A Change-of-Variable Formula with Local Time on Surfaces

Size: px
Start display at page:

Download "A Change-of-Variable Formula with Local Time on Surfaces"

Transcription

1 Sém. de Probab. L, Lecure Noes i Mah. Vol. 899, Spriger, 7, (69-96) Research Repor No. 437, 4, Dep. Theore. Sais. Aarhus (3 pp) A Chage-of-Variable Formula wih Local Time o Surfaces GORAN PESKIR 3 Le = ( ;... ; ) be a coiuous semimarigale ad le b : IR! IR be a coiuous fucio such ha he process b = b( ;... ; ) is a semimarigale. Seig C = f (x;... ; x ) IR j x < b(x;... ; x ) g ad D = f (x;... ; x ) IR j x > b(x;... ; x ) g suppose ha a coiuous fucio F : IR! IR is give such ha F is C i;...;i o C ad F is C i;...;i o D where each i k equals or depedig o wheher k is of bouded variaio or o. The he followig chage-of-variable formula holds: F ( ) = F () Z Z ( ;... ; s ) ( s ;... ; s ) F ( ;... s ) F j ( ;... ; s ) ( ;... ; s ) where `bs () is he local ime of o he surface b give by: `b s () = IP lim "# " Z s d i j ( s ;... ; s ) dh i ; j i s I( s = b s ) d`b s () I(" < r b r < ") dh b ; b i r ad d`bs () refers o iegraio wih respec o s 7! `bs (). The aalogous formula exeds o geeral semimarigales ad b as well. A versio of he same formula uder weaker codiios o F is derived for he semimarigale ((; ; S )) where ( ) is a Iô diffusio ad (S ) is is ruig maximum.. Iroducio Le ( ) be a coiuous semimarigale (see e.g. [3]) ad le b : IR! IR be a coiuous fucio of bouded variaio. Seig C = f (; x) IR IR j x < b() g ad D = f (; x) IR IR j x > b() g suppose ha a coiuous fucio F : IR IR! IR is give such ha F is C ; o C ad F is C ; o D. The he followig chage-of-variable formula is kow o be valid (cf. []): (.) F (; ) = F (; ) Z Z Z F (s; s )F (s; s ) F x (s; s )F x (s; s ) d s ds F xx (s; s ) I( s 6= b(s)) dh; i s 3 Nework i Mahemaical Physics ad Sochasics (fuded by he Daish Naioal Research Foudaio). Mahemaics Subjec Classificaio. Primary 6H5, 6J55, 6G44. Secodary 6J6, 6J65, 35R35. Key words ad phrases: Local ime-space calculus, Iô s formula, Taaka s formula, local ime, curve, surface, Browia moio, diffusio, semimarigale, weak covergece, siged measure, free-boudary problems, opimal soppig. gora@imf.au.dk

2 F x (s; s )F x (s; s ) I( s = b(s)) d`b s () where `bs () is he local ime of o he curve b give by: (.) `b s () = IP lim "# " Z s I(b(r)" < r < b(r)") dh; i r ad d`bs () refers o iegraio wih respec o he coiuous icreasig fucio s 7! `bs (). A versio of he same formula for a Iˆo diffusio derived uder weaker codiios o F has foud applicaios i free-boudary problems of opimal soppig (cf. []). The mai aim of he prese paper is o exed he chage-of-variable formula (.) o a mulidimesioal seig of coiuous fucios F which are smooh above ad below surfaces. Coiuous semimarigales are cosidered i Secio, ad semimarigales wih jumps are cosidered i Secio 3. A versio of he same formula uder weaker codiios o F is derived i Secio 4 for he coiuous semimarigale ((; ; S )) where ( ) is a Iô diffusio ad (S ) is is ruig maximum. This versio is useful i he sudy of free-boudary problems for opimal soppig of he maximum process whe he horizo is fiie (for he ifiie horizo case see [] wih refereces). The sudy of Secio 4 serves as a example of wha geerally eeds o be doe i order o relax he smoohess codiios o F from C ad D o C [ D. These relaxed versios of he formula are impora for applicaios. I is hus hoped ha he programme sared i Secio 3 of [] ad i Secio 4 of he prese paper will be coiued. For relaed resuls o he local ime-space calculus see [], [5], [3], [], [8]. Older refereces o he opic iclude [7], [4], [9], [5], [4].. Coiuous semimarigales Le = ( ;... ; ) be a coiuous semimarigale ad le b : IR! IR be a coiuous fucio such ha he process b = b( ;... ; ) is a semimarigale. [Noe ha he sufficie codiio b C is by o meas ecessary.] Seig: (.) C = f (x ;... ; x ) IR j x < b(x ;... ; x ) g (.) D = f (x ;... ; x ) IR j x > b(x ;... ; x ) g suppose ha a coiuous fucio F : IR! IR is give such ha: (.3) F is C i;...;i o C (.4) F is C i ;...;i o D where each i j equals or depedig o wheher j is of bouded variaio or o. More explicily, i meas ha F resriced o C coicides wih a fucio F which is C i;...;i o IR, ad F resriced o D coicides wih a fucio F which is C i;...;i o IR. [We recall ha a coiuous fucio F k : IR! IR is C i;...;i o IR if he parial derivaives k =@x j whe i j = as well F k =@x j whe i j ; i j = exis ad are coiuous as

3 fucios from IR o IR for all j; j where k equals or.] The he aural desire arisig i free-boudary problems of opimal soppig (ad oher problems where he hiig ime of D by he process plays a role) is o apply a chageof-variable formula o F ( ) so o accou for possible jumps of (=@x )(x;... ; x ) a x = b(x;... ; x ) beig measured by: (.5) `b s () = IP lim "# " Z s I(" < r b r < ") dh b ; b i r which represes he local ime of o he surface b for s [; ]. Noe ha he limi i (.5) exiss (as a limi i probabiliy) sice b is a coiuous semimarigale. I he special case whe he semimarigale equals (; ) i is evide ha he previous seig reduces o he seig leadig o he chage-of-variable formula (.) above. Furher paricular cases of he formula (.) are reviewed i []. The followig heorem provides a geeral formula of his kid for coiuous semimarigales (see also Secio 3 below). Theorem. Le = ( ;... ; ) be a coiuous semimarigale, le b : IR! IR be a coiuous fucio such ha he process b = b( ;... ; ) is a semimarigale, ad le F : IR! IR be a coiuous fucio saisfyig (.3) ad (.4) above. The he followig chage-of-variable formula holds: (.6) F ( ) = F () i ( s ;... ; s i ( s ;... ; s F ( ;... ; s ) ( s ;... ; s ) ( s ;... ; s ( s ;... ; s ) d i s dh i ; j i s I( s = b s ) d`b s () where `bs () is he local ime of o he surface b give i (.5) above, ad d`bs () refers o iegraio wih respec o he coiuous icreasig fucio s 7! `bs (). Proof.. Se Z = ^ b ad Z = _ b for > give ad fixed. Deoig ^ = ( ;... ; ; Z ), = ( ;... ; ; Z ) ad ~ = ( ;... ; ; b ), we see ha he followig ideiy holds: (.7) F ( ) = F( ^ ) F( ) F ( ~ ) where we use ha F (x) = F(x) = F(x) for x = (x;... ; x ; b(x;... ; x )). The processes (Z ) ad (Z ) are coiuous semimarigales admiig he followig represeaios: (.8) Z = (.9) Z = b b b b. 3

4 Recallig he Taaka formula: (.) j b j = j b j where sig() =, we fid ha: (.) dz = = (.) dz = = sig( s b s ) d( s b s ) `b () d( b ) sig( b ) d( b ) d`b sig( b ) d () sig( b ) db () d( b ) sig( b ) d( b ) d`b d`b () sig( b ) d sig( b ) db d`b (). I he sequel we se D i i ad D ij =@x j as well as D i =@x i.. Applyig he Iˆo formula o F( ^ ) ad usig (.) we ge: (.3) F( ^ ) = F( ^) = F( ^) D if( ^ s ) d ^ i s D ijf( ^ s ) dh ^ i ; ^ j i s D if( ^ s ) d i s sig( s bs ) D F( ^ s ) d s Z sig( s bs ) D F( ^ s ) db s D F( ^ s ) d`b s () D ijf( s ) I( s < b s ) dh i ; j i s 4 D ijf( s ) I( s = b s ) dh i ; j i s 4 D ijf( ~ s ) I( s = b s ) dh ~ i ; ~ j i s D ijf( ~ s ) I( s > b s ) dh ~ i ; ~ j i s where i he las four iegrals we make use of he geeral fac: (.4) I(Y s = Y s ) dhy ; Y 3 i s = I(Y s = Y s ) dhy ; Y 3 i s wheever Y ; Y ad Y 3 are coiuous (oe-dimesioal) semimarigales. The ideiy (.4) ca easily be verified usig he Kuia-Waaabe iequaliy ad he occupaio imes formula (for more deails see he proof followig (3.) below). The righ-had side of (.3) ca furher be expressed i erms of ~ usig (.4) as follows: 4

5 (.5) F( ^ ) = F( ^) D if( s ) I( s < b s ) d i s D if( s ) I( s = b s ) d i s D if( ~ s ) I( s = b s ) d ~ i s D if( ~ s ) I( s > b s ) d ~ i s D F( s ) I( s = b s ) d s D F( s ) I( s < b s ) d s D F( ~ s ) I( s > b s ) d ~ s Z D F( ~ s ) I( s = b s ) d ~ s D F( s ) I( s = b s ) d`b s () D ijf( s ) I( s < b s ) dh i ; j i s 4 D ijf( s ) I( s = b s ) dh i ; j i s 4 D ijf( ~ s ) I( s = b s ) dh ~ i ; ~ j i s D ijf( ~ s ) I( s > b s ) dh ~ i ; ~ j i s. By groupig he correspodig erms i (.5) we obai: (.6) F( ^ ) = F( ^) D if( s ) I( s < b s ) d i s D ijf( s ) I( s < b s ) dh i ; j i s D if( s ) I( s = b s ) d i s 4 D ijf( s ) I( s = b s ) dh i ; j i s Z D F( s ) I( s = b s ) d`b s Z () D if( ~ s ) I( s > b s ) d ~ i s D if( ~ s ) I( s = b s ) d ~ i s D ijf( ~ s ) I( s > b s ) dh ~ i ; ~ j i s 4 D ijf( ~ s ) I( s = b s ) dh ~ i ; ~ j i s. 5

6 3. Applyig he Iˆo formula o F( ^ ) ad usig (.) we ge: (.7) F( ) = F( ) = F( ) D if( s ) d i s D ijf( s ) dh i ; j i s D if( s ) d i s sig( s bs ) D F( s ) d s Z sig( s bs ) D F( s ) db s D F( s ) d`b s Z () D ijf( s ) I( s > b s ) dh i ; j i s 4 D ijf( s ) I( s = b s ) dh i ; j i s 4 D ijf( ~ s ) I( s = b s ) dh ~ i ; ~ j i s D ijf( ~ s ) I( s < b s ) dh ~ i ; ~ j i s where i he las four iegrals we make use of he geeral fac (.4). The righ-had side of (.7) ca furher be expressed i erms of ~ usig (.4) as follows: (.8) F( ) = F( ) D if( s ) I( s > b s ) d i s D if( s ) I( s = b s ) d i s D if( ~ s ) I( s < b s ) d ~ i s D F( s ) I( s = b s ) d s D if( ~ s ) I( s = b s ) d ~ i s D F( s ) I( s > b s ) d s D F( ~ s ) I( s < b s ) d ~ s Z D F( ~ s ) I( s = b s ) d ~ s D F( s ) I( s = b s ) d`b s () D ijf( s ) I( s > b s ) dh i ; j i s 4 D ijf( s ) I( s = b s ) dh i ; j i s 4 D ijf( ~ s ) I( s = b s ) dh ~ i ; ~ j i s D ijf( ~ s ) I( s < b s ) dh ~ i ; ~ j i s. 6

7 By groupig he correspodig erms i (.8) we obai: (.9) F( ) = F( ) D if( s ) I( s < b s ) d i s D ijf( s ) I( s < b s ) dh i ; j i s D if( s ) I( s = b s ) d i s 4 D ijf( s ) I( s = b s ) dh i ; j i s Z D F( s ) I( s = b s ) d`b s () D if( ~ s ) I( s > b s ) d ~ i s D if( ~ s ) I( s = b s ) d ~ i s D ijf( ~ s ) I( s > b s ) dh ~ i ; ~ j i s 4 D ijf( ~ s ) I( s = b s ) dh ~ i ; ~ j i s. 4. Combiig he righ-had sides of (.6) ad (.9) we coclude: (.) F ( ) = F( ^ ) F( ) F ( ~ ) = F () D i F ( s ;... ; s ) D if ( s ;... ; s ) d i s Z D ij F ( s ;... ; s ) D ijf ( s ;... ; s ) dh i ; j i s Z D F ( s ;... ; s ) D F ( s ;... ; s ) I( s = b s ) d`b s () R where he fial erm is give by: (.) R = F ( ) ~ D if( ~ s ) I( s > b s ) d ~ i s Z D ijf( ~ s ) I( s > b s ) dh ~ i ; ~ j i s 4 D ijf( ~ s ) I( s = b s ) dh ~ i ; ~ j i s D if( ~ s ) I( s = b s ) d ~ i s D if( ~ s ) I( s < b s ) d ~ i s 7

8 4 D ijf( ~ s ) I( s < b s ) dh ~ i ; ~ j i s D ijf( ~ s ) I( s = b s ) dh ~ i ; ~ j i s F ( ~ ). D if( ~ s ) I( s = b s ) d ~ i s Hece we see ha (.6) will be proved if we show ha R =. Noe ha if F = F he he ideiy R = reduces o he Iˆo formula applied o F ( ~ ). I he geeral case we may proceed as follows. 5. Sice F(x) = F(x) for x = (x;... ; x ; b(x;... ; x )), we see ha he wo semimarigales F( ) ~ ad F( ) ~ coicide, so ha: (.) (.3) I( s > b s ) d(f ( ~ s )) = I( s = b s ) d(f ( ~ s )) = I( s > b s ) d(f ( ~ s )) I( s = b s ) d(f ( ~ s )). Applyig he Iô formula o F( ~ s ) ad F( ~ s ) we see ha (.) ad (.3) become: (.4) (.5) = = D if( ~ s ) I(s > b s ) d ~ s i D if( ~ s ) I(s > b s ) d ~ s i D if( ~ s ) I(s = b s ) d ~ s i D if( ~ s ) I(s = b s ) d ~ s i D ijf( ~ s ) I( s > b s ) h ~ i ; ~ j i s D ijf( ~ s ) I( s > b s ) h ~ i ; ~ j i s D ijf( ~ s ) I( s = b s ) h ~ i ; ~ j i s D ijf( ~ s ) I( s = b s ) h ~ i ; ~ j i s. Makig use of (.4) ad (.5) we see ha F i he firs four iegrals o he righ-had side of (.) ca be replaced by F. This combied wih he remaiig erms shows ha he ideiy R = reduces o he Iô formula applied o F( ~ ). This complees he proof of he heorem. Remark. The chage-of-variable formula (.6) ca obviously be exeded o he case whe isead of oe fucio b we are give fiiely may fucios b; b;... ; b m which do o iersec. More precisely, le = ( ;... ; ) be a coiuous semimarigale ad le us assume ha he followig codiios are saisfied: (.6) b k : IR! IR is coiuous such ha b k; = b k ( ;... ; ) is a semimarigale for k m (.7) F k : IR! IR is C i;...;i for k m where each i j equals or depedig o wheher j is of bouded variaio or o 8

9 (.8) F (x) = F (x) if x < b (x ;... ; x ) = F k (x) if b k (x ;... ; x ) < x < b k (x ;... ; x ) for k m = F m (x) if x > b m (x ;... ; x ) where F : IR! IR is coiuous ad x = (x ;... ; x ) belogs o IR. The he chage-of-variable formula (.6) exeds as follows: (.9) F ( ) = F ( ) ;... ; s ) (s ;... ; s ) i F ;... ; s F (s ;... ; s ) j m ;... ; s ) ;... ; s ) k= d i s dh i ; j i s I(s = bk; s ) d`bk s () where `bk s () is he local ime of o he surface b k give i (.5) above, ad d`bk s () refers o iegraio wih respec o s 7! `bk s (). Noe i paricular ha a ope se C i IR (such as a ball) ca ofe be described i erms of fucios b ; b ;... ; b m so ha (.9) becomes applicable. Perhaps he mos ieresig example of a fucio F is obaied by lookig a D = iff > j D g ad seig F (x) = E x (G( D )) where G is a admissible fucio ad = x uder P x for x IR. Oe such example will be sudied i Secio 4 below. Remark.3 The chage-of-variable formula (.6) is expressed i erms of he symmeric local ime (.5). I is evide from he proof above ha oe could also use he oe-sided local imes defied by: (.3) `b s (.3) `b s () = IP lim "# () = IP lim "# " " Z s Z s I( r b r < ") dh b ; b i r I(" < r b r ) dh b ; b i r. The uder he same codiios as i Theorem. we fid ha he followig wo equivale formulaios of (.6) are valid: (.3) F ( ) = F ( ( s ;... ; i ( s ;... ; s 7) d i j ( s ;... ; s 7) dh i ; j i s ( s ;... ; s ) I( s = b s ) d`b6 s (). Clearly (.9) above ca also be expressed i erms of oe-sided local imes. Noe fially ha if b is a coiuous local marigale, he he hree defiiios (.5), (.3) ad (.3) coicide. 9

10 3. Semimarigales wih jumps I his secio we will exed he chage-of-variable formula (.6) firs o semimarigales wih jumps of bouded variaio (Theorem 3.) ad he o geeral semimarigales (Theorem 3.).. Le = ( ;... ; ) be a semimarigale (see e.g. []). Recall ha each sample pah 7! i is righ coiuous ad has lef limis for i. I Theorem 3. below we will assume ha each semimarigale i has jumps of bouded variaio i he sese ha: (3.) <s j i sj < where i s = i s i s for i. I his case each i ca be uiquely decomposed io: (3.) i = i i;c i;d where i;c = M i;c A i;c is a coiuous semimarigale ad i;d is a discree semimarigale (of bouded variaio) give by: (3.3) i;d = Moreover, if F : IR! IR <s i s. (3.4) F ( ) = F () F ( s ) F ( s ) <s = F () <s i is C he Iˆo s formula akes ay of he wo equivale i ( s ) d i i ( s ) d i;c F ( s ) F ( s F ( s ) i F j ( s ) d[ i;c ; j;c ] j ( s ) d[ i;c ; j;c ] s Boh of hese forms will be used freely below wihou furher meioig. Le b : IR! IR be a coiuous fucio such ha he process b = b( ;... ; ) is a semimarigale wih jumps of bouded variaio. The b is a semimarigale wih jumps of bouded variaio ad he local ime of o he surface b is well-defied as follows: (3.5) `b s () = IP lim "# " Z s I(" < r b r < ") d[ b ; b ] c r where [ b ; b ] c is he coiuous (pah by pah) compoe of [ b ; b ]. Recallig ha ;c ad b ;c are coiuous semimarigales associaed wih ad b as i (3.) above, we kow ha [ b ; b ] c = [ ;c b ;c ; ;c b ;c ]. The followig heorem exeds he chage-of-variable formula (.6) o semimarigales wih jumps of bouded variaio.

11 Theorem 3. Le = ( ;... ; ) be a semimarigale where each i has jumps of bouded variaio, le b : IR! IR be a coiuous fucio such ha he process b = b( ;... ; ) is a semimarigale wih jumps of bouded variaio, ad le F : IR! IR be a coiuous fucio saisfyig (.3) ad (.4) above. The he followig chage-of-variable formula holds: <s (3.6) F ( ) = F () ;... ; s ) (s ;... ; s) i F ;... ; ) F (s ;... ; s) j F ( s ) F ( s) ;... ; s ) ;... ; s) d i;c s d[ i;c ; j;c ] s I( s = b s ; s = b s ) d`b s () where `bs () is he local ime of o he surface b give i (3.5) above, ad d`bs () refers o iegraio wih respec o he coiuous icreasig fucio s 7! `bs (). Proof. The proof ca be carried ou similarly o he proof of Theorem. ad we will oly highligh a few ovel pois appearig due o he exisece of jumps. The remaiig deails are he same as i he proof of Theorem... We begi as i he proof of Theorem. by iroducig he processes Z ; Z ; ^; ; ~ ad observig ha (.7)-(.9) carries over uchaged. Sice ad b boh have jumps of bouded variaio, i is easily see ha so do Z ad Z as well. Thus he aalogue of (.) which is obaied by applyig he Taaka formula reads: (3.7) j b j = j b j where <s sig( sb s j s b s j j s b sj ) d( ;c s sig() =. Similarly o (.) ad (.) we fid ha: (3.8) dz ;c = (3.9) dz ;c = b ;c s ) `b () sig(b ) ;c d sig(b ) ;c db d`b () sig(b ) ;c d sig(b ) ;c db d`b ().. Applyig he Iˆo formula o F( ^ ) we ge: (3.) F( ^ ) = F( ^) <s D if( ^ s) d F( ^ s )F( ^ s). ^ i;c s D ijf( ^ s) d[ ^ i;c ; ^

12 Hece usig (3.8) ad proceedig i he same way as i (.3) ad (.5) we obai he aalogue of he ideiy (.6) where all i ad ~ i i he iegraors (icludig hose wih he agle brackes) are replaced by i;c ad ~ i;c (ow wrie as he square brackes). I may be oed (as i he proof of Theorem.) ha i he precedig derivaio (ad i he derivaio followig (3.) below) we eed o make use of he geeral fac: (3.) I(Y s = Y s ) d[y ;c ; Y 3;c ] s = I(Y s = Y s ) d[y ;c ; Y 3;c ] s wheever Y ; Y ad Y 3 are (oe-dimesioal) semimarigales. To verify (3.) oe ha he claim is equivale o he fac ha for wo (oe-dimesioal) semimarigales Y ad Y we have I(Y s = ) d[y ;c ; Y ;c ] =. To derive he laer we may ivoke he Kuia-Waaabe iequaliy (cf. [; p.6]) accordig o which i is eough o show ha I(Y s = ) d[y ;c ; Y ;c ] =. This ideiy however follows by he occupaio imes formula (cf. [; p. 68]) sice g = fg equals zero almos everywhere wih respec o Lebesgue measure o IR. This proves (3.) i he geeral case (recall also (.4) above). 3. Applyig he Iˆo formula o F( ) we ge: (3.) F( ) = F( ) <s D if( s ) d i;c s F( s )F( s ). D ijf( s ) d[ i;c ; Hece usig (3.9) ad proceedig i he same way as i (.7) ad (.8) we obai he aalogue of he ideiy (.9) where all i ad ~ i i he iegraors (icludig hose wih he agle brackes) are replaced by i;c ad ~ i;c (ow wrie as he square brackes). 4. Combiig he righ-had sides of he resulig ideiies we fid he aalogue of (.) o be: (3.3) F ( ) = F( ^ ) F( ) F ( ~ ) = F () D i F ( s ;... ; s ) D if ( s ;... ; s) <s where we use ha: (3.4) <s = <s d i;c s D ij F ( s ;... ; s ) D ijf ( s ;... ; s) d[ i;c ; j;c ] s D F ( s ;... ; s ) D F ( s ;... ; s) F ( s )F ( s ) R F( ^ s )F( ^ s ) F ( s )F( s ) <s F( s )F( s ) <s d`b s () F ( ~ s )F ( ~ s )

13 ad he fial erm i (3.3) is give by: (3.5) R = F ( ) ~ 4 D if( ~ s) I(s > b s ) d ~ i;c s D ij F( ~ s) I( s > b s ) d[ ~ i;c ; ~ D if( ~ s) I(s = b s ) d ~ i;c s 4 D ij F( ~ s) I( s = b s ) d[ ~ i;c ; ~ D if( ~ s) I(s < b s ) d ~ i;c s D ij F( ~ s) I( s < b s ) d[ ~ i;c ; ~ D if( ~ s) I(s = b s ) d ~ i;c s D ij F( ~ s) I( s = b s ) d[ ~ i;c ; ~ F ( ~ ) c where F ( ) ~ c is he coiuous semimarigale par of F ( ) ~. From (3.3) ad (3.5) we see ha (3.6) will be proved if we show ha R =. 5. The same argumes as hose give i (.)-(.5) show agai ha F i he firs four iegrals o he righ-had side of (3.5) ca be replaced by F. This combied wih he remaiig erms shows ha he ideiy R = reduces o applyig he Iˆo formula o F( ~ ) ad ideifyig he coiuous par of he resulig semimarigale. This complees he proof of he heorem.. The codiio (3.) applied o he semimarigale b is he bes kow sufficie codiio for he local ime of o he surface b o be give by meas of he explici expressio (3.5) above. I he case of geeral semimarigales ad b, however, he local ime of o he surface b (i.e. he local ime of he semimarigale b a zero) ca sill be defied by meas of he Taaka formula (3.7) reaiig is role as he occupaio desiy relaive o he radom clock [ b ; b ] c (see [; p.68]) bu we do o have he explici represeaio (3.5) aymore ad he use of he local ime is somewha less raspare. If = ( ;... ; ) is a geeral semimarigale (o ecessarily saisfyig (3.) above) he each i ca sill be decomposed io (3.) wih i;c = M i;c A i;c ad i;d = M i;d A i;d where M i;c is a coiuous local marigale, A i;c is a coiuous process of bouded variaio, M i;d is a purely discoiuous local marigale, ad A i;d is a pure jump process of bouded variaio. Sice he codiio (3.) may fail (due o he exisece of may small jumps) we kow ha Iô s formula akes oly he firs form i (3.4) above. I is well-kow (ad easily verified 3

14 by localizaio usig Taylor s heorem) ha he firs series over < s i (3.4) is absoluely coverge (eve if (3.) fails o hold). The followig heorem exeds he chage-of-variable formula (.6) o geeral semimarigales. Noe ha (.), (.6) ad (3.6) above are special cases of he geeral formula (3.6) below. Theorem 3. Le = ( ;... ; ) be a semimarigale, le b : IR! IR be a coiuous fucio such ha he process b = b( ;... ; ) is a semimarigale, ad le F : IR! IR be a coiuous fucio saisfyig (.3) ad (.4) above. The he followig chage-of-variable formula holds: (3.6) F ( ) = F () ;... ; s ) (s ;... ; s) i F ;... ; ) F (s ;... ; s) j <s F ( s )F ( ( s ;... ; s d i s d[ i;c ; j;c ] s ;... ; s ) (s ;... ; s) i ) ;... ; s) i s! I( s = b s ; s = b s ) d`b s () where `bs () is he local ime of o he surface b give by meas of (3.7) below ad d`bs () refers o iegraio wih respec o he coiuous icreasig fucio s 7! `bs (). Proof. The proof ca be carried ou similarly o he proof of Theorem. ad Theorem 3. ad we will oly highligh a few ovel pois appearig due o he absece of he codiio (3.). The remaiig deails are he same as i he proof of Theorem. ad Theorem 3... We begi as i he proof of Theorem. by iroducig he processes Z ; Z ; ^; ; ~ ad observig ha (.7)-(.9) carries over uchaged. The aalogue of (.) which is obaied by applyig he Taaka formula ow reads: (3.7) j b j = j b j sig(sb s ) d( s b s ) `b () j s b s j j sb sj sig( sb s ) ( b ) s where <s sig() =. Similarly o (.) ad (.) we ow fid ha: (3.8) dz = sig( b ) d sig( b ) db d`b () dj () (3.9) dz = sig( b ) d sig( b ) db d`b () dj () where we deoe: (3.) J () = <s j s bs j j s bs j sig( s bs ) ( b ) s. 4

15 . Applyig he Iˆo formula o F( ^ ) we ge: (3.) F( ^ ) = F( ^) <s D if( ^ s) d ^ i s F( ^ s )F( ^ s) D i F( ^ s) i s D ijf( ^ s) d[ ^ i;c ; ^ Hece usig (3.8) ad proceedig i he same way as i (.3) ad (.5), makig use of he geeral fac (3.), we obai he aalogue of he ideiy (.6) where all i ad ~ i i he iegraors wih he agle brackes are replaced by i;c ad ~ i;c ow wrie as he square brackes, ad he righ-had side of he ideiy coais a ew erm give by: (3.) D F( ^ s) dj s () due o he appearace of dj () i (3.8). 3. Applyig he Iˆo formula o F( ) we ge: (3.3) F( ) = F( ) <s D if( s) d i s F( s )F( s) D i F( s) i s. D ijf( s) d[ i;c ; Hece usig (3.9) ad proceedig i he same way as i (.7) ad (.8), makig use of he geeral fac (3.), we obai he aalogue of he ideiy (.9) where all i ad ~ i i he iegraors wih he agle brackes are replaced by i;c ad ~ i;c ow wrie as he square brackes, ad he righ-had side of he ideiy coais a ew erm give by: (3.4) D F( s) dj s () due o he appearace of dj () i (3.9). 4. Combiig he righ-had sides of he resulig ideiies we fid he aalogue of (.) o be: (3.5) F ( ) = F( ^ ) F( ) F ( ~ ) = F () D i F (s ;... ; s ) D if (s ;... ; s) where he fial erm is give by:. d i s D ij F (s ;... ; s ) D ijf (s ;... ; s) d[ i;c ; j;c ] s D F ( s ;... ; s ) D F ( s ;... ; s) d`b s () R 5

16 (3.6) R = F ( ) ~ 4 4 D if( ~ s) I( s > b s ) d ~ i s D ijf( ~ s) I( s > b s ) d[ ~ i;c ; ~ D if( ~ s) I( s = b s ) d ~ i s <s <s D ijf( ~ s) I( s = b s ) d[ ~ i;c ; ~ D if( ~ s) I( s < b s ) d ~ i s D ijf( ~ s) I( s < b s ) d[ ~ i;c ; ~ D if( ~ s) I( s = b s ) d ~ i s D ijf( ~ s) I( s = b s ) d[ ~ i;c ; ~ F ( ~ ) F( ^ s ) F( ^ s) F( s ) F( s) D F( s) dj s () D i F( ^ s) ^ i s D i F( s) i s D F( ^ s) dj s (). 5. The same argumes as hose give i (.) ad (.3) ow lead o he followig aalogues of (.4) ad (.5) respecively: (3.7) (3.8) = D if( ~ s) I(s > b s ) d ~ i s I(s > b s ) <s F( ~ s ) F( ~ s) D if( ~ s) I(s > b s ) d ~ i s I(s > b s ) <s D ijf( ~ s) I( s > b s ) [ ~ i;c ; ~ F( ~ s ) F( ~ s) D if( ~ s) I( s = b s ) d ~ i s D i F( ~ s) ~ i s D ijf( ~ s) I( s > b s ) [ ~ i;c ; ~ D i F( ~ s) ~ i s D ijf( ~ s) I( s = b s ) [ ~ i;c ; ~ 6

17 = <s I( s = b s ) F( ~ s ) F( ~ s) D if( ~ s) I(s = b s ) d ~ i s I(s = b s ) <s F( ~ s ) F( ~ s) D i F( ~ s) ~ i s D ijf( ~ s) I( s = b s ) [ ~ i;c ; ~ D i F( ~ s) ~ i s Makig use of (3.7) ad (3.8) we see ha F i he firs four iegrals i (3.6) ca be replaced by F upo akig io accou he four series over < s appearig i (3.7) ad (3.8). Addig ad subracig he same series over < s we see ha he firs ie erms o he righ-had side of (3.6), ogeher wih he series added, assemble exacly he expressio obaied by applyig he Iˆo formula o F( ~ ). Sice F ( ~ ) = F( ~ ) hece we see ha he firs e erms obaied o he righ-had side of (3.6) equals he eleveh erm which is he series subraced. Recallig also he four series from (3.7) ad (3.8) his shows ha: (3.9) R = I(s > b s ) F( ~ s ) F( ~ s) <s I(s > b s ) F( ~ s ) F( ~ s) <s <s <s <s <s <s I( s = b s ) I( s = b s ) F( ~ s ) F( ~ s) D i F( ~ s) ~ i s F( ~ s ) F( ~ s) F( ~ s ) F( ~ s) F( ^ s ) F( ^ s) F( s ) F( s) D F( s) dj s () D i F( ~ s) ~ i s D i F( ^ s) ^ i s D i F( s) i s. D i F( ~ s) ~ i s D i F( ~ s) ~ i s D i F( ~ s) ~ i s D F( ^ s) dj s (). From (3.5) we hus see ha he proof of (3.6) reduces o verify he followig ideiy: (3.3) R = F ( s ) F ( s) I(s < b s ) D if( s) i s <s I( s = b s ) D i F( ~ s) D i F( ~ s) I( s > b s ) D if( s) i s. i s 7

18 To his ed i is helpful o oe ha: (3.3) Z D F ( s) dj s () D F ( ^ s) dj s () = <s <s <s <s I( s > b s ; s = b s ) D F ( ~ s) D F ( ~ s) I( s > b s ; s < b s ) D F ( ~ s) D F ( s) I( s < b s ; s > b s ) D F ( s) D F ( ~ s) ( s b s ) ( s b s ) ( s b s ) I( s < b s ; s = b s D ) F ( ~ s) D F ( ~ s) ( s b s ). A leghy bu sraighforward verificaio shows ha he wo sides i (3.3) coicide i.e. ha he righ-had side of (3.9) equals he righ-had side of (3.3). This ca be doe by recallig ha each series over < s i (3.9) ad (3.3) is absoluely coverge so ha all eleve of hem appearig o he righ-had side of (3.9) ca be combied io a sigle series of he fiie sum of he eleve idividual erms. Muliplyig he sum by each of he idicaors I(s > b s ; s = b s ), I(s = b s ; s = b s ), I( s < b s ; s = b s ), I( s b s ; s > b s ), I( s < b s ; s > b s ), I(s > b s ; s < b s ), I( s = b s ; s < b s ), I( s < b s ; s < b s ) ad comparig he resul wih he correspodig expressio o he righ-had side of (3.3) i is see ha all eigh of hem coicide. This esablishes he ideiy (3.3) ad complees he proof of he heorem. Remark 3.3 I is evide ha he coes of Remark. ad Remark.3 carry over o he seig of Theorem 3. (or Theorem 3.) wihou major chage. By addig he correspodig jump erms o (.9) ad (.3) oe obais heir exesio o geeral semimarigales (or semimarigales wih jumps of bouded variaio). We will omi he explici expressios of hese formulas. 4. The ime-space maximum process I his secio we firs apply he chage-of variable formula (.6) o a hree-dimesioal coiuous semimarigale ad he derive a versio of he same formula uder weaker codiios o he fucio. This versio is useful i he sudy of free-boudary problems.. Le be a diffusio process solvig: (4.) d = (; ) d (; ) db i Iˆo s sese. The laer more precisely meas ha saisfies: (4.) = (r; r ) dr (r; r ) db r for all where ad are locally bouded (coiuous) fucios for which he iegrals 8

19 i (4.) are well-defied (he secod beig Iˆo s) so ha iself is a coiuous semimarigale (he process B is a sadard Browia moio). To esure ha is o-degeerae we will assume ha >. Associaed wih we cosider he maximum process S defied by: (4.3) S = max r r _ S. The ((; ; S )) is a coiuous semimarigale akig values i IR E where we se E = f (x; s) IR j x sg.. Le b : IR IR! IR be a coiuous fucio such ha he process b defied by b = b(; S ) is a semimarigale. Seig: (4.4) C = f (; x; s) IR E j x > b(; s) g (4.5) D = f (; x; s) IR E j x < b(; s) g suppose ha a coiuous fucio F : IR E! IR is give such ha: (4.6) F is C ;; o C (4.7) F is C ;; o D i he sese explaied followig (.3) ad (.4) above. [A sligh oaioal chage i he defiiio of he process ((; ; S )) ad he ses C ad D i compariso wih hose give i Secio above is made o mee he oaio used i [] ad relaed papers.] Moreover, sice > i follows ha: = for r h; ] (4.8) P r = b r so ha uder (4.6) ad (4.7) he chage-of-variable formula (.6) akes he simpler form: (4.9) F (; ; S ) = F (; ; S ) F (r; r ; S r ) I( r 6= b r ) dr F x (r; r ; S r ) I( r 6= b r ) d r F xx (r; r ; S r ) I( r 6= b r ) dh; i r F x (r; r ; S r ) F x (r; r ; S r ) d`b r () where `br () is he local ime of o he surface b give by: (4.) `b r () = IP lim "# " Z r I(" < u b u < ") dhb ; b i u F s (r; r ; S r ) I( r 6= b r ) ds r ad d`br () i (4.9) refers o iegraio wih respec o he coiuous icreasig fucio r 7! `br (). [The appearace of i d`br () is moivaed by he fac ha S is a fucioal 9

20 of.] Noe also ha usig (4.) he formula (4.9) ca be rewrie as (4.) below. 3. I urs ou, however, ha similarly o he case sudied i Secio 3 of [] he codiios (4.6) ad (4.7) are o always readily verified. The mai example we have i mid (arisig from he free-boudary problems meioed above) is: (4.) F (; x; s) = E ;x;s G( D ; D ; S D ) where ( ; S ) = (x; s) uder P ;x;s, a admissible fucio G is give ad fixed, ad: (4.) D = if f r > j (r; r ; S r ) D g. The oe direcly obais he ierior codiio (4.3) by sadard meas while he closure codiio (4.6) is harder o verify a b sice (uless we kow a priori ha r 7! b(r; s) is Lipschiz coiuous or eve differeiable) boh F ad F xx may i priciple diverge whe b is approached from he ierior of C. Moivaed by applicaios i free-boudary problems we will ow prese a versio of he formula (4.9) where (4.6) ad (4.7) are replaced by he codiios: (4.3) F is C ;; o C (4.4) F is C ;; o D. The raioale behid his versio is he same as i []. Give ha oe has some basic corol over F x a b (i free-boudary problems meioed above such a corol is provided by he priciple of smooh fi) eve if F is formally o diverge whe he boudary b is approached from he ierior of C, his deficiecy is couerbalaced by a similar behaviour of F xx hrough he ifiiesimal geeraor of, ad cosequely he firs iegral i (4.) below is sill well-defied ad fiie. 4. Give a subse A of IR E ad a fucio f : A! IR we say ha f is locally bouded o A ( i IR E ) if for each a i A here is a ope se U i IR E coaiig a such ha f resriced o A \ U is bouded. Noe ha f is locally bouded o A if ad oly if for each compac se K i IR E he resricio of f o A\K 6= ; is bouded. Give a fucio g : [; ]! IR of bouded variaio we le V (g)() deoe he oal variaio of g o [; ]. To grasp he meaig of he codiio (4.9) below i he case of F from (4.) above, leig ( =@x deoe he ifiiesimal geeraor of, recall ha he ifiiesimal geeraor IL of ((; ; S )) ca formally be described as follows (cf. []): (4.5) IL = IL i x < = a x = s. Deoig C s = f (; x) j (; x; s) C g ad D s = f (; x) j (; x; s) D g hece we see ha: (4.7) ILF = i C s (4.8) ILF = ILG i D s. This shows ha ILF is locally bouded o C s [ D s as soo as ILG is so o D s. The laer

21 codiio (i free-boudary problems) is easily verified sice G is give explicily. The mai resul of he prese secio may ow be saed as follows (see also Remark 4. below for furher sufficie codiios). Theorem 4. Le be a diffusio process solvig (4.) i Iô s sese, le b : IR IR! IR be a coiuous fucio such ha he process b defied by b = b(; S ) is a semimarigale, ad le F : IR E! IR be a coiuous fucio saisfyig (4.3) ad (4.4) above. If he followig codiios are saisfied: (4.9) F F x ( =)F xx ( ; ; s) is locally bouded o C s [ D s (4.) F x ( ; b( ; s)6"; s)! F x ( ; b( ; s)6; s) uiformly o [; ] as " # (4.) sup V (F ( ; b( ; s)6"; s))() < for some > <"< for each s give ad fixed, he he followig chage-of-variable formula holds: (4.) F (; ; S ) = F (; ; S ) F F x ( =)F xx (r; r ; S r ) I( r 6= b r ) dr (F x )(r; r ; S r ) I( r 6= b r ) db r F s (r; r ; S r ) I( r 6= b r ; r = S r ) ds r Z F x (r; r ; S r )F x (r; r ; S r ) I( r = b r ) d`b r() where `br() is he local ime of a he surface b give by (4.) above, ad d`br() refers o iegraio wih respec o he coiuous icreasig fucio r 7! `br(). Proof. The key observaio is ha off he diagoal x = s i E he process (; ; S ) ca be ideified wih a process (; ) ad he surface process b(; S ) ca be ideified wih a curve b(). By slighly exedig he wo-map argume give i Remark 4. of [6] he previous observaio ca be embedded rigorously i a well-defied mahemaical seig. I his seig he problem becomes equivale o he problem reaed i Theorem 3. of []. Applyig he same mehod of proof, upo makig use of (.6) ad (.9) above, ad relyig upo he properies of he local ime ad Helly s selecio heorem, i is see ha he codiios (3.6)-(3.8) i Theorem 3. of [] become he codiios (4.9)-(4.) above. As his verificaio is leghy, bu i priciple he same, furher deails will be omied (for more deails see []). Remark 4. I is evide ha all of he umber of sufficie codiios discussed i [], which are eiher o imply (4.9)-(4.) or could be used isead, ca easily be raslaed io he prese seig. We will sae explicily oly oe se of hese codiios. Assume ha F saisfies (4.3) ad (4.4)

22 above. If (4.9) is saisfied ad for each s give ad fixed we have: (4.3) x 7! F (r; x; s) is covex or cocave o [b(r; s); b(r; s)] ad covex or cocave o [b(r; s); b(r; s)] for each r [; ] wih some > (4.4) r 7! F x (r; b(r; s)6; s) is coiuous o [; ] wih values i IR he boh (4.) ad (4.) hold. This shows ha (4.3) ad (4.4) imply (4.) whe (4.9) holds. The codiio (4.3) ca furher be relaxed o he form where: (4.5) F xx ( ; ; s) = G ( ; ; s) G ( ; ; s) o C s [ D s where G ( ; ; s) is o-egaive (o-posiive) ad G ( ; ; s) is coiuous o C s ad D s for each s give ad fixed. Thus, if (4.4) ad (4.5) hold, he boh (4.) ad (4.) hold implyig also (4.) whe (4.9) holds. REFERENCES [] EISENBAUM, N. (). Iegraio wih respec o local ime. Poeial Aal. 3 (33-38). [] EISENBAUM, N. (4). Local ime-space sochasic calculus for Lévy processes. Prepri. [3] ELWORTHY, K. D., TRUMAN, A. ad ZHAO, H. Z. (3). A geeralized Iˆo formula ad asympoics of hea equaios wih causics, i oe-dimesio. Prepri. [4] FÖLLMER, H., PROTTER, P. ad SHIRYAYEV, A. N. (995). Quadraic covariaio ad a exesio of Iô s formula. Beroulli (49-69). [5] GHOMRASNI. R. ad PESKIR, G. (3). Local ime-space calculus ad exesios of Iˆo s formula. Proc. High Dim. Probab. III (Sadbjerg ), Progr. Probab. Vol. 55, Birkhäuser Basel (77-9). [6] GRAVERSEN, S. E. ad PESKIR, G. (998). Opimal soppig ad maximal iequaliies for geomeric Browia moio. J. Appl. Probab. 35 (856-87). [7] ITÔ, K. (944). Sochasic iegral. Proc. Imp. Acad. Tokyo (59-54). [8] KYPRIANOU, A. E. ad SURYA, B. A. (4). A chage-of-variable formula wih local ime o curves for Lévy processes of bouded variaio. Prepri. [9] MEYER, P. A. (976). U cours sur les iégrales sochasiques. Sém. Probab., Lecure Noes i Mah. 5 (45-4). [] PESKIR, G. (998). Opimal soppig of he maximum process: The maximaliy priciple. A. Probab. 6 (64-64). [] PESKIR, G. (5). A chage-of-variable formula wih local ime o curves. J. Theore. Probab. 8 ( ). [] PROTTER, P. (4). Sochasic Iegraio ad Differeial Equaios. Spriger-Verlag, Berli.

23 [3] REVUZ, D. ad YOR, M. (999). Coiuous Marigales ad Browia Moio. Spriger- Verlag, Berli. [4] TANAKA, H. (963). Noe o coiuous addiive fucioals of he -dimesioal Browia pah. Z. Wahrscheilichkeisheorie ud Verw. Gebiee (5-57). [5] WANG, A. T. (977). Geeralized Iô s formula ad addiive fucioals of Browia moio. Z. Wahrscheilichkeisheorie ud Verw. Gebiee 4 (53-59). Gora Peskir Deparme of Mahemaical Scieces Uiversiy of Aarhus, Demark Ny Mukegade, DK-8 Aarhus home.imf.au.dk/gora gora@imf.au.dk 3

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral Usig Lii's Ideiy o Approimae he Prime Couig Fucio wih he Logarihmic Iegral Naha McKezie /26/2 aha@icecreambreafas.com Summary:This paper will show ha summig Lii's ideiy from 2 o ad arragig erms i a cerai

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES The Aals of Probabiliy 996, Vol, No 3, 3077 GAUSSIAN CAOS AND SAMPLE PAT PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES BY MICAEL B MARCUS AND JAY ROSEN Ciy College of CUNY ad College

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

Math 2414 Homework Set 7 Solutions 10 Points

Math 2414 Homework Set 7 Solutions 10 Points Mah Homework Se 7 Soluios 0 Pois #. ( ps) Firs verify ha we ca use he iegral es. The erms are clearly posiive (he epoeial is always posiive ad + is posiive if >, which i is i his case). For decreasig we

More information

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1)

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1) Fourier Series Iroducio I his secio we will sudy periodic sigals i ers o heir requecy is said o be periodic i coe Reid ha a sigal ( ) ( ) ( ) () or every, where is a uber Fro his deiiio i ollows ha ( )

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

Fermat Numbers in Multinomial Coefficients

Fermat Numbers in Multinomial Coefficients 1 3 47 6 3 11 Joural of Ieger Sequeces, Vol. 17 (014, Aricle 14.3. Ferma Numbers i Muliomial Coefficies Shae Cher Deparme of Mahemaics Zhejiag Uiversiy Hagzhou, 31007 Chia chexiaohag9@gmail.com Absrac

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

Economics 8723 Macroeconomic Theory Problem Set 2 Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 2 Professor Sanjay Chugh Spring 2017 Deparme of Ecoomics The Ohio Sae Uiversiy Ecoomics 8723 Macroecoomic Theory Problem Se 2 Professor Sajay Chugh Sprig 207 Labor Icome Taxes, Nash-Bargaied Wages, ad Proporioally-Bargaied Wages. I a ecoomy

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

Completeness of Random Exponential System in Half-strip

Completeness of Random Exponential System in Half-strip 23-24 Prepri for School of Mahemaical Scieces, Beijig Normal Uiversiy Compleeess of Radom Expoeial Sysem i Half-srip Gao ZhiQiag, Deg GuaTie ad Ke SiYu School of Mahemaical Scieces, Laboraory of Mahemaics

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

Fresnel Dragging Explained

Fresnel Dragging Explained Fresel Draggig Explaied 07/05/008 Decla Traill Decla@espace.e.au The Fresel Draggig Coefficie required o explai he resul of he Fizeau experime ca be easily explaied by usig he priciples of Eergy Field

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique MASSACHUSETTS ISTITUTE OF TECHOLOGY 6.265/5.070J Fall 203 Lecure 4 9/6/203 Applicaios of he large deviaio echique Coe.. Isurace problem 2. Queueig problem 3. Buffer overflow probabiliy Safey capial for

More information

Paper 3A3 The Equations of Fluid Flow and Their Numerical Solution Handout 1

Paper 3A3 The Equations of Fluid Flow and Their Numerical Solution Handout 1 Paper 3A3 The Equaios of Fluid Flow ad Their Numerical Soluio Hadou Iroducio A grea ma fluid flow problems are ow solved b use of Compuaioal Fluid Damics (CFD) packages. Oe of he major obsacles o he good

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction Malaysia Joural of Mahemaical Scieces 9(): 49-5 (5) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/joural Some Newo s Type Ieualiies for Geomerically Relaive Covex Fucios

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems Ausralia Joural of Basic ad Applied Scieces, 4(1): 518-57, 1 ISSN 1991-8178 Homoopy Aalysis Mehod for Solvig Fracioal Surm-Liouville Problems 1 A Neamay, R Darzi, A Dabbaghia 1 Deparme of Mahemaics, Uiversiy

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

11. Adaptive Control in the Presence of Bounded Disturbances Consider MIMO systems in the form,

11. Adaptive Control in the Presence of Bounded Disturbances Consider MIMO systems in the form, Lecure 6. Adapive Corol i he Presece of Bouded Disurbaces Cosider MIMO sysems i he form, x Aref xbu x Bref ycmd (.) y Cref x operaig i he presece of a bouded ime-depede disurbace R. All he assumpios ad

More information

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists CSE 41 Algorihms ad Daa Srucures 10/14/015 Skip Liss This hadou gives he skip lis mehods ha we discussed i class. A skip lis is a ordered, doublyliked lis wih some exra poiers ha allow us o jump over muliple

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES. Boundary Value Problem for the Higher Order Equation with Fractional Derivative

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES. Boundary Value Problem for the Higher Order Equation with Fractional Derivative Malaysia Joural of Maheaical Scieces 7(): 3-7 (3) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural hoepage: hp://eispe.up.edu.y/joural Boudary Value Proble for he Higher Order Equaio wih Fracioal Derivaive

More information

On Another Type of Transform Called Rangaig Transform

On Another Type of Transform Called Rangaig Transform Ieraioal Joural of Parial Differeial Equaios ad Applicaios, 7, Vol 5, No, 4-48 Available olie a hp://pubssciepubcom/ijpdea/5//6 Sciece ad Educaio Publishig DOI:69/ijpdea-5--6 O Aoher Type of Trasform Called

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS

FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS JIE HAN AND YI ZHAO Absrac For d l

More information

Solutions to Problems 3, Level 4

Solutions to Problems 3, Level 4 Soluios o Problems 3, Level 4 23 Improve he resul of Quesio 3 whe l. i Use log log o prove ha for real >, log ( {}log + 2 d log+ P ( + P ( d 2. Here P ( is defied i Quesio, ad parial iegraio has bee used.

More information

12 Getting Started With Fourier Analysis

12 Getting Started With Fourier Analysis Commuicaios Egieerig MSc - Prelimiary Readig Geig Sared Wih Fourier Aalysis Fourier aalysis is cocered wih he represeaio of sigals i erms of he sums of sie, cosie or complex oscillaio waveforms. We ll

More information

Electrical Engineering Department Network Lab.

Electrical Engineering Department Network Lab. Par:- Elecrical Egieerig Deparme Nework Lab. Deermiaio of differe parameers of -por eworks ad verificaio of heir ierrelaio ships. Objecive: - To deermie Y, ad ABD parameers of sigle ad cascaded wo Por

More information

ECE 350 Matlab-Based Project #3

ECE 350 Matlab-Based Project #3 ECE 350 Malab-Based Projec #3 Due Dae: Nov. 26, 2008 Read he aached Malab uorial ad read he help files abou fucio i, subs, sem, bar, sum, aa2. he wrie a sigle Malab M file o complee he followig ask for

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

ON THE n-th ELEMENT OF A SET OF POSITIVE INTEGERS

ON THE n-th ELEMENT OF A SET OF POSITIVE INTEGERS Aales Uiv. Sci. Budapes., Sec. Comp. 44 05) 53 64 ON THE -TH ELEMENT OF A SET OF POSITIVE INTEGERS Jea-Marie De Koick ad Vice Ouelle Québec, Caada) Commuicaed by Imre Káai Received July 8, 05; acceped

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

Inference for Stochastic Processes 4. Lévy Processes. Duke University ISDS, USA. Poisson Process. Limits of Simple Compound Poisson Processes

Inference for Stochastic Processes 4. Lévy Processes. Duke University ISDS, USA. Poisson Process. Limits of Simple Compound Poisson Processes Poisso Process Iferece for Sochasic Processes 4. Lévy Processes τ = δ j, δ j iid Ex X sup { Z + : τ }, < By ober L. Wolper Duke Uiversiy ISDS, USA [X j+ X j ] id Po [ j+ j ],... < evised: Jue 8, 5 E[e

More information

Supplementary Information for Thermal Noises in an Aqueous Quadrupole Micro- and Nano-Trap

Supplementary Information for Thermal Noises in an Aqueous Quadrupole Micro- and Nano-Trap Supplemeary Iformaio for Thermal Noises i a Aqueous Quadrupole Micro- ad Nao-Trap Jae Hyu Park ad Predrag S. Krsić * Physics Divisio, Oak Ridge Naioal Laboraory, Oak Ridge, TN 3783 E-mail: krsicp@orl.gov

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3 Ieraioal Joural of Saisics ad Aalysis. ISSN 48-9959 Volume 6, Number (6, pp. -8 Research Idia Publicaios hp://www.ripublicaio.com The Populaio Mea ad is Variace i he Presece of Geocide for a Simple Birh-Deah-

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich)

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich) Proc. Amer. Mah. Soc. 19(001, o. 1, 3471 3478. AN EXTENSION OF LUCAS THEOREM Hog Hu ad Zhi-Wei Su (Commuicaed by David E. Rohrlich Absrac. Le p be a prime. A famous heorem of Lucas saes ha p+s p+ ( s (mod

More information

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 193-9466 Vol. 5, No. Issue (December 1), pp. 575 584 (Previously, Vol. 5, Issue 1, pp. 167 1681) Applicaios ad Applied Mahemaics: A Ieraioal Joural

More information

LIMITS OF FUNCTIONS (I)

LIMITS OF FUNCTIONS (I) LIMITS OF FUNCTIO (I ELEMENTARY FUNCTIO: (Elemeary fucios are NOT piecewise fucios Cosa Fucios: f(x k, where k R Polyomials: f(x a + a x + a x + a x + + a x, where a, a,..., a R Raioal Fucios: f(x P (x,

More information

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series Mahemaical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol.7, No.5, 7 A Sudy O (H, )(E, q) Produc Summabiliy Of Fourier Series Ad Is Cojugae Series Sheela Verma, Kalpaa Saxea * Research Scholar

More information

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY ZHEN-GUO DENG ad GUO-CHENG WU 2, 3 * School of Mahemaics ad Iformaio Sciece, Guagi Uiversiy, Naig 534, PR Chia 2 Key Laboraory

More information

RENEWAL THEORY FOR EMBEDDED REGENERATIVE SETS. BY JEAN BERTOIN Universite Pierre et Marie Curie

RENEWAL THEORY FOR EMBEDDED REGENERATIVE SETS. BY JEAN BERTOIN Universite Pierre et Marie Curie The Aals of Probabiliy 999, Vol 27, No 3, 523535 RENEWAL TEORY FOR EMBEDDED REGENERATIVE SETS BY JEAN BERTOIN Uiversie Pierre e Marie Curie We cosider he age processes A A associaed o a moooe sequece R

More information

Energy Density / Energy Flux / Total Energy in 1D. Key Mathematics: density, flux, and the continuity equation.

Energy Density / Energy Flux / Total Energy in 1D. Key Mathematics: density, flux, and the continuity equation. ecure Phys 375 Eergy Desiy / Eergy Flu / oal Eergy i D Overview ad Moivaio: Fro your sudy of waves i iroducory physics you should be aware ha waves ca raspor eergy fro oe place o aoher cosider he geeraio

More information

ON HYPERSURFACES STEVEN N. EVANS. Abstract. The (n, 1)-dimensional simplex is the collection of probability

ON HYPERSURFACES STEVEN N. EVANS. Abstract. The (n, 1)-dimensional simplex is the collection of probability DIFFUSIONS ON THE SIMPLE FROM BROWNIAN MOTIONS ON HYPERSURFACES STEVEN N. EVANS Absrac. The (, )-dimesioal simplex is he collecio of probabiliy measures o a se wih pois. May applied siuaios resul i simplexvalued

More information

Lecture 15: Three-tank Mixing and Lead Poisoning

Lecture 15: Three-tank Mixing and Lead Poisoning Lecure 15: Three-ak Miig ad Lead Poisoig Eigevalues ad eigevecors will be used o fid he soluio of a sysem for ukow fucios ha saisfy differeial equaios The ukow fucios will be wrie as a 1 colum vecor [

More information

An approximate approach to the exponential utility indifference valuation

An approximate approach to the exponential utility indifference valuation A approximae approach o he expoeial uiliy idifferece valuaio akuji Arai Faculy of Ecoomics, Keio Uiversiy, 2-15-45 Mia, Miao-ku, okyo, 18-8345, Japa e-mail: arai@ecokeioacjp) Absrac We propose, i his paper,

More information

Pure Math 30: Explained!

Pure Math 30: Explained! ure Mah : Explaied! www.puremah.com 6 Logarihms Lesso ar Basic Expoeial Applicaios Expoeial Growh & Decay: Siuaios followig his ype of chage ca be modeled usig he formula: (b) A = Fuure Amou A o = iial

More information

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER Maerials Physics ad Mechaics 3 (5) 36-4 Received: March 7 5 METHOD OF THE EQUIVAENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBEM FOR EASTIC DIFFUSION AYER A.V. Zemsov * D.V. Tarlaovsiy Moscow Aviaio Isiue

More information

Boundary-to-Displacement Asymptotic Gains for Wave Systems With Kelvin-Voigt Damping

Boundary-to-Displacement Asymptotic Gains for Wave Systems With Kelvin-Voigt Damping Boudary-o-Displaceme Asympoic Gais for Wave Sysems Wih Kelvi-Voig Dampig Iasso Karafyllis *, Maria Kooriaki ** ad Miroslav Krsic *** * Dep. of Mahemaics, Naioal Techical Uiversiy of Ahes, Zografou Campus,

More information

arxiv: v1 [math.pr] 16 Dec 2018

arxiv: v1 [math.pr] 16 Dec 2018 218, 1 17 () arxiv:1812.7383v1 [mah.pr] 16 Dec 218 Refleced BSDEs wih wo compleely separaed barriers ad regulaed rajecories i geeral filraio. Baadi Brahim ad Oukie Youssef Ib Tofaïl Uiversiy, Deparme of

More information