Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Size: px
Start display at page:

Download "Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods""

Transcription

1 Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio umber saisfies ɛ ɛ0(γ i g 1:,i ) η, η d g 1:,i. Algorihm 1 gives a soluio ŵ such ha EF (ŵ ) F ɛ. Proof. Le ψ 0 (w) 0 ad x H x Hx. Firs, we ca see ha ψ 1 (w) ψ (w) for ay 0. Defie z τ1 g ad τ ( F (w ) g ) (w w). Le ψ be defied by ψ (g) sup g x 1 x Ω η ψ (x) aig he summaio of objecive gap i all ieraios, we (F (w ) F (w)) g (w w) g w 1 η ψ (w) sup x Ω F (w ) (w w) g w 1 η ψ (w) 1 η ψ (w) g w g x 1 η ψ (x) 1 η ψ (w) g w ψ ( z ) Noe ha ψ ( z ) g w 1 1 η ψ (w 1 ) g w 1 1 η ψ 1(w 1 ) sup z x 1 x Ω η ψ 1(x) ψ 1( z ) ψ 1( z 1 ) g ψ 1( z 1 ) η g ψ 1 where he las iequaliy uses he fac ha ψ (w) is 1- srogly covex w.r. ψ H ad cosequeially ψ (w) is η-smooh wr.. ψ H 1. hus, we g w ψ ( z ) g w ψ 1( z 1 ) g ψ 1( z 1 ) η g ψ 1 1 g w ψ 1( z 1 ) η g ψ 1 By repeaig his process, we g w ψ ( z ) ψ 0( z 0 ) η η g ψ 1 g ψ 1 he (F (w ) F (w)) 1 η ψ (w) η g ψ 1 (1)

2 SADAGRAD: Srogly Adapive Sochasic Gradie Mehods Followig he aalysis i (Duchi e al., 011), we hus g ψ g 1 1:,i (F (w ) F (w)) γ w w 1 (w w 1) diag(s )(w w 1 ) η η η g 1:,i γ i g 1:,i w w 1 η η g 1:,i Now by he value of ɛ ɛ0(γ i g 1:,i ) η, η d g 1:,i, we (γ i g 1:,i ) η η d g 1:,i ɛ ɛ 4ɛ 0 Dividig by o boh sides ad seig w w, followig he iequaliy () ad he covexiy of F (w) we F (ŵ) F ɛ 4ɛ 0 w w 1 ɛ 1 Le F be he filraio associaed wih Algorihm 1 i he paper. Noicig ha is a radom variable wih respec o F, we cao ge rid of he las erm direcly. Defie he Sequece X N as X 1 i 1 g i Eg i, w i w () where Eg i F (w i ). ( Sice E g 1 Eg 1 0 ad ) w 1 arg mi w Ω ηw 1 τ1 g τ 1 ψ (w), which is measurable wih respec o g 1,..., g ad w 1,..., w, i is easy o see N is a marigale differece sequece wih respec o F, e.g. E F 1 0. O he oher had, sice g is upper bouded (e.g., by G), followig he saeme of i he heorem, N 4 ɛ ( Gɛ0 θ ), θ d G < always holds. he followig Lemma 1 below we ha EX 0. Now aig he expecaio we ha EF (ŵ) F ɛ E w w 1 ɛ 4ɛ E 1 0 ɛ E F (w 1 ) F (w ) ɛ ɛ 0 0 ɛ he we fiish he proof. Lemma 1. Le N be a marigale differece sequece w.r. he filraio F N, is a soppig ime such ha F for all N. If 0 < N <, he we Proof. 1 E 1 E 0. E 1 I( ) E F N I( )E 1 F I( ) E 0 I( ) I( ) I( ) I( ) E F F F E F E E F F 1 E F 1 where I( ) is he idicaor fucio. he firs equaio follows from he defiiio of codiioal expecaio ad N; he secod equaio follows from he fac ha I( ) 1; he hird ad fifh equaios follow from he defiiio of soppig ime (( ) F ); he seveh ad las equaios follow from he defiiio of marigale differece sequece; ad eighh equaio follows from heorem i (Durre, 010).

3 SADAGRAD: Srogly Adapive Sochasic Gradie Mehods. Proof of heorem 1 heorem 1. Cosider SCO (1) wih a propery () ad a give ɛ > 0. Assume H 0 γi i Algorihm 1 ad γ,τ gτ, F (w 0 ) F ɛ 0 ad is he miimum umber such ha ɛ (γ i g 1:,i ) θ, θ d g 1:,i K log (ɛ 0 /ɛ), we EF (w K ) F ɛ.. Wih Proof of heorem 1. We will show by iducio ha EF (w ) F ɛ ɛ0 for 0, 1,..., K, which leads o our coclusio whe K log(ɛ 0 /ɛ). he iequaliy holds obviously for 0. Codiioed o EF (w 1 ) F ɛ 1, we will show ha EF (w ) F ɛ. We will modify Proposiio 1, he use i o he -h epoch of Algorihm codiioed o radomess i previous epoches. Le E deoes he expecaio over all radomess before he las ieraio of he -h epoch ad E 1: 1 deoes he expecaio over he radomess i he -h epoch give he radomess before -h epoch. Give w 1, we le w 1 deoe he opimal soluio ha is closes o w 1 1. Accordig o he proof of Proposio 1, We E 1: 1 F (w ) F (w 1) γ i g1: E,i 1: 1 w 1 w η 1 η d g 1:,i Eg g, w w 1 By he value of η θ ɛ / ad 4(γ i g 1:,i ), θ d g 1:,i ɛ, we hus θ ɛ (γ i g 1:,i ) η 8 η d g 1:,i ɛ E 1: 1 F (w ) F (w 1) E 1: 1 8 w 1 w 1 ɛ Eg g, w w 1 1 Sice we oly assume he codiio () ha does o ecessarily imply he uiqueess of he opimal soluios. he followig he similar argumes i Proposiio 1, we E 1: 1 F (w ) F (w 1) E 1: 1 8 w 1 w 1 ɛ aig expecaio over radomess i sages 1,..., 1, we EF (w ) F (w 1) E 8 w 1 w 1 ɛ 1 4 EF (w 1) F ɛ ɛ 1 4 ɛ ɛ herefore by iducio, we EF (w K ) F ɛ K ɛ.. Proof of heorem Lemma. Cosider SCO (4) wih he propery (). Le H 0 γi i Algorihm ad γ g. For ay w Ω ad is closes opimal soluio w, we F ( w ) F (w) G w 1 w 1 1 (Eg g ) (w w) η d g 1:,i γ i g 1:,i w w 1 η where w 1 w /. Proof. his proof is similar o he proof of Proposiio 1, bu we do o ae expecaio here. For compleeess, we give he proof here. hroughou he whole proof, we se he oaio g as he sochasic gradie of f(w ) ad as a resul Eg f(w ). Le ψ 0 (w) 0 ad x H x Hx. Firs, we ca see ha ψ 1 (w) ψ (w) for ay 0. Defie z τ1 g ad τ ( f(w ) g ) (w w). Le ψ be defied by ψ (g) sup g x 1 x Ω η ψ (x) φ(x) aig he summaio of objecive gap i all ieraios, we

4 SADAGRAD: Srogly Adapive Sochasic Gradie Mehods ψ (w) is η-smooh w.r.. ψ H 1. hus, we (f(w ) f(w) φ(w ) φ(w)) ( f(w ) (w w) φ(w ) φ(w)) g (w w) g w 1 η ψ (w) 1 η ψ (w) sup x Ω (φ(w ) φ(w)) g w 1 η ψ (w) φ(w) φ(w ) g w φ(w ) g x 1 η ψ (x) φ(x) 1 η ψ (w) g w φ(w ) ψ ( z ) () Noe ha ψ ( z ) g w 1 1 η ψ (w 1 ) φ(w 1 ) g w 1 1 η ψ 1(w 1 ) ( 1)φ(w 1 ) φ(w 1 ) sup z x 1 x Ω η ψ 1(x) ( 1)φ(x) φ(w 1 ) ψ 1( z ) φ(w 1 ) ψ 1( z 1 ) g ψ 1( z 1 ) η g ψ 1 φ(w 1 ) where he las iequaliy uses he fac ha ψ (w) is 1- srogly covex w.r. ψ H ad cosequeially g w ψ ( z ) g w ψ 1( z 1 ) g ψ 1( z 1 ) η g ψ 1 φ(w 1) 1 g w ψ 1( z 1 ) η g ψ 1 φ(w 1 ) By repeaig his process, we g w ψ ( z ) ψ 0( z 0 ) η η g ψ φ(w 1 1 ) g ψ φ(w 1 1 ) (4) Pluggig iequaliy (4) i iequaliy (), he (F (w ) F (w)) 1 η ψ (w) η φ(w 1 ) g ψ 1 φ(w 1 ) By addig F (w 1 ) F (w 1 ) o he boh sides of above iequaliy ad usig he fac ha F (w) f(w) φ(w), we ge 1 (F (w ) F (w)) 1 η ψ (w) η f(w 1 ) g ψ 1 f(w 1 ) Followig he aalysis i (Duchi e al., 011), we g ψ g 1 1:,i

5 SADAGRAD: Srogly Adapive Sochasic Gradie Mehods hus 1 (F (w ) F (w)) γ w w 1 (w w 1) diag(s )(w w 1 ) η η η g 1:,i f(w 1 ) f(w 1 ) γ i g 1:,i w w 1 η η g 1:,i ( f(w 1 )) (w 1 w 1 ) γ i g 1:,i w w 1 η η G w 1 w 1 g 1:,i where he las iequaliy hold usig Cauchy-Schwarz Iequaliy ad he fac ha f(w 1 ) G. Dividig by o boh sides, he we fiish he proof by usig he covexiy of F (w). heorem. For a give ɛ > 0, le K log (ɛ 0 /ɛ). Assume H 0 γi ad γ,τ gτ, F (w 0 ) F ɛ 0 ad is he miimum umber such G w 1 ɛ A, w 1 ɛ, where ha A (γ i g 1:,i ) θ, θ d g 1:,i. Algorihm 4 guaraees ha EF (w K ) F ɛ. Proof. his resul is proved by revisig Lemma o hold for a bouded soppig ime of he supermarigale sequece X i (). aig he expecaio of Lemma, we ha G w1 w 1 EF ( w ) F (w) E 1 E (Eg g ) (w w) η d E g 1:,i γ i g 1:,i w w 1 η he followig he same argumes o Proposiio 1, we ha E 1 (Eg g ) (w w) 0 Similar o he iducio of heorem 1, le η θ ɛ / ad he ieraio umber i -h epoch o be he smalles umber saisfyig followig iequaliies (γ i g 1:,i ) η 1 η d g 1:,i G w 1 w 1 ɛ ɛ hus codiioed o 1,..., 1-h epoches, we ha E 1: 1 F (w ) F (w 1) E 1: 1 1 w 1 w 1 ɛ aig expecaio over radomess i sages 1,..., 1, we EF (w ) F (w 1) E 1 w 1 w 1 ɛ 1 6 EF (w 1) F ɛ ɛ 1 6 ɛ ɛ herefore by iducio, we EF (w K ) F ɛ K ɛ. 4. Proof of heorem heorem. Uder he same assumpios as heorem 1 ad F (w 0 ) F ɛ 0, where w 0 is a iiial soluio. Le 1, ɛ ɛ0, K log ɛ0 ɛ ad (s) (γ i g sɛ 1:,i ) θ, θ d g 1:,i. he wih a mos a oal umber of S log ( 1 ) 1 calls of SADAGRAD ad a worse-cas ieraio complexiy of O(1/(ɛ)), Algorihm 5 fids a soluio w (S) such ha EF (w (S) ) F ɛ. Proof. Sice 1 / > 1, he F (w 0 ) F ( 1 /)ɛ 0. Followig he proof of heorem 1, we ca show ha EF (w (1) ) F ( ( ) 1/)ɛ 0 1 K ɛ ɛ wih K log 0ɛ ad (1) (γ i g 1:,i ) θ, θ d g 1:,i ( 1 ɛ ),

6 1,..., K. Nex, sice ɛ ɛ0, he we EF (w (1) ) F ( 1 ) ɛ0 ( ) ɛ0. By ruig SADAGRAD from w (1), heorem 1 esures ha EF (w () ) F EF (w(1) ) F K ( /)ɛ 0 ( ) K ɛ By coiuig he process, wih S ( log 1 ) 1, we ( ) EF (w (S) S ) F ɛ ɛ (5) he oal umber of ieraios for he S calls of SADAGRAD is upper bouded by oal for some C > 0. S K (s) s1 1 Acowledgeme SADAGRAD: Srogly Adapive Sochasic Gradie Mehods S s1 C S K s 1 1 ɛ 0 s1 1 ( ) 1 O ɛ C s ɛ 0 1 K 1 1 We ha Prof. Qihe ag from Uiversiy of Iowa for his help o he proof of Lemma 1. Refereces Duchi, Joh, Haza, Elad, ad Siger, Yoram. Adapive subgradie mehods for olie learig ad sochasic opimizaio. Joural of Machie Learig Research, 1 (Jul):11 159, 011. Durre, Ric. Probabiliy: heory ad examples. Cambridge uiversiy press, 010.

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate Supplemetary Material for Fast Stochastic AUC Maximizatio with O/-Covergece Rate Migrui Liu Xiaoxua Zhag Zaiyi Che Xiaoyu Wag 3 iabao Yag echical Lemmas ized versio of Hoeffdig s iequality, ote that We

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate Supplemetary Material for Fast Stochastic AUC Maximizatio with O/-Covergece Rate Migrui Liu Xiaoxua Zhag Zaiyi Che Xiaoyu Wag 3 iabao Yag echical Lemmas ized versio of Hoeffdig s iequality, ote that We

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

Review Answers for E&CE 700T02

Review Answers for E&CE 700T02 Review Aswers for E&CE 700T0 . Deermie he curre soluio, all possible direcios, ad sepsizes wheher improvig or o for he simple able below: 4 b ma c 0 0 0-4 6 0 - B N B N ^0 0 0 curre sol =, = Ch for - -

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE

NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE Yugoslav Joural of Operaios Research 8 (2008, Number, 53-6 DOI: 02298/YUJOR080053W NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE Jeff Kuo-Jug WU, Hsui-Li

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

An approximate approach to the exponential utility indifference valuation

An approximate approach to the exponential utility indifference valuation A approximae approach o he expoeial uiliy idifferece valuaio akuji Arai Faculy of Ecoomics, Keio Uiversiy, 2-15-45 Mia, Miao-ku, okyo, 18-8345, Japa e-mail: arai@ecokeioacjp) Absrac We propose, i his paper,

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Fermat Numbers in Multinomial Coefficients

Fermat Numbers in Multinomial Coefficients 1 3 47 6 3 11 Joural of Ieger Sequeces, Vol. 17 (014, Aricle 14.3. Ferma Numbers i Muliomial Coefficies Shae Cher Deparme of Mahemaics Zhejiag Uiversiy Hagzhou, 31007 Chia chexiaohag9@gmail.com Absrac

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

arxiv: v1 [math.pr] 16 Dec 2018

arxiv: v1 [math.pr] 16 Dec 2018 218, 1 17 () arxiv:1812.7383v1 [mah.pr] 16 Dec 218 Refleced BSDEs wih wo compleely separaed barriers ad regulaed rajecories i geeral filraio. Baadi Brahim ad Oukie Youssef Ib Tofaïl Uiversiy, Deparme of

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence Supplemen for Sochasic Convex Opimizaion: Faser Local Growh Implies Faser Global Convergence Yi Xu Qihang Lin ianbao Yang Proof of heorem heorem Suppose Assumpion holds and F (w) obeys he LGC (6) Given

More information

Inference of the Second Order Autoregressive. Model with Unit Roots

Inference of the Second Order Autoregressive. Model with Unit Roots Ieraioal Mahemaical Forum Vol. 6 0 o. 5 595-604 Iferece of he Secod Order Auoregressive Model wih Ui Roos Ahmed H. Youssef Professor of Applied Saisics ad Ecoomerics Isiue of Saisical Sudies ad Research

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( x, y, z ) = 0, mulivariable Taylor liear expasio aroud f( x, y, z) f( x, y, z) + f ( x, y,

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

High-Probability Regret Bounds for Bandit Online Linear Optimization

High-Probability Regret Bounds for Bandit Online Linear Optimization High-Probabiliy Regre Bouds for Badi Olie Liear Opimizaio Peer L. Barle UC Berkeley barle@cs.berkeley.edu Varsha Dai Uiversiy of Chicago varsha@cs.uchicago.edu Aleader Rakhli UC Berkeley rakhli@cs.berkeley.edu

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION Malaysia Joural of Mahemaical Scieces 2(2): 55-6 (28) The Soluio of he Oe Species Loka-Volerra Equaio Usig Variaioal Ieraio Mehod B. Baiha, M.S.M. Noorai, I. Hashim School of Mahemaical Scieces, Uiversii

More information

Boundary-to-Displacement Asymptotic Gains for Wave Systems With Kelvin-Voigt Damping

Boundary-to-Displacement Asymptotic Gains for Wave Systems With Kelvin-Voigt Damping Boudary-o-Displaceme Asympoic Gais for Wave Sysems Wih Kelvi-Voig Dampig Iasso Karafyllis *, Maria Kooriaki ** ad Miroslav Krsic *** * Dep. of Mahemaics, Naioal Techical Uiversiy of Ahes, Zografou Campus,

More information

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1 Samplig Example Le x = cos( 4π)cos( π). The fudameal frequecy of cos 4π fudameal frequecy of cos π is Hz. The ( f ) = ( / ) δ ( f 7) + δ ( f + 7) / δ ( f ) + δ ( f + ). ( f ) = ( / 4) δ ( f 8) + δ ( f

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich)

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich) Proc. Amer. Mah. Soc. 19(001, o. 1, 3471 3478. AN EXTENSION OF LUCAS THEOREM Hog Hu ad Zhi-Wei Su (Commuicaed by David E. Rohrlich Absrac. Le p be a prime. A famous heorem of Lucas saes ha p+s p+ ( s (mod

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 7, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( xyz,, ) = 0, mulivariable Taylor liear expasio aroud f( xyz,, ) f( xyz,, ) + f( xyz,, )( x

More information

Solutions to Problems 3, Level 4

Solutions to Problems 3, Level 4 Soluios o Problems 3, Level 4 23 Improve he resul of Quesio 3 whe l. i Use log log o prove ha for real >, log ( {}log + 2 d log+ P ( + P ( d 2. Here P ( is defied i Quesio, ad parial iegraio has bee used.

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

On The Eneström-Kakeya Theorem

On The Eneström-Kakeya Theorem Applied Mahemaics,, 3, 555-56 doi:436/am673 Published Olie December (hp://wwwscirporg/oural/am) O The Eesröm-Kakeya Theorem Absrac Gulsha Sigh, Wali Mohammad Shah Bharahiar Uiversiy, Coimbaore, Idia Deparme

More information

Optimal Packet Scheduling in a Multiple Access Channel with Rechargeable Nodes

Optimal Packet Scheduling in a Multiple Access Channel with Rechargeable Nodes Opimal Packe Schedulig i a Muliple Access Chael wih Rechargeable Nodes Jig Yag Seur Ulukus Deparme of Elecrical ad Compuer Egieerig Uiversiy of Marylad, College Park, MD 20742 yagjig@umd.edu ulukus@umd.edu

More information

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models Oulie Parameer esimaio for discree idde Markov models Juko Murakami () ad Tomas Taylor (2). Vicoria Uiversiy of Welligo 2. Arizoa Sae Uiversiy Descripio of simple idde Markov models Maximum likeliood esimae

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems Ausralia Joural of Basic ad Applied Scieces, 4(1): 518-57, 1 ISSN 1991-8178 Homoopy Aalysis Mehod for Solvig Fracioal Surm-Liouville Problems 1 A Neamay, R Darzi, A Dabbaghia 1 Deparme of Mahemaics, Uiversiy

More information

Numerical approximation of Backward Stochastic Differential Equations with Jumps

Numerical approximation of Backward Stochastic Differential Equations with Jumps Numerical approximaio of Bacward Sochasic Differeial Equaios wih Jumps Aoie Lejay, Ereso Mordeci, Soledad Torres To cie his versio: Aoie Lejay, Ereso Mordeci, Soledad Torres. Numerical approximaio of Bacward

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Online Geometric Optimization in the Bandit Setting Against an Adaptive Adversary

Online Geometric Optimization in the Bandit Setting Against an Adaptive Adversary lie Geomeric pimizaio i he Badi Seig Agais a Adapive Adversary H. Breda McMaha ad Avrim Blum Caregie Mello Uiversiy, Pisburgh, PA, 15213, mcmaha,avrim @cs.cmu.edu Absrac. We give a algorihm for he badi

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

arxiv:math/ v1 [math.pr] 5 Jul 2006

arxiv:math/ v1 [math.pr] 5 Jul 2006 he Aals of Applied Probabiliy 2006, Vol. 16, No. 2, 984 1033 DOI: 10.1214/105051606000000088 c Isiue of Mahemaical Saisics, 2006 arxiv:mah/0607123v1 [mah.pr] 5 Jul 2006 ERROR ESIMAES FOR INOMIAL APPROXIMAIONS

More information

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction Malaysia Joural of Mahemaical Scieces 9(): 49-5 (5) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/joural Some Newo s Type Ieualiies for Geomerically Relaive Covex Fucios

More information

arxiv: v1 [cs.lg] 9 Oct 2018

arxiv: v1 [cs.lg] 9 Oct 2018 Bridgig he gap bewee regre miimizaio ad bes arm ideificaio, wih applicaio o A/B ess Rémy Degee Thomas Nedelec Cléme Calauzèes Viaey erche LSM, Uiversié aris Didero, Crieo AI Lab Crieo AI Lab CMLA, ENS

More information

Research Article A MOLP Method for Solving Fully Fuzzy Linear Programming with LR Fuzzy Parameters

Research Article A MOLP Method for Solving Fully Fuzzy Linear Programming with LR Fuzzy Parameters Mahemaical Problems i Egieerig Aricle ID 782376 10 pages hp://dx.doi.org/10.1155/2014/782376 Research Aricle A MOLP Mehod for Solvig Fully Fuzzy Liear Programmig wih Fuzzy Parameers Xiao-Peg Yag 12 Xue-Gag

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

Research Article Generalized Equilibrium Problem with Mixed Relaxed Monotonicity

Research Article Generalized Equilibrium Problem with Mixed Relaxed Monotonicity e Scieific World Joural, Aricle ID 807324, 4 pages hp://dx.doi.org/10.1155/2014/807324 Research Aricle Geeralized Equilibrium Problem wih Mixed Relaxed Moooiciy Haider Abbas Rizvi, 1 Adem KJlJçma, 2 ad

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics

BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics Biod Prasad Dhaal / BIBCHANA 9 (3 5-58 : BMHSS,.5 (Olie Publicaio: Nov., BIBCHANA A Mulidisciliary Joural of Sciece, Techology ad Mahemaics ISSN 9-76 (olie Joural homeage: h://ejol.ifo/idex.h/bibchana

More information

Streaming Robust PCA

Streaming Robust PCA Sreamig Robus PCA U.N.Niraja Yag Shi The Uiversiy of Califoria a Irvie {u.iraja, shiy4}@uci.edu July 3, 06 Absrac I his paper, we cosider he problem of robus PCA i he sreamig seig wih space cosrais. Specifically,

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure

Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure Sochasic Opimizaio wih Variace Reducio for Ifiie Daases wih Fiie-Sum Srucure Albero Biei, Julie Mairal To cie his versio: Albero Biei, Julie Mairal. Sochasic Opimizaio wih Variace Reducio for Ifiie Daases

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K)

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K) Ieraioal Joural of ahemaics Treds ad Techology (IJTT) Volume 35 umber 4- July 016 Commo Fixed Poi Theorem i Iuiioisic Fuzzy eric Sace via Comaible aigs of Tye (K) Dr. Ramaa Reddy Assisa Professor De. of

More information

A Change-of-Variable Formula with Local Time on Surfaces

A Change-of-Variable Formula with Local Time on Surfaces Sém. de Probab. L, Lecure Noes i Mah. Vol. 899, Spriger, 7, (69-96) Research Repor No. 437, 4, Dep. Theore. Sais. Aarhus (3 pp) A Chage-of-Variable Formula wih Local Time o Surfaces GORAN PESKIR 3 Le =

More information

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3 Ieraioal Joural of Saisics ad Aalysis. ISSN 48-9959 Volume 6, Number (6, pp. -8 Research Idia Publicaios hp://www.ripublicaio.com The Populaio Mea ad is Variace i he Presece of Geocide for a Simple Birh-Deah-

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS M.A. (Previous) Direcorae of Disace Educaio Maharshi Dayaad Uiversiy ROHTAK 4 Copyrigh 3, Maharshi Dayaad Uiversiy, ROHTAK All Righs Reserved. No par of his publicaio may be reproduced

More information

arxiv: v2 [math.pr] 10 Apr 2014

arxiv: v2 [math.pr] 10 Apr 2014 arxiv:1311.2725v2 [mah.pr 1 Apr 214 Srog Rae of Covergece for he Euler-Maruyama Approximaio of Sochasic Differeial Equaios wih Irregular Coefficies Hoag-Log Ngo, Dai Taguchi Absrac We cosider he Euler-Maruyama

More information

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is Exercise 7 / page 356 Noe ha X i are ii from Beroulli(θ where 0 θ a Meho of momes: Sice here is oly oe parameer o be esimae we ee oly oe equaio where we equae he rs sample mome wih he rs populaio mome,

More information

11. Adaptive Control in the Presence of Bounded Disturbances Consider MIMO systems in the form,

11. Adaptive Control in the Presence of Bounded Disturbances Consider MIMO systems in the form, Lecure 6. Adapive Corol i he Presece of Bouded Disurbaces Cosider MIMO sysems i he form, x Aref xbu x Bref ycmd (.) y Cref x operaig i he presece of a bouded ime-depede disurbace R. All he assumpios ad

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists CSE 41 Algorihms ad Daa Srucures 10/14/015 Skip Liss This hadou gives he skip lis mehods ha we discussed i class. A skip lis is a ordered, doublyliked lis wih some exra poiers ha allow us o jump over muliple

More information

On the Validity of the Pairs Bootstrap for Lasso Estimators

On the Validity of the Pairs Bootstrap for Lasso Estimators O he Validiy of he Pairs Boosrap for Lasso Esimaors Lorezo Campoovo Uiversiy of S.Galle Ocober 2014 Absrac We sudy he validiy of he pairs boosrap for Lasso esimaors i liear regressio models wih radom covariaes

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

Stability Analysis of Discrete-Time Piecewise-Linear Systems: A Generating Function Approach

Stability Analysis of Discrete-Time Piecewise-Linear Systems: A Generating Function Approach Ieraioal Joural of Corol, Auomaio, ad Sysems (4) (5):5- DOI.7/s555-3-64- ISSN:598-6446 eissn:5-49 hp://www.spriger.com/555 Sabiliy Aalysis of Discree-Time Piecewise-Liear Sysems: A Geeraig Fucio Approach

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

Online Nonparametric Regression

Online Nonparametric Regression Olie Noparameric Regressio Alexader Rakhli Uiversiy of Pesylvaia Karhik Sridhara Uiversiy of Pesylvaia February 0, 204 Absrac We esablish opimal raes for olie regressio for arbirary classes of regressio

More information

Introduction to the Mathematics of Lévy Processes

Introduction to the Mathematics of Lévy Processes Iroducio o he Mahemaics of Lévy Processes Kazuhisa Masuda Deparme of Ecoomics The Graduae Ceer, The Ciy Uiversiy of New York, 365 Fifh Aveue, New York, NY 10016-4309 Email: maxmasuda@maxmasudacom hp://wwwmaxmasudacom/

More information

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA Volume 8 No. 8, 45-54 ISSN: 34-3395 (o-lie versio) url: hp://www.ijpam.eu ijpam.eu INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA A.Arul dass M.Dhaapal

More information