9//203 Large deviatios Theory. Cramér s Theorem Cotet.. Cramér s Theorem. 2. Rate fuctio ad properties. 3. Chage of measure techique.

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

A Proof of Birkhoff s Ergodic Theorem

A Proof of Birkhoff s Ergodic Theorem A Proof of Birkhoff s Ergodic Theorem Joseph Hora September 2, 205 Itroductio I Fall 203, I was learig the basics of ergodic theory, ad I came across this theorem. Oe of my supervisors, Athoy Quas, showed

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Self-normalized deviation inequalities with application to t-statistic

Self-normalized deviation inequalities with application to t-statistic Self-ormalized deviatio iequalities with applicatio to t-statistic Xiequa Fa Ceter for Applied Mathematics, Tiaji Uiversity, 30007 Tiaji, Chia Abstract Let ξ i i 1 be a sequece of idepedet ad symmetric

More information

Notes 19 : Martingale CLT

Notes 19 : Martingale CLT Notes 9 : Martigale CLT Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: [Bil95, Chapter 35], [Roc, Chapter 3]. Sice we have ot ecoutered weak covergece i some time, we first recall

More information

MAS111 Convergence and Continuity

MAS111 Convergence and Continuity MAS Covergece ad Cotiuity Key Objectives At the ed of the course, studets should kow the followig topics ad be able to apply the basic priciples ad theorems therei to solvig various problems cocerig covergece

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

Convergence theorems. Chapter Sampling

Convergence theorems. Chapter Sampling Chaper Covergece heorems We ve already discussed he difficuly i defiig he probabiliy measure i erms of a experimeal frequecy measureme. The hear of he problem lies i he defiiio of he limi, ad his was se

More information

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES The Aals of Probabiliy 996, Vol, No 3, 3077 GAUSSIAN CAOS AND SAMPLE PAT PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES BY MICAEL B MARCUS AND JAY ROSEN Ciy College of CUNY ad College

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Agnostic Learning and Concentration Inequalities

Agnostic Learning and Concentration Inequalities ECE901 Sprig 2004 Statistical Regularizatio ad Learig Theory Lecture: 7 Agostic Learig ad Cocetratio Iequalities Lecturer: Rob Nowak Scribe: Aravid Kailas 1 Itroductio 1.1 Motivatio I the last lecture

More information

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Priciples of Commuicaios Lecure : Sigals ad Sysems Chih-Wei Liu 劉志尉 Naioal Chiao ug Uiversiy cwliu@wis.ee.cu.edu.w Oulies Sigal Models & Classificaios Sigal Space & Orhogoal Basis Fourier Series &rasform

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Some Basic Cocepts of Statistical Iferece (Sec 5.) Suppose we have a rv X that has a pdf/pmf deoted by f(x; θ) or p(x; θ), where θ is called the parameter. I previous lectures, we focus o probability problems

More information