arxiv: v1 [math.pr] 16 Dec 2018

Size: px
Start display at page:

Download "arxiv: v1 [math.pr] 16 Dec 2018"

Transcription

1 218, 1 17 () arxiv: v1 [mah.pr] 16 Dec 218 Refleced BSDEs wih wo compleely separaed barriers ad regulaed rajecories i geeral filraio. Baadi Brahim ad Oukie Youssef Ib Tofaïl Uiversiy, Deparme of mahemaics, faculy of scieces, BP 133, Kéira, Morocco address: brahim.baadi@ui.ac.ma Cadi Ayyad Uiversiy, Av. Abdelkrim Khaabi 4, Guéliz Marrakesh, Morocco, ad Hassa II Academy of Scieces ad Techology, Raba, Morocco. address: oukie@uca.ma Absrac. I his paper, we sudy doubly refleced Backward Sochasic Differeial Equaios defied o probabiliy spaces equipped wih filraio saisfyig oly he usual assumpios of righ coiuiy ad compleeess i he case where he barriers L ad U do saisfy ay regulariy assumpio (wihou righ coiuiy). We suppose ha he barriers L ad U ad heir lef limis are compleely separaed ad we show exisece ad uiqueess of he soluio. 1. Iroducio. I his paper, we sudy he problem of exisece ad uiqueess of he soluio of backward sochasic differeial equaios (BSDE) wih wo reflecig opioal barriers (or obsacles) L ad U. Our mai i his work is o deal wih equaios o probabiliy space wih geeral filraio F = {F, } saisfyig oly usual codiios of righ coiuiy ad compleeess. Also, we assume ha he lower barrier L ad he upper barrier U are compleely separaed i he sese ha (L < U ) ad (L < U ) for all [,T] ad which are wo regulaed process, i.e. processes whose rajecories have lef ad righ fiie limi. Cosequely, he soluio of hese equaios eed o be càdlàg bu are called regulaed processes. Precisely, a soluio for he BSDE wih wo reflecig barriers associaed wih a geeraor f(, y), a ermial value ξ, a lower barrier L ad a upper barrier U (RBSDE(ξ,f,L,U) for shor), is a quadruple of processes (Y,M,K,A) which 2 Mahemaics Subjec Classificaio. 6K35, 82B43. Key words ad phrases. Refleced backward sochasic differeial equaio (RBSDE), Doubly RBSDs, Geeral filraio, Regulaed rajecories, Local-global soluio. 1

2 2 Baadi Brahim ad Oukie Youssef maily saisfies: Y = ξ + f(s,y s )ds+(k T K ) (A T A ) dm s, [,T]. L Y U, [,T],ad (U s Y s )da s + s<t (U s Y s ) + A s =,ad (Y s L s )dks + s<t (Y s L s ) + K s =. where Y has regulaed rajecories, K, A are icreasig processes such ha K = A =, M is a local marigale wih M =, K (resp. A ) he càdlàg par of K (resp. A) ad + K (resp. + A) he righ jump of K (resp. of A). The reaso we chose he miimaliy codiios ad (Y s L s )dk s + s<t(y s L s ) + K s =, (U s Y s )da s + s<t(u s Y s ) + A s =. is o use he pealizaio mehod for regulaed BSDE wih regulaed rajecories proposed by Klimsiak e al. i Klimsiak e al. (216). Noe ha if L ad U are càdlàg, he his codiio reduces o he classical codiio: Klimsiak e al. (216, (1.3)). Geerally speakig, i BSDE heory, durig several years, here have bee a lo of works which sudy he problem of exisece ad uiqueess of BSDE wih wo reflecig barriers uder hese hree codiios: a): oe of he obsacles is a semimarigale. b): he Mokobodski codiio: bewee U ad L oe ca fid a process X such ha X is a differece of oegaive càdlàg supermariagles. c): he barriers are compleely separaed: L < U ad L < U for all [,T] a.s. Uder he assumpio b), he problem is sudied i Klimsiak (215), Klimsiak (213), Cviai ad Karazas (1996), Bahlali e al. (25), Crépey ad Maoussi (28)... i he case of coiuous or righ-coiuous obsacles ad/or a larger filraio ha he Browia, bu he issue wih his codiio is ha i is quie difficul o check i pracice. The, i has bee removed by Hamadèe ad Hassai i Hamadèe ad Hassai (25), whe hey showed ha if he assumpio c) hold, he wo barriers refleced BSDE has a uique soluio. Uder he same assumpio here are also a lo of works which deal wih he problem of exisece ad uiqueess, for isace, he papers Hamadèe e al. (21), Hamadèe ad Wag (29), Hassairi (216), Topolewski (216)... I all of he above-meioed works (ad ohers) o double refleced BSDEs, he barriers are assumed o be a leas righ-coiuous. The oly paper dealig wih BSDEs wih wo reflecig barriers ha are o càdlàg, i our kowledge, is he paper by Grigorova e al. i Grigorova e al. (217b). The auhors proved he exisece ad uiqueess of he soluio of double refleced BSDE wih wo irregular barriers saisfyig he geeralized Mokobodzki s codiio. Firs hey showed he exisece ad uiqueess i he case where he driver does o deped o soluio, he hey proved a priori esimaes for he doubly refleced BSDE by usig Gal chuk-leglar s formula ad from hese hey

3 RBSDEs wih wo compleely separaed barriers. 3 derived he exisece ad uiqueess of he soluio wih geeral Lipschiz driver by usig he Baach fixed poi heorem. BSDE wih wo reflecig barriers have bee iroduced by Cviaic ad Karazas i Cviai ad Karazas (1996) i he case of coiuous barriers ad a Browia filraio. The soluios of such equaios are cosraied o say bewee wo adaped barriers L ad U wih L U ad L T = U T. I he case of he coiuous/càdlàg barriers, refleced doubly BSDE have bee sudied by several auhors i Hamadèe e al. (21), Hamadèe ad Wag (29), Hassairi (216), Topolewski (216), Hamadèe ad Hassai (26), Hamadèe ad Hdhiri (26), Klimsiak (215), Klimsiak (213), Cviai ad Karazas(1996), Bahlali e al. (25), Crépey ad Maoussi (28), Dumirescu e al. (216), Essaky e al. (25), Hamadèe ad Lepelier (2) ad Grigorova e al. (217b) (for regulaed barriers case). This paper is orgaized as follows: I he secod ad hird secio, we give some prelimiary ad some resul relaed o BSDE wih oe barrier (defiiio, exisece). I secio four, we recall he doubly refleced BSDE defiiio ad we prove a compariso ad uiqueess resul. I he fifh secio, we deal wih he oio of local soluio of doubly refleced BSDE, which is a soluio of ha equaio bu bewee wo comparable soppig imes. Some local soluio properies are also give. Secio six is reserved o our mai resul of his paper. 2. Prelimiaries. Le us cosider a filered probabiliy space (Ω,F,P,F = {F, }). The filraio is assumed o be complee, righ coiuous ad quasi-lef coiuous. Le T > be a fixed posiive real umber. We recall ha a fucio y : [,T] R d is called regulaed if for every [,T] he limi y + = lim u y u exiss, ad for every [,T] he limi y = lim u y u exiss. For ay regulaed fucio y o [,T], we deoe by + y = y + y he size of he righ jump of y a, ad by y = y y he size of he lef jump of y a. I his paper, we cosider a F-adaped process X wih regulaed rajecories of he form X = X + s< + X s, [,T], where X is a F-adaped semimarigale whi càdlàg rajecories ad + X s <, P a.s. s< For a give T >, we deoe: T,T is he se of all soppig imes such ha P( T) = 1. More geerally, for a give soppig ime ν i T,T, we deoe by T ν,t he se of all soppig imes such ha P(ν T) = 1. L 2 (F T ) is he se ofradomvariableswhich are F T -measurablead squareiegrable. M loc is he se of càdlàg local marigales. Now o defie he soluio of our refleced backward sochasic differeial equaio, le us iroduce he followig spaces:

4 4 Baadi Brahim ad Oukie Youssef S 2 is he se of all F-progressively measurable process wih regulaed rajecories φ such ha: [ E φ 2] <. sup T M 2 is he subspace of M loc of all marigales such ha: E([M] T ) < +. The radom variable ξ is F T -measurable wih values i R d (d 1) ad f : Ω [,T] R d R d is a radom fucio measurable wih respec o Prog B(R d ) where Prog deoes he -field of progressive subses of Ω [,T]. A sequece { k } T,T is called saioary if ω Ω Z + k k (ω) = T. We will eed he followig assumpios (H1) There is µ R such ha f(,y) f(,y ) µ y y for all [,T], y,y R. (H2) ξ, f(r,) dr L2 (H3) [,T] f(,y) L 1 (,T) for every y R. Defiiio 2.1. A opioal process (φ ) is said o be righ upper-semicoiuous (resp. lef upper-semicoiuous) alog soppig imes if for each T,T, for each sequece of soppig imes ( ) such ha a.s. (resp. a.s.), we have φ limsupφ. A opioal process (φ ) is said o be righ lower-semicoiuous (resp. lef lowersemicoiuous) alog soppig imes if for each T,T, for each sequece of soppig imes ( ) such ha a.s. (resp. a.s.), we have φ limif φ. Remark 2.2. If he process (φ ) has righ limis, (φ ) is righ upper-semicoiuous (resp. righ lower-semicoiuous) alog soppig imes if ad oly if for each predicable soppig ime T,T, φ φ + (resp. φ φ + ) a.s. 3. Refleced BSDE wih oe barrier. I ha follows, we assume ha ξ is a F-measurable radom variable, L ad U aref-adapedopioalprocessesis 2 adl U, forall T adl T ξ U T. Defiiio 3.1. We say ha a riple (Y,M,K) of F-progressively measurable processes is a soluio of he refleced BSDE wih driver f, ermial value ξ ad lower barrier L (RBSDE(ξ,f,L) for shor) if (1) Y,K S 2, M M loc wih M =. (2) Y L for all [,T] a.s. (Y s L s )dk s + s<t(y s L s ) + K s = (3) f(s,y s) ds < a.s. (4) Y = ξ + f(s,y s )ds+k T K dm s, for all [,T], a.s.

5 RBSDEs wih wo compleely separaed barriers. 5 Remark 3.2. We oe ha if L ad K are càdlàg, he (2) i Defiiio 3.1 reduces o (Y s L s )dk s = Defiiio 3.3. We say ha a riple (Y, M, A) of F-progressively measurable processes is a soluio of he refleced BSDE wih driver f, ermial value ξ ad upper barrier U (RBSDE(ξ,f,U) for shor) if (1) Y,A S 2, M M loc wih M =. (2) Y U for all [,T] a.s. (U s Y s )da s + s<t(u s Y s ) + A s = (3) f(s,y s) ds < a.s. (4) Y = ξ + f(s,y s )ds (A T A ) dm s for all [,T] a.s. Remark 3.4. if (Y,M,K) S 2 M loc S 2 saisfies defiiio 3.1 he he process Y has lef ad righ limis. Moreover,he processgive by (Y + f(s,y s)ds) [,T] is a srog marigale (Grigorova e al. (217a, Defiiio A.1)). I he heorem below we recall some resuls o reflecig BSDEs wih oe barrier. They will play impora role i he proof of our mai resul. I he pealizaio mehod for refleced BSDEs proposed by Klimsiak e al i Klimsiak e al. (216), hey defied arrays of soppig imes {{,i }} exhausig righ-side jumps of L iducively as follow: 1, = ad 1,i = if{ > 1,i 1 : + L s < 1} T, i = 1,...,k 1 for some k 1 Z +. Nex for Z + ad give array {{,i }}, +1, = ad +1,i = if{ > +1,i 1 : + L s < 1 +1 } T for i = 1,...,j +1 where j +1 is chose so ha P( +1,j+1 < T) as ad +1,i = +1,j+1,i j+1, i = j +1 +1,...,k +1, k +1 = j +1 +k. Theorem 3.5. Assume ha (H1) (H4) are saisfied. The (i): There exiss a uique soluio (Y,M,K) of RBSDE(ξ,f,L). Moreover if (Y,M ), Z + are soluio of BSDEs of he form Y = ξ+ f(s,y s)ds dm s+ (Y s L s ) ds+,i<t (Y L +,i ),i (3.1) he Y ր Y, [,T] P-a.s. (ii): There exiss a uique soluio (Y,M,A) of RBSDE(ξ,f,U). Moreover if (Y,M ), Z + are soluio of BSDEs of he form Y = ξ+ f(s,y s )ds dm s (U s Y s ) ds (U,i Y + ),i he Y ր Y, [,T] P-a.s.,i<T (3.2)

6 6 Baadi Brahim ad Oukie Youssef Proof: Thefirspari(i)isprovediBaadiadOukie(218)(seealsoKlimsiak e al. (216) (p > 1) ad Grigorova e al. (217a) (p = 2) i he case of Browia filraio ad Baadi ad Oukie (217) for he case of a filraio ha suppors a Browia moio ad a idepede Poisso radom measure). The secod par i (i) is proved for he case of a Browia filraio i Klimsiak e al. (216, Theorem 4.1). To show he resuls i a geeral filraio we use he Iô formula for he regulaed process (see Baadi ad Oukie (217, Theorem 2.5) or Klimsiak e al. (216, Appedix)) o ge his iequaliy: d[m M ] c s Y Y s< (Y s Ys )(f(s,y s ) f(s,ys ))ds (Y s Y s )d(k s K s ) 2 (Y s Y s ) + (Y s Y s ) (Y s Y s )d(m s M s ) wih (Y,M ) defied i 3.1,, T,T,, ad K = (Y s L s ) ds+ (Y,i + L,i ). By he fac ha + (Y s Ys ) = + (K s Ks), we,i have d[m M ] c s Y Y s< 2 +2 (Y s Y s )(f(s,y s) f(s,y (Y s Y s )d(k s K s) 2 (Y s Y s ) + (K s K s) s ))ds (Y s Y s )d(m s M s ) The E d[m M ] c s E Y Y 2 +2E Y s Ys (f(s,y s ) f(s,ys ))ds adwih hetheorem4.1assumpiosiklimsiake al.(216)wegehe exisece of a saioary sequece { k } of soppig imes such ha E k d[m M ] s = E k d[m M ] c s Therefore o prove ha Y ր Y, [,T], i suffices o repea sep by sep he proof of Klimsiak e al. (216, Theorem 4.1). The proof of (ii) is aalogous o ha of (i). Ideed, (Y,M,A) is a soluio for he RBSDE(ξ,f,U)ifadolyif( Y, M,A)isasoluioforheRBSDE( ξ, f, U). 4. BSDEs wih wo reflecig barriers. I his secio ξ, f, L ad U are as i above. We also suppose ha L U for [,T] P-a.s. Defiiio 4.1. We say ha a quadruple (Y, M, K, A) of F-progressively measurable processes is a soluio of he refleced BSDE wih driver f, ermial value ξ, lower barrier L ad upper barrier U, (RBSDE(ξ,f,L,U) for shor), if (LU1): Y,K,A S 2, M M loc wih M =.

7 RBSDEs wih wo compleely separaed barriers. 7 (LU2): L Y U, [,T] P-a.s. (LU3): (U s Y s )da s + s<t (U s Y s ) + A s = (Y s L s )dk s + s<t (Y s L s ) + K s =, a.s. (LU4): Y = ξ+ f(s,y s )ds+(k T K ) (A T A ) dm s, [,T] P-a.s. Remark 4.2. We oe ha, due o Eq. (LU4), we have + Y = + (K A ) We are ow goig o focus o he uiqueess of he soluio of he doubly refleced BSDE associaed wih (f,ξ,l,u). However he firs sep is o provide a compariso resul bewee he compoes Y of wo soluios (i Defiiio 4.1). Acually we have: Proposiio 4.3. Le (f,ξ,l,u) ad (f,ξ,l,u ) be wo ses of daa saisfyig (H1)-(H3). Le (Y,M,K,A) ad (Y,M,K,A ) be wo soluios of he doubly refleced BSDE associaed wih (f,ξ,l,u) ad (f,ξ,l,u ) respecively. Assume ha ξ ξ, L L, U U ad f f. The P a.s. Y Y Proof: Sicehereisalackofiegrabiliyofheprocesses(M,K,A)ad(M,K,A ), we are proceedig by localizaio. Le ( k ) k be a o-decreasigsequece, of saioary ype ad coverges o T such ha: k = if{,[m] +[M ] ) k} T. wehavep a.s., [M] T +[M ] T <. Now, byiô-taaka sformulaforheregulaed process (see Leglar (198, Secio 3, page 538)) wih (Y Y ) + o [ k, k ] we ge: k (Y k Y k ) + (Y k Y k ) {Ys >Y s } (f(s,y s ) f (s,y s ))ds k + k 1 {Ys >Y k k s } d(k s K s A s +A s) k 1 {Ys >Y s } d(m s M s) From defiiio of soluio we have k k 1 {Ys >Y s } d(k s K s A s +A s), ad by usig he Lipschiz codiio of f, we have k (Y k Y k ) + (Y k Y k ) + +µ (Y s Y s )+ ds 1 {Ys >Y s } d(m s M s ). k k where µ he Lipschiz cosa of f. Therefore akig expecaio, he limi as k, we have E[(Y k Y k ) + ] E[(Y T Y T )+ ] = sice L Y U ad L Y U. Ad by usig Growall s Lemma we ge E[(Y Y ) + ] = for ay T, a.s., Y Y, which is he desired resul. Proposiio4.4. The RBSDE(ξ,f,L,U) has a mos oe soluio, i.e., if (Y,M,K,A) ad (Y,M,K,A ) are wo soluios of RBSDE(ξ,f,L,U), he, P a.s., Y = Y, M = M ad K A = K A. Proof: Le(Y,M,K,A)ad(Y,M,K,A )bewosoluiosofrbsde(f,ξ,l,u). The from he compariso resul( Proposiio 4.3), we have Y = Y, T, P-a.s. ad he M = M ad by (LU4) i Defiiio 4.1, we ge K A = K A. k

8 8 Baadi Brahim ad Oukie Youssef Remark 4.5. We have also K = K ad A = A sice L < U, < T. (see, El Asri e al. (211, Proposiio 2.1.)). 5. Local soluios of BSDEs wih wo opioal reflecig barriers We are goig o cosruc a soluio for he doubly refleced BSDE associaed wih (f,ξ,l,u) sep by sep uder (H1) (H3). For his we eed o cosruc a process Y which saisfies locally he RBSDE(f,ξ,L,U), ha is o say, for ay soppig ime, we ca fid aoher appropriae soppig ime λ such ha bewee ad λ, Y saisfies he doubly refleced BSDE. This local soluio will be cosruced as a limi of a pealizaio scheme, which leads o sudy BSDEs wih oe reflecig barrier. Thus our firs ask is o provide he resuls we eed laer o BSDEs wih oe reflecig barrier. We firs iroduce he oio of a local soluio of he RBSDE(f,ξ,L,U). Defiiio 5.1. Le ad be wo soppig imes such ha P-a.s.. We say ha (Y,M,K,A ) T is a local soluio o [,] for he doubly refleced BSDE associaed wih wo barriers L ad U, he ermial codiio ξ ad he geeraor f if: P-a.s., Y,K,A S 2,M M loc wih M =. Y T = ξ, [,] Y = Y + f(s,y s)ds+(k K ) (A A ) dm s, [,] P a.s., L Y U, [,],ad (U s Y s )da s + s< (U s Y s ) + A s =,a.s. ad (Y s L s )dks + s< (Y s L s ) + K s =,a.s. (5.1) I hissecio, wearegoigoshowheexiseceofaappropriaelocalsoluio which laer will allow us o cosruc a global soluio for he RBSDE(f,ξ,L,U) wih regulaed processes i a geeral filraio. Bu we assume oly ha L is righ upper-semicoiuous (r.u.s.c) ad U is righ lower-semicoiuous (r.l.s.c). The idea of he proof is he same as i he paper of Hamadèe ad Hassai Hamadèe ad Hassai (25), i which he auhors proved he resuls for he double RBSDE wih coiuous processes ad browia filraio The icreasig pealizaio scheme. Le us iroduce he followig icreasig pealizaio scheme. For ay, le (Y,M,A ) be he riple of F -adaped processes wih values i R R d R, uique soluio of he RBSDE(f(s,y)+(y L s ) + (y,i< + L,i ),ξ,u) such ha:,i Y,A S 2,M M loc wih M =. Y = ξ + (f(s,y s )+(Ys L s ) )ds+ (Y,i<T L +,i ),i A T +A dm s, P a.s., Y U, [,T],a.s., (U s Ys )da, s + s<t (U s Ys ) + A s =,a.s. (5.2)

9 RBSDEs wih wo compleely separaed barriers. 9 We se f (,y) = f(,y)+(y L ) +,i< (y +,i L,i ). ByTheorem3.5hereexisauiquesoluio(Y,M,A )ofrbsde(f (s,y),ξ,u). We have f (s,y) f +1 (s,y) which implies from he compariso resul ha for ay, we have Y Y +1 U. Ad by cosequece here exis Y = (Y ) T such ha (Y ) T coverges icreasigly o (Y ) T ad for ay T, Y U. Besides for a soppig ime le us se: δ = if{s,y s = U s } T. Sice Y Y +1 he he sequece (δ ) is decreasig ad coverges o δ. Le us ow focus o some properies of Y ad especially show ha Y L. Proposiio 5.2. The followig properies are fulfilled P-a.s.: (i): Y δ 1 [δ<t] = U δ 1 [δ<t]. (ii): T,Y L. Proof: We begi wih he proof of (i). For ad T he process A does o icrease before Y reaches he barrier U, he for ay [,δ ], we have, A A = ad he δ Y = Yδ + (f(s,y s )+(Ys L s ) )ds+ δ (Y,i L +,i ) dms.,i<δ For, wriig 5.3 bewee δ ad δ (δ ց δ ) yields: δ Yδ = Yδ + (f(s,y s )+(Y s L s) )ds+ (Y + δ,i L,i ) ad he which implies ha δ,i<δ δ Y δ U δ 1 [δ <T] +ξ1 [δ =T] + f(s,ys )ds δ 1 [δ<t]y δ 1 [δ<t](u δ 1 [δ <T]+ξ1 [δ =T])+1 [δ<t] By he assumpio (H1) we have: δ f(s,ys ) f(s,)+µys δ δ δ dm s δ f(s,ys )ds where µ is a cosa. We have also Y Y U which implies ha E[ δ coverges o. Cosequely, δ lim E[ δ f(s,ys )ds] =. δ (5.3) δ dms δ (5.4) 1 [δ<t]dm s δ Y (5.5) s ds] Usig ow iequaliy 5.5 ad akig expecaio i boh had-sides he he limi as goes o ifiiy o obai: ] ] ] E [1 [δ<t]y δ E [1 [δ<t]u δ+ E [1 [δ<t]u δ, sice U is opioal r.l.s.c. process. By Y U, we have he desired resul.

10 1 Baadi Brahim ad Oukie Youssef We ow prove (ii). For ay ad ay soppig ime T, he followig propery holds rue: [ Y δ = E (f(s,y s )+(Y s L s ) )ds+,i<δ (Y L +,i ) +U δ 1 [δ <T]+ξ1 [δ =T]/F ],,i sice he process A does o icrease before Y reaches he barrieru by defiiio of δ. From las equaliy we have [ δ E (Y s L s ) ds+ 1 1 [ δ E,i<δ (Y L +,i ) ],i f(s,y s ) ds+ Y + U δ 1 [δ <T] + ξ 1 [δ =T] ] (5.6) By (H3) we have E[ f(s,y s ) ds] < whe goes o ifiiy, ad by Faou s lemma we deduce from 5.6 ha [ ] [ δ E lim if 1 [,δ ] (Y s L s ) ds limif E ] (Y s L s ) ds = he δ (Y s L s ) ds = a.s. (5.7) Sice Y Y +1, oe ha if L is a càdlàg process he limi Y of {Y } is càdlàg (Essaky (28, Theorem 3.1) ad Peg (1999, Lemma 2.2)) o [,δ ]. Bu i our case Y eed o o be càdlàg. Heceforh from 5.7 we obai ha Y L o he se [,δ ]. If = δ < T we have Y = U L ad if = δ = T we have Y = ξ L. By cosequece for all, Y L. As he barriers L ad U are opioal, usig he opioal secio heorem Grigorova e al. (217a, Proposiio A.4) we have P-a.s., Y L. The proof is complee. Nex, weshowheexiseceofhelocalsoluioofhe reflecedbsde(f,ξ,l,u) o [,δ ]. Proposiio 5.3. There exiss wo measurable processes ( K ) T ad ( M ) T such ha (Y, M, K,) T is a local soluio of RBSDE i 3.3 o [,δ ], ha: K S 2, M M loc wih M =. Y = Y δ + δ f(s,y s )ds+ K δ K δ d M s, a.s. Y T = ξ, (5.8) [,δ ],L Y U,a.s., ad δ (Y s L s )d K, s + s<δ (Y s L s ) + K s =, a.s.. Proof: For ay ad [,δ ] ad sice he process A moves oly whe Y reaches he barrier U (he A = A δ ), we have δ δ Y = Yδ + f(s,ys )ds+ (Ys L s ) ds+ δ (Y L +,i ) dms.,i,i<δ O he oher had, for, le (Ȳ, M ) δ be he uique soluio of he BSDE associaed wih he coefficie f(,y )+(y L ) +,i< (y +,i L,i ), he

11 RBSDEs wih wo compleely separaed barriers. 11 ermial value Y δ ad a bouded ermial ime δ, ha is, E(sup s δ Ȳ s 2 +[ M ] δ ) < Ȳ = Yδ + δ f(s,ȳ s )ds+ δ (Ȳ s L s) ds+,i<δ (Ȳ +,i δ d M s. L,i ) The proof of exisece ad uiqueess is obaied by he same argumes such ha i Hamadèe ad Hassai (25, 3.2. Proposiio) or Hassairi (216, Proposiio. 4) sice δ is bouded. We have (Yδ ) ր Y δ U δ, hece from he Lebesgue domiaed covergece heorem we ge E( Y δ Y δ ) = as. Therefore he sequece of processes ((Ȳ, M, (Ȳ s L s) ds+ (Ȳ,i< +,i L,i ) ) δ ) coverges i Sδ 2 M 2 δ Sδ 2 (Sδ 2 ad M 2 δ are he same as S 2 ad M 2 excep for ha T is replaced by he soppig ime δ ) o (Ŷ, ˆM, ˆK ) δ such ha: E(sup s δ Ŷs 2 +[ ˆM] δ ) <, ˆK s S 2 δ ad ˆK =. Ŷ = Y δ + δ f(s,ŷs)ds+( ˆK δ ˆK ) δ d ˆM s, δ, Ŷ L ad δ (Ŷs L s )d ˆK s + s<δ (Ŷs L s ) + ˆKs =. Now by 5.2, 5.9 ad uiqueess of he soluio o [,δ ] implies ha for ay [,δ ], Y = Ȳ ad M = M. Therefore Y = Ŷ for ay [,δ ], E(sup s δ Y s 2 +[ ˆM] δ ) < ; ˆK s Sδ 2 ad ˆK = Y = Y δ + δ f(s,y s )ds+( ˆK δ ˆK ) δ d ˆM s, δ, δ L Y U ad δ (Y s L s )d ˆK s + s<δ (Y s L s ) + ˆKs =. For ay T, le us se K = ( ˆK δ ˆK )1 [ ] ad M = ˆM 1 [ δ] (see Remark 5.9), we deduce ha (Y, M, K,) T is a local soluio of RBSDE i 3.3 o [,δ ] The decreasig pealizaio scheme. We ow cosider he followig decreasig pealizaio scheme for ay : Ỹ, K S 2, M M loc wih M =. Ỹ = ξ + (f(s,ỹ s ) (U s Ỹ s ) )ds (U,i<T Ỹ,i ) +,i + K T K d M s, P a.s., Ỹ L, [,T], a.s., (Ỹ s L s )d K s + s<t (Ỹ s L s) + K s =, a.s. (5.1) Firs we oe ha he exisece of he riple (Ỹ, M, K ) is due o Klimsiak e al. (216, Theorem 4.1) ad he followig remark. Remark 5.4. A riple (Y,M,K) is a soluio for he BSDE wih a lower reflecig barrier associaed wih (f,ξ,l) iff ( Y, M,K) is a soluio of he BSDE wih a upper reflecig barrier associaed wih ( f(, ω, y), ξ, L). (5.9)

12 12 Baadi Brahim ad Oukie Youssef For ay soppig ime T ad ay, le us se θ = if{s,ỹ s = L s} T. By Proposiio 4.3, we have Ỹ Ỹ +1 L he he sequece (Ỹ ) coverges o Ỹ ad (θ ) is decreasig ad coverges o aoher soppig ime θ = lim θ. UsighesameargumesiProposiio5.2adProposiio5.3 ad by remark 5.4, we ge: Proposiio 5.5. The followig properies hold rue P-a.s.: (i): Ỹ θ 1 [θ<t] = L θ 1 [θ<t]. (ii): T,Ỹ U. (iii): There exiss wo measurable processes (à ) T ad ( M ) T such ha (Ỹ, M,,à ) T is a local soluio of RBSDE i 3.3 o [,θ ], ha: à S 2, M M loc wih M =. Ỹ = Ỹθ + θ f(s,ỹs)ds à θ +à θ d M s, P a.s. Y T = ξ, [,θ ],L Ỹ U,a.s., ad θ (U s Ỹs )dã s + s<θ (U s Ỹs ) + à s =, a.s.. (5.11) 5.3. Exisece of he local soluio. Recall ha Y (resp. Ỹ) is he limi of he icreasig (resp. decreasig) approximaig scheme. We are goig o show ha he processes Y ad Ỹ are udisiguishable. Proposiio 5.6. P-a.s., for ay T, Y = Ỹ. Proof: We prove he equaliy i wo seps, firs we show ha Y Ỹ, ad secod we show he oher iequaliy. For ha, le J (Y Ỹm ) deoe he local ime of Y Ỹ m a. For ay T ad ay,m, by he Iô-Taaka formula for regulaedprocesses(seeleglar(198,secio3,page538))appliedo(y Ỹ m ) + we have (Y Ỹm ) + = (Y Ỹm ) (Ys+ Ỹm which meas, (Y Ỹm s< ) + (YT Ỹm T )+ + 1 {Y s >Ỹ m s }d(y s Ỹm s )+ 1 2 J (Y Ỹm ) s+) + 1 {Y s Ỹ m s } +(Y s Ỹm s ) 1 {Y s > Ỹ s m} +(Y Ỹm ) + 1 {Y Ỹ m } +(Y Ỹm ) 1 {Y >Ỹ m }. 1 {Y s >Ỹ m s }(f(s,y s ) f(s,ỹ m s ))ds+ 1 {Y s >Ỹ s m}d(k s A s K s m +Ãm s ) 1 {Y s >Ỹ s m }d(m s M s m ) (5.12) As i he proof of he compariso resul (see Proposiio 4.3) we chow ha Y Ỹ m ad we ge Y Ỹ, for ay T.

13 RBSDEs wih wo compleely separaed barriers. 13 Now we prove ha Y Ỹ, T. Le be a soppig ime ad le δ ad θ be he soppig imes iroduced i Proposiio 5.2 ad 5.5 respecively. We have: Y δ θ = Y δ 1 [δ θ <T] +Y θ 1 [δ>θ ] +Y δ 1 [δ θ =T] L δ 1 [δ θ <T] +U θ 1 [δ>θ ] +Y δ 1 [δ θ =T] L δ 1 [δ θ <T] +Ỹθ 1 [δ>θ ] +Ỹδ 1 [δ θ =T] = Ỹδ θ (5.13) sice Y L, Ỹθ 1 [δ>θ ] = U θ 1 [δ>θ ] (Proposiio 5.5) ad Y δ 1 [δ θ =T] = Y δ 1 [δ θ =T] [δ <T] +Y δ 1 [δ θ =T] [δ =T] L δ 1 [δ θ =T] [δ <T] +ξ1 [δ θ =T] [δ =T] = Ỹδ 1 [δ θ =T]. Sice Y ad Ỹ saisfy he BSDEs 5.8 ad 5.11 respecively bewee ad δ θ, he usig compariso resul of soluio (Proposiio 4.3) of BSDEs wih (1 [<δ θ ]Y ) [,δ θ ] ad (1 [<δ θ ]Ỹ) [,δ θ ], we ge O he oher had from 5.13, we have 1 [<δ θ ]Y 1 [<δ θ ]Ỹ 1 [=δ θ ]Y 1 [=δ θ ]Ỹ which implies ha Y Ỹ. As is a arbirary soppig ime ad Y ad Ỹ are opioal processes he P-a.s. Y Ỹ by Baadi ad Oukie (217, Proposiio 2.4.) (or Nikeghbali (26, Theorem 3.2.)). We coclude ha Y = Ỹ P-a.s.. As a cosequece of he resul obaied i Proposiios 5.3, 5.5 ad 5.6 we have: Theorem 5.7. There exiss a uique measurable process (Y ) T such ha: i: T, L Y U ad Y T = ξ ii: for ay soppig ime, here exis aoher soppig ime λ P-a.s., ad a riple of measurable processes (M,K,A ) T such ha o [,λ ] he process (Y,M,K,A ) T is a local soluio for he refleced BSDE associaed (f,ξ,l,u), ( 5.1 i Defiiio 5.1). Remark 5.8. If we se ν = if{,y = U } T, = if{,y = L } T, whe ν λ, ha is Y reaches L ad U bewee he imes ad λ whe λ < T. Proof: By Proposiio 5.3 ad Proposiio 5.5 we have he firs poi (i). Le be a fixed soppig ime ad le (Y,λ,M,K,A ) ad (Y,λ,M,K,A ) wo soluiosforhe reflecedbsdeassociaed(f,ξ,l,u). Thebyhesameargume of Hassairi (216, Theorem 3.2.), we ca prove ha Y = Y. Le (Y, M, K,) T (resp. (Y, M,,Ã ) T ) be a local soluio of refleced BSDE i defiiio 5.1 o [,δ ] (resp. o [δ,λ ]) which exiss accordigo Proposiio 5.3 (resp. Proposiio5.5), where λ is a soppig ime such ha λ T Now for T, le M = M 1 [ δ]+ M 1 [δ λ ] (see Remark 5.9), K = K δ

14 14 Baadi Brahim ad Oukie Youssef ad A = Ã δ 1 [ δ]. For ay [,λ ] we have, Y = Y λ + λ f(s,y s )ds+kλ K (A λ A ) λ dm s, P a.s. [,λ ],L Y U a.s., ad λ (Y s L s )dks + s<λ (Y s L s ) + Ks =, a.s. ad λ (U s Y s )da s + s<λ (U s Y s ) + A s =, a.s.. (5.14) Ideed, if [δ,λ ], we have K λ K = ad 5.14 is saisfied from Ad if [,δ ], he from 5.1 we have, As δ δ Y = Y δ + f(s,y s )ds+kδ K dms. λ λ Y δ = Y λ + f(s,y s )ds (Ã λ Ã δ ) d M s δ δ he 5.14 is also saisfied sice K λ K δ =. Nowforay [,λ ], L Y U a.s. ad λ (Y s L s )dks + s<λ (Y s L s ) + Ks = δ (Y s L s )d K s + s<δ (Y s L s ) + K s = ad λ (U s Y s )da s + s<λ (U s Y s ) + A s = λ δ (U s Y s )dã s + δ s<λ (U s Y s ) + Ã s =. Fially Y T = ξ ad he process (Y,M,K,A ) is a local soluio for 5.1 o [,λ ]. Remark 5.9. If M is a local marigale w.r. F ad if ad δ are wo F -soppig imes such ha δ, he M 1 [ δ] is a F -marigale. Ideed: M 1 [,δ]() = 1 [,δ](s)dm s + M s d(1 [,δ](s)) = 1 [,δ](s)dm s M δ +M (5.15) The cosrucio of Y does o deped o bu he oes of M, K ad A do. 6. Exisece of a global soluio for refleced BSDE wih wo compleely separaed barriers. We are ow ready o give he mai resul of his paper. Le us assume ha he barriers L ad U ad heir lef limis are compleely separaed, i.e., hey saisfy he followig assumpio: The we have: [H] : P a.s., [,T], L < U ad L < U.

15 RBSDEs wih wo compleely separaed barriers. 15 Theorem6.1. Uder Assumpio [H], here exissauique process (Y,M,K,A ) T soluio of he refleced BSDE associaed wih (f,ξ,l,u). i.e., Y,K,A S 2,M M loc wih M =. Y = ξ + f(s,y s )ds+k T K (A T A ) dm s, T L Y U, a.s. T, ad (U s Y s )da s + (6.1) s<t (U s Y s ) + A s =, a.s., ad (Y s L s )dks + s<t (Y s L s ) + K s =, a.s.. Proof: Le (Y ) T be he process defied i Theorem 5.7, he L Y U ad Y T = ξ. Now le ( ) a sequece of soppig imes such ha = ad +1 = if{,y = U } T ad +2 = if{ +1,Y = L } T. Heceforh, for ay here exiss a riple (M,K,A ) T of processes such ha he process (Y,M,K,A ) T is a local soluio for he refleced BSDE associaed wih (f,ξ,l,u) o he se [, +1 ] (by Theorem 5.7). By he same argume i Hamadèe ad Hassai (25, 3.7. Theorem.) ( see also Hamadèe e al. (21, Theorem 4.1.), Hassairi (216, Theorem 4.1.) or Hamadèe ad Wag (29, Theorem 4.1)) we show ha P([ < T, ]) =, P-a.s. sice P-a.s.,, L < U. Which meas ha for ω Ω here exiss (ω) such ha (ω) = T. Nex le us iroduce he followig processes M, K, A: P-a.s., for ay T, oe ses K = K +(K K ) if ], +1 ] (K = ) A = A +(A A ) if ], +1 ] (A = ) M = M 1 [,1] + 1M 1 ], +1]. Sicehesequece( ) isp-a.s. ofsaioaryypeadforay,e([m] ) < he E([M] T ) <, P-a.s.. Nex le us show ha (Y,M,K,A) is he soluio of he refleced BSDE(ξ,f,L,U). For ay we have: P-a.s. for all [, +1 ], Y = Y For ay we have: P-a.s. Y = Y f(s,y s )ds+k +1 K (A +1 A ) +1 f(s,y s )ds+k +1 K (A +1 A ) Now for ay ad m we have: Y = Y m + m f(s,y s )ds+k m K (A m A ) m dm s. (6.2) +1 dm s. dm s. By he fac ha ( ) is of saioary ype ad akig m large eoughwe obai:, P-a.s., Y = ξ + f(s,y s )ds + K T K (A T A ) dm s. (6.3)

16 16 Baadi Brahim ad Oukie Youssef Now le [,T] he here exiss such ha [, +1]. The usig 6.2 he 6.3 we obai: Y = ξ + f(s,y s )ds+k T K (A T A ) dm s. which meas ha (Y,M,K,A) verify equaio (LU4) of Defiiio 4.1. Fially he processes K, A ad Y saisfy (Y s L s )dks + s<t (Y s L s ) + K s = ( +1 (Y s L s )dks, + s< +1 (Y s L s ) + Ks ) = by defiiio of K ad 6.1. I he same way we have (U s Y s )da s + s<t (U s Y s ) + A s =. The he process (Y,M,K,A) is a soluio for he refleced BSDE(ξ, f, L, U). Uiqueess is a direc cosequece of he compariso heorem (Proposiio 4.3). Refereces B. Baadi ad Y. Oukie. Refleced BSDEs whe he obsacle is o righcoiuous i a geeral filraio. ALEA, La. Am. J. Probab. Mah. Sa. 14, (217). B. Baadi ad Y. Oukie. Refleced BSDEs wih opioal barrier i a geeral filraio. Afr. Ma. 29, (218). K. Bahlali, S. Hamadèe ad B. Mezerdi. Backward sochasic differeial equaios wih wo reflecig barriers ad coiuous wih quadraic growh coefficie. Sochasic Processes ad heir Applicaios 115 (7), (25). S. Crépey ad A. Maoussi. Refleced ad doubly refleced BSDEs wih jumps: a priori esimaes ad compariso. Aals of Applied Probabiliy 18 (5), (28). J. Cviai ad I. Karazas. Backward sochasic differeial equaios wih reflecio ad Dyki games. Aals of Probabiliy 24, (1996). R. Dumirescu, M.-C. Queez ad A. Sulem. Geeralized Dyki games ad doubly refleced BSDE s wih jumps. Elecroic Joural of Probabiliy 21 (216). B El Asri, S Hamadee ad H Wag. l p -soluios for doubly refleced backward sochasic differeial equaios. Sochasic Aalysis ad Applicaios 29 (6), (211). H. Essaky. Refleced backward sochasic differeial equaio wih jumps ad RCLL obsacle. Bullei des Scieces Mahémaiques 132 (8), (28). H. Essaky, Y. Oukie ad N. Harraj. Backward sochasic differeial equaio wih wo reflecig barriers ad jumps. Sochasic Aalysis ad Applicaios 23 (5), (25). M. Grigorova, P. Imkeller, E. Offe, Y. Oukie ad M.-C. Queez. Refleced BSDEs whe he obsacle is o righ-coiuous ad opimal soppig. A. Appl. Probab 27 (5), (217a). M. Grigorova, P. Imkeller, Y. Oukie ad M.-C. Queez. Doubly Refleced BS- DEs ad E f -Dyki games: beyod he righ-coiuous case. arxiv prepri arxiv: (217b). S. Hamadèe ad M. Hassai. BSDEs wih wo reflecig barriers: he geeral resul. Probabiliy Theory ad Relaed Fields 132 (2), (25).

17 RBSDEs wih wo compleely separaed barriers. 17 S. Hamadèe ad M. Hassai. BSDEs wih wo reacig barriers drive by a browia moio ad a idepede poisso oise ad relaed dyki game. Elecro. J. Probab. 11 (2), (26). S. Hamadèe, M. Hassai ad Y. Oukie. Backward SDEs wih wo rcll reflecig barriers wihou mokobodski s hypohesis. Bullei des scieces mahemaiques 134 (8), (21). S Hamadèe ad I Hdhiri. BSDEs wih wo reflecig barriers ad quadraic growh coefficie wihou mokobodskis codiio. J. Appl. Mah. Soch. Aal (26). S. Hamadèe ad J-P. Lepelier. Refleced BSDEs ad mixed game problem. Sochasic processes ad heir applicaios 85 (2), (2). S. Hamadèe ad H. Wag. BSDEs wih wo RCLL reflecig obsacles drive by browia moio ad poisso measure ad a relaed mixed zero-sum game. Sochasic Processes ad heir Applicaios 119 (9), (29). I. Hassairi. Exisece ad uiqueess for d-soluios of refleced BSDEs wih wo barriers wihou mokobodzki s codiio. Commuicaios o Pure ad Applied Aalysis 15 (4) (216). T. Klimsiak. BSDEs wih moooe geeraor ad wo irregular reflecig barriers. Bullei des Scieces Mahémaiques 137 (3), (213). T. Klimsiak. Refleced BSDEs o filered probabiliy spaces. Sochasic Processes ad heir Applicaios 125 (11), (215). T. Klimsiak, M. Rzymowski ad L. Slomiski. Refleced BSDEs wih regulaed rajecories. arxiv: v1 [mah.pr] (216). E. Leglar. Tribus de Meyer e héorie des processus, Sémiaire de probabiliés de Srasbourg XIV 1978/79. Lecure Noes i Mahemaics 784, (198). A. Nikeghbali. A essay o he geeral heory of sochasic processes. Probab. Surv 3, (26). S. Peg. Moooic limi heorem of bsde ad oliear decomposiio heorem of doob-meyer s ype. Probab. Theory Rela. Fields 113, (1999). M. Topolewski. Refleced BSDEs wih geeral filraio ad wo compleely separaed barriers. arxiv prepri arxiv: (216).

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Generalized Snell envelope and BSDE With Two general Reflecting Barriers

Generalized Snell envelope and BSDE With Two general Reflecting Barriers 1/22 Generalized Snell envelope and BSDE Wih Two general Reflecing Barriers EL HASSAN ESSAKY Cadi ayyad Universiy Poly-disciplinary Faculy Safi Work in progress wih : M. Hassani and Y. Ouknine Iasi, July

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K)

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K) Ieraioal Joural of ahemaics Treds ad Techology (IJTT) Volume 35 umber 4- July 016 Commo Fixed Poi Theorem i Iuiioisic Fuzzy eric Sace via Comaible aigs of Tye (K) Dr. Ramaa Reddy Assisa Professor De. of

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

Fermat Numbers in Multinomial Coefficients

Fermat Numbers in Multinomial Coefficients 1 3 47 6 3 11 Joural of Ieger Sequeces, Vol. 17 (014, Aricle 14.3. Ferma Numbers i Muliomial Coefficies Shae Cher Deparme of Mahemaics Zhejiag Uiversiy Hagzhou, 31007 Chia chexiaohag9@gmail.com Absrac

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

Multi-dimensional BSDE with Oblique Reflection and Optimal Switching

Multi-dimensional BSDE with Oblique Reflection and Optimal Switching Muli-dimesioal BSDE wih Oblique Reflecio ad Opimal Swichig Yig Hu ad Shajia Tag arxiv:76.4365v2 [mah.pr] 4 Jul 27 July 4, 27 Absrac I his paper, we sudy a muli-dimesioal backward sochasic differeial equaio

More information

Inference of the Second Order Autoregressive. Model with Unit Roots

Inference of the Second Order Autoregressive. Model with Unit Roots Ieraioal Mahemaical Forum Vol. 6 0 o. 5 595-604 Iferece of he Secod Order Auoregressive Model wih Ui Roos Ahmed H. Youssef Professor of Applied Saisics ad Ecoomerics Isiue of Saisical Sudies ad Research

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

Shige Peng 1,2 and Mingyu Xu 2, 3

Shige Peng 1,2 and Mingyu Xu 2, 3 ESAIM: MAN 5 () 335 36 DOI:.5/ma/59 ESAIM: Mahemaical Modellig ad Numerical Aalysis www.esaim-ma.org NUMERICAL ALGORITHMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH -D BROWNIAN MOTION: CONVERGENCE

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

Introduction to the Mathematics of Lévy Processes

Introduction to the Mathematics of Lévy Processes Iroducio o he Mahemaics of Lévy Processes Kazuhisa Masuda Deparme of Ecoomics The Graduae Ceer, The Ciy Uiversiy of New York, 365 Fifh Aveue, New York, NY 10016-4309 Email: maxmasuda@maxmasudacom hp://wwwmaxmasudacom/

More information

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3 Ieraioal Joural of Saisics ad Aalysis. ISSN 48-9959 Volume 6, Number (6, pp. -8 Research Idia Publicaios hp://www.ripublicaio.com The Populaio Mea ad is Variace i he Presece of Geocide for a Simple Birh-Deah-

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction Malaysia Joural of Mahemaical Scieces 9(): 49-5 (5) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/joural Some Newo s Type Ieualiies for Geomerically Relaive Covex Fucios

More information

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION Malaysia Joural of Mahemaical Scieces 2(2): 55-6 (28) The Soluio of he Oe Species Loka-Volerra Equaio Usig Variaioal Ieraio Mehod B. Baiha, M.S.M. Noorai, I. Hashim School of Mahemaical Scieces, Uiversii

More information

On Stability of Quintic Functional Equations in Random Normed Spaces

On Stability of Quintic Functional Equations in Random Normed Spaces J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 3, NO.4, 07, COPYRIGHT 07 EUDOXUS PRESS, LLC O Sabiliy of Quiic Fucioal Equaios i Radom Normed Spaces Afrah A.N. Abdou, Y. J. Cho,,, Liaqa A. Kha ad S.

More information

arxiv: v2 [math.pr] 10 Apr 2014

arxiv: v2 [math.pr] 10 Apr 2014 arxiv:1311.2725v2 [mah.pr 1 Apr 214 Srog Rae of Covergece for he Euler-Maruyama Approximaio of Sochasic Differeial Equaios wih Irregular Coefficies Hoag-Log Ngo, Dai Taguchi Absrac We cosider he Euler-Maruyama

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

Completeness of Random Exponential System in Half-strip

Completeness of Random Exponential System in Half-strip 23-24 Prepri for School of Mahemaical Scieces, Beijig Normal Uiversiy Compleeess of Radom Expoeial Sysem i Half-srip Gao ZhiQiag, Deg GuaTie ad Ke SiYu School of Mahemaical Scieces, Laboraory of Mahemaics

More information

An approximate approach to the exponential utility indifference valuation

An approximate approach to the exponential utility indifference valuation A approximae approach o he expoeial uiliy idifferece valuaio akuji Arai Faculy of Ecoomics, Keio Uiversiy, 2-15-45 Mia, Miao-ku, okyo, 18-8345, Japa e-mail: arai@ecokeioacjp) Absrac We propose, i his paper,

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems Ausralia Joural of Basic ad Applied Scieces, 4(1): 518-57, 1 ISSN 1991-8178 Homoopy Aalysis Mehod for Solvig Fracioal Surm-Liouville Problems 1 A Neamay, R Darzi, A Dabbaghia 1 Deparme of Mahemaics, Uiversiy

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

Research Article Generalized Equilibrium Problem with Mixed Relaxed Monotonicity

Research Article Generalized Equilibrium Problem with Mixed Relaxed Monotonicity e Scieific World Joural, Aricle ID 807324, 4 pages hp://dx.doi.org/10.1155/2014/807324 Research Aricle Geeralized Equilibrium Problem wih Mixed Relaxed Moooiciy Haider Abbas Rizvi, 1 Adem KJlJçma, 2 ad

More information

CLASSIFICATION OF RANDOM TIMES AND APPLICATIONS

CLASSIFICATION OF RANDOM TIMES AND APPLICATIONS CLASSIFICATION OF RANDOM TIMES AND APPLICATIONS Aa Aksami, Tahir Choulli, Moique Jeablac To cie his versio: Aa Aksami, Tahir Choulli, Moique Jeablac. CLASSIFICATION OF RANDOM TIMES AND APPLICATIONS. 26.

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique MASSACHUSETTS ISTITUTE OF TECHOLOGY 6.265/5.070J Fall 203 Lecure 4 9/6/203 Applicaios of he large deviaio echique Coe.. Isurace problem 2. Queueig problem 3. Buffer overflow probabiliy Safey capial for

More information

Fuzzy Dynamic Equations on Time Scales under Generalized Delta Derivative via Contractive-like Mapping Principles

Fuzzy Dynamic Equations on Time Scales under Generalized Delta Derivative via Contractive-like Mapping Principles Idia Joural of Sciece ad echology Vol 9(5) DOI: 7485/ijs/6/v9i5/8533 July 6 ISSN (Pri) : 974-6846 ISSN (Olie) : 974-5645 Fuzzy Dyamic Euaios o ime Scales uder Geeralized Dela Derivaive via Coracive-lie

More information

Fresnel Dragging Explained

Fresnel Dragging Explained Fresel Draggig Explaied 07/05/008 Decla Traill Decla@espace.e.au The Fresel Draggig Coefficie required o explai he resul of he Fizeau experime ca be easily explaied by usig he priciples of Eergy Field

More information

A Change-of-Variable Formula with Local Time on Surfaces

A Change-of-Variable Formula with Local Time on Surfaces Sém. de Probab. L, Lecure Noes i Mah. Vol. 899, Spriger, 7, (69-96) Research Repor No. 437, 4, Dep. Theore. Sais. Aarhus (3 pp) A Chage-of-Variable Formula wih Local Time o Surfaces GORAN PESKIR 3 Le =

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS M.A. (Previous) Direcorae of Disace Educaio Maharshi Dayaad Uiversiy ROHTAK 4 Copyrigh 3, Maharshi Dayaad Uiversiy, ROHTAK All Righs Reserved. No par of his publicaio may be reproduced

More information

AN UNCERTAIN CAUCHY PROBLEM OF A NEW CLASS OF FUZZY DIFFERENTIAL EQUATIONS. Alexei Bychkov, Eugene Ivanov, Olha Suprun

AN UNCERTAIN CAUCHY PROBLEM OF A NEW CLASS OF FUZZY DIFFERENTIAL EQUATIONS. Alexei Bychkov, Eugene Ivanov, Olha Suprun Ieraioal Joural "Iformaio Models ad Aalyses" Volume 4, Number 2, 215 13 AN UNCERAIN CAUCHY PROBLEM OF A NEW CLASS OF FUZZY DIFFERENIAL EQUAIONS Alexei Bychkov, Eugee Ivaov, Olha Supru Absrac: he cocep

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Solutions to Problems 3, Level 4

Solutions to Problems 3, Level 4 Soluios o Problems 3, Level 4 23 Improve he resul of Quesio 3 whe l. i Use log log o prove ha for real >, log ( {}log + 2 d log+ P ( + P ( d 2. Here P ( is defied i Quesio, ad parial iegraio has bee used.

More information

arxiv:math/ v1 [math.pr] 5 Jul 2006

arxiv:math/ v1 [math.pr] 5 Jul 2006 he Aals of Applied Probabiliy 2006, Vol. 16, No. 2, 984 1033 DOI: 10.1214/105051606000000088 c Isiue of Mahemaical Saisics, 2006 arxiv:mah/0607123v1 [mah.pr] 5 Jul 2006 ERROR ESIMAES FOR INOMIAL APPROXIMAIONS

More information

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists CSE 41 Algorihms ad Daa Srucures 10/14/015 Skip Liss This hadou gives he skip lis mehods ha we discussed i class. A skip lis is a ordered, doublyliked lis wih some exra poiers ha allow us o jump over muliple

More information

Averaging of Fuzzy Integral Equations

Averaging of Fuzzy Integral Equations Applied Mahemaics ad Physics, 23, Vol, No 3, 39-44 Available olie a hp://pubssciepubcom/amp//3/ Sciece ad Educaio Publishig DOI:269/amp--3- Averagig of Fuzzy Iegral Equaios Naalia V Skripik * Deparme of

More information

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES. Boundary Value Problem for the Higher Order Equation with Fractional Derivative

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES. Boundary Value Problem for the Higher Order Equation with Fractional Derivative Malaysia Joural of Maheaical Scieces 7(): 3-7 (3) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural hoepage: hp://eispe.up.edu.y/joural Boudary Value Proble for he Higher Order Equaio wih Fracioal Derivaive

More information

Review Answers for E&CE 700T02

Review Answers for E&CE 700T02 Review Aswers for E&CE 700T0 . Deermie he curre soluio, all possible direcios, ad sepsizes wheher improvig or o for he simple able below: 4 b ma c 0 0 0-4 6 0 - B N B N ^0 0 0 curre sol =, = Ch for - -

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 193-9466 Vol. 5, No. Issue (December 1), pp. 575 584 (Previously, Vol. 5, Issue 1, pp. 167 1681) Applicaios ad Applied Mahemaics: A Ieraioal Joural

More information

On The Eneström-Kakeya Theorem

On The Eneström-Kakeya Theorem Applied Mahemaics,, 3, 555-56 doi:436/am673 Published Olie December (hp://wwwscirporg/oural/am) O The Eesröm-Kakeya Theorem Absrac Gulsha Sigh, Wali Mohammad Shah Bharahiar Uiversiy, Coimbaore, Idia Deparme

More information

NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE

NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE Yugoslav Joural of Operaios Research 8 (2008, Number, 53-6 DOI: 02298/YUJOR080053W NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE Jeff Kuo-Jug WU, Hsui-Li

More information

Présentée pour obtenir le grade de. Docteur en Science **************TITRE**************

Présentée pour obtenir le grade de. Docteur en Science **************TITRE************** UNIVRSITÉ MOHAMD KHIDR FACULTÉ DS SCINCS XACTS T SCINC D LA NATUR T D LA VI BISKRA *************************** THÈS Préeée pour obeir le grade de Doceur e Sciece Spécialié: Probabilié **************TITR**************

More information

Academic Forum Cauchy Confers with Weierstrass. Lloyd Edgar S. Moyo, Ph.D. Associate Professor of Mathematics

Academic Forum Cauchy Confers with Weierstrass. Lloyd Edgar S. Moyo, Ph.D. Associate Professor of Mathematics Academic Forum - Cauchy Cofers wih Weiersrass Lloyd Edgar S Moyo PhD Associae Professor of Mahemaics Absrac We poi ou wo limiaios of usig he Cauchy Residue Theorem o evaluae a defiie iegral of a real raioal

More information

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series Mahemaical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol.7, No.5, 7 A Sudy O (H, )(E, q) Produc Summabiliy Of Fourier Series Ad Is Cojugae Series Sheela Verma, Kalpaa Saxea * Research Scholar

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

hal , version 5-4 Oct 2012

hal , version 5-4 Oct 2012 Auhor mauscrip, published i "Advaces i Applied Probabiliy 13 3" ERROR BOUNDS FOR SMALL JUMPS OF LÉVY PROCESSES EL HADJ ALY DIA Absrac The pricig of opios i expoeial Lévy models amous o he compuaio of expecaios

More information

Math 2414 Homework Set 7 Solutions 10 Points

Math 2414 Homework Set 7 Solutions 10 Points Mah Homework Se 7 Soluios 0 Pois #. ( ps) Firs verify ha we ca use he iegral es. The erms are clearly posiive (he epoeial is always posiive ad + is posiive if >, which i is i his case). For decreasig we

More information

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich)

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich) Proc. Amer. Mah. Soc. 19(001, o. 1, 3471 3478. AN EXTENSION OF LUCAS THEOREM Hog Hu ad Zhi-Wei Su (Commuicaed by David E. Rohrlich Absrac. Le p be a prime. A famous heorem of Lucas saes ha p+s p+ ( s (mod

More information

On stability of first order linear impulsive differential equations

On stability of first order linear impulsive differential equations Ieraioal Joural of aisics ad Applied Mahemaics 218; 3(3): 231-236 IN: 2456-1452 Mahs 218; 3(3): 231-236 218 as & Mahs www.mahsoural.com Received: 18-3-218 Acceped: 22-4-218 IM Esuabaa Deparme of Mahemaics,

More information

THE TROTTER-KATO APPROXIMATION IN UTILITY MAXIMIZATION. Lingyu Miao. Master of Science. Mathematical Finance

THE TROTTER-KATO APPROXIMATION IN UTILITY MAXIMIZATION. Lingyu Miao. Master of Science. Mathematical Finance Uiversiy of Albera THE TROTTER-KATO APPROXIMATION IN UTILITY MAXIMIZATION by Ligyu Miao A hesis submied o he Faculy of Graduae Sudies ad Research i parial fulfillme of he requiremes for he degree of Maser

More information

Convergence of Solutions for an Equation with State-Dependent Delay

Convergence of Solutions for an Equation with State-Dependent Delay Joural of Mahemaical Aalysis ad Applicaios 254, 4432 2 doi:6jmaa2772, available olie a hp:wwwidealibrarycom o Covergece of Soluios for a Equaio wih Sae-Depede Delay Maria Barha Bolyai Isiue, Uiersiy of

More information

Prakash Chandra Rautaray 1, Ellipse 2

Prakash Chandra Rautaray 1, Ellipse 2 Prakash Chadra Rauara, Ellise / Ieraioal Joural of Egieerig Research ad Alicaios (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue, Jauar -Februar 3,.36-337 Degree Of Aroimaio Of Fucios B Modified Parial

More information

Boundary-to-Displacement Asymptotic Gains for Wave Systems With Kelvin-Voigt Damping

Boundary-to-Displacement Asymptotic Gains for Wave Systems With Kelvin-Voigt Damping Boudary-o-Displaceme Asympoic Gais for Wave Sysems Wih Kelvi-Voig Dampig Iasso Karafyllis *, Maria Kooriaki ** ad Miroslav Krsic *** * Dep. of Mahemaics, Naioal Techical Uiversiy of Ahes, Zografou Campus,

More information