Présentée pour obtenir le grade de. Docteur en Science **************TITRE**************

Size: px
Start display at page:

Download "Présentée pour obtenir le grade de. Docteur en Science **************TITRE**************"

Transcription

1 UNIVRSITÉ MOHAMD KHIDR FACULTÉ DS SCINCS XACTS T SCINC D LA NATUR T D LA VI BISKRA *************************** THÈS Préeée pour obeir le grade de Doceur e Sciece Spécialié: Probabilié **************TITR************** Sur ceraie propriéé de équaio différeielle ochaique doubleme rérograde. *************************** par Badreddie MANSOURI Soueue le deva la commiio d exame:

2 Ackowledgeme I i a pleaure o ackowledge Profeor Brahim Mezerdi, my upervior, who ha maerly guided me io he world of reearch wih icomparable dipoabiliy ad ice my fir ep. Thak you Profeor for your edle care, help, ecourageme. I am deeply graeful o Profeor Khaled Bahlali for heir help, co-operaio, ecourageme i variou apec ad for warm hopialiy, he cieific ehuiam he ha ramied me durig my ay i Toulo, hak you Profeor for hi. I would like o expre my icere graiude o Profeor : Lamie Melkemi, Khaled Bahlali, Abdelhafide Moukrae for accepig o repor my hei. Pleae do fid here he expreio of my coideraio. I am alo graeful o Profeor Seid Bahlali for accepig o be chairma. May hak are alo due o Dr. Boubakeur Labed for hi co-operaio, help, ecourageme ad fried-hip ad for guidig me io he area of reearch. 1

3 Coe Ackowledgeme 1 Iroducio 6 I BACKGROUND ON BACKWARD STOCHASTIC DIF- FRNTIAL QUATIONS xiece reul of backward ochaic differeial equaio Iroducio BSD wih Lipchiz coefficie Compario heorem BSD wih coiuou coefficie Refleced Backward Sochaic Differeial quaio Iroducio Refleced BSD wih Lipchiz coefficie Compario heorem for RBSD Refleced BSD wih coiuou coefficie II BACKWARD DOUBLY STOCHASTIC DIFFRNTIAL QUATIONS Backgroud o backward doubly ochaic differeial equaio Iroducio BDSD wih Lipchiz coefficie Noaio ad aumpio xiece ad uiquee heorem Compario Theorem of BDSD

4 3 3.4 BDSD wih coiuou coefficie Refleced Backward doubly ochaic differeial equaio Iroducio Aumpio ad Defiiio xiece of a oluio of he RBDSD wih Lipchiz codiio RBDSD wih coiuou coefficie xiece reul of Double barrier Refleced backward doubly ochaic differeial equaio Iroducio Aumpio ad Defiiio xiece of a oluio of he DRBDSD wih Lipchiz codiio Double barrier BDSD wih coiuou coefficie

5 Abrac Thi hei i compoed of wo par. The fir par i devoed he udy of backward ochaic differeial equaio (BSD) uder Lipchiz codiio i boh mulidimeioal cae, we prove a exiece ad uiquee reul for BSSD i hi cae. Afer, we give a exiece reul for a BSD where he coefficie are aumed o be oly coiuou. I The ecod par, we prove he exiece of he oluio where i forced o ay above a give ochaic proce, called he obacle. We prove he exiece ad uiquee uder Lipichiz coefficie. I he cae where he coefficie i coiuou we prove he exiece oly. I he ecod par, we pree ome ew reul i he heory of backward doubly ochaic differeial equaio (BDSD), I fir, we give he reul he exiece ad uiquee uder ome Liphiz aumpio o he coefficie, fially we eablih exiece ad uiquee reul for a refleced BDSD wih oe barrier ad wih wo barrier, udy he cae Lipchiz ad Coiuou. 4

6 5 Réumé Cee hèe e compoe de deux parie. La première parie e coacré à l éude de équaio différeielle ochaique rérograde (DSR), ou le codiio de Lipichiz e prouve l exiece e l uicié, mai avec coefficie coiu, ou doo u réula d exiece pour ue DSR. Nou éudio da chapire 2, ue clae de équaio différeielle ochaique rérograde. Da la deuxième parie, ou préeo de ouveaux réula da la héorie de équaio différeielle doubleme ochaique rérograde (DDSR), o commece par le réula claique ur cee clae de équaio. efi e défiie le équaio différeielle doubleme ochaique rérograde réfléchie (DDSRR). D abord, ou la codiio de Liphiz ur le coefficie ou éablio l exiece e l uicié pour ue DDSR réfléchie. uie, u réula d exiece de la oluio da le ca où le coefficie o coiu à croiace liéaire.

7 Iroducio I wa maily durig he la decade ha he heory of backward ochaic differeial equaio ook hape a a diic mahemaical diciplie. Thi heory ha foud a wide field of applicaio a i mahemaical fiace, he heory of hedgig ad oliear pricig heory for imperfec marke (ee l Karoui, Peg ad Queez [14]) ad a he ame ime, i ochaic opimal corol ad ochaic game (ee Hamadèe ad Lepelier [23]), ad hey provide probabiliic formulae for oluio o parial differeial equaio (ee Pardoux ad Peg [34]). The Liear backward ochaic differeial equaio : Y = ξ + (Y β + Z γ + φ )d Z dw. (1) have bee iroduced by Bimu [8] ad [9] whe he wa udyig he adjoi equaio aociaed wih he ochaic maximum priciple i opimal corol. However, he fir publihed paper o oliear BSD (ee Pardoux ad Peg [34]) Y = ξ + f(, Y, Z )d Z dw. (2) I [34], Pardoux ad Peg have eablihed he exiece ad uiquee of he oluio of equaio 2 uder he uiform Lipchiz codiio, i.e. here exi a coa K > uch ha f(, y, z) f(, y, z ) K( y y + z z ). for all y, y R d, z, z R d. Noe ha, ice he boudary codiio i give a he ermial ime T, i i o really aural for he oluio Y be o adaped a each ime o he pa of he Browia moio W before ime. The preece of he proce Z eem uperfluou. However, we poi ou ha i i he preece of hi proce ha make i poible o fid adaped proce Y o aify equaio (2). Hece, a oluio of BSD (2) o he probabiliy pace of Browia moio, a meioed above, i a pair (Y, Z) of adaped procee ha aifie (2) almo urely. 6

8 7 I [27], Lepelier ad Sa Mari have prove he exiece of a oluio for oe-dimeioal BSD where he coefficie i coiuou, i ha a liear growh, i.e aume he for fixed, ω, f(,.,.) o coiuou, ad here exi a coa K > uch ha for all, y, z we have f(, y, z) K(1 + y + z ). Kobylaki i [26] prove exiece ad uiquee reul for BSD (2) i oe dimeioal whe he geeraor (f(, y, z) ha a quadraic growh i Z. f(, y, z) C(1 + y + z 2 ). Thee reul are ipired by he aalogou oe for quailiear parial differeial equaio ad hold for procee (Y, Z ) T uch ha (Y ) T i bouded. K.Bahlali i [2] we deal wih mulidimeioal BSD wih locally Lipchiz coefficie ad a quare iegrable ermial daa. We udy he exiece ad uiquee, a well a he abiliy of oluio. We how ha if he coefficie f i locally Lipchiz i boh variable y, z ad he Lipchiz coa L N i he ball B(, N) i uch ha L N = o( log N), he he BSD 2 ha a uique oluio. I he cae where he oluio i forced o remai above a obacle, l Karoui e al. [15] have derived a exiece ad uiquee reul for Refleced BSD wih Lipchiz coefficie by Picard ieraio mehod a well a a pealizaio argume. I hi cae, he oluio i a riple (Y, Z, K), where K i a icreaig proce, aifyig Y = ξ + f(, Y, Z )d + K T K Z db. (3) Noe ha he udy of Refleced BSD o oe barrier ha bee primarily moivaed by he evaluaio of a America opio i a marke coraied, which may be a marke where iere rae are o he ame if we wa o borrow or ive moey. Ideed, i ha bee proved ha he price of a America coige acio i a oluio of a refleced BSD ha he barrier i give by he payoff ad he opimal ime of exercie i he fir ime whe he price reache he payoff (ee [16]). Oher applicaio i i mixed ochaic corol ee [2]. I he paper of Maoui [29] he will be ipired by he work of l Karoui [15] ad Lepelier [27] o eablih exiece of Refleced oluio of oedimeioal BSD wih coiuou ad liear growh coefficie. Recely, a ew cla of BSD, called doubly ochaic, ha bee coidered by Pardoux ad Peg (1994) (ee [35]). Thi ew kid of backward SD eem o be uiable o give a probabiliic repreeaio for a yem of parabolic ochaic parial differeial equaio (SPD ). We refer o Pardoux ad Peg (1994) [35] for he lik bewee

9 8 SPD ad BDSD i he paricular cae where oluio of SPD are regular. I [35] Pardoux-Peg udy exiece ad uiquee of he oluio o a backward doubly ochaic differeial equaio a follow Y = ξ + f(, Y, Z )d + g(, Y, Z )d B Z dw. (4) where he dw iegral i a forward Iô iegral ad he d B iegral i a backward Iô iegral, we prove uder he codiio f ad g are Lipchiz, he BDSD 4 ha a uique oluio. I [41]. Shi e al., we hall prove he compario heorem of BDSD (4). The we udy he cae where he geeraor are coiuou wih liear growh. We how he exiece of he miimal oluio of (4). Thi mehod i due o [27]. I hi hei, we pree ome ew reul i he heory of Backward Doubly Sochaic Differeial quaio. Fir, we udy he cae where he oluio i forced o ay above a give ochaic proce, called he obacle. We obai he real valued refleced backward doubly ochaic differeial equaio : Y = ξ + f(, Y, Z )d + g(, Y, Z )d B + K T K Z dw. (5) We eablih he exiece ad uiquee of oluio for equaio (5) uder uiformly Lipchiz codiio o he coefficie [4]. I cora o claical refleced BSD, he ecio heorem ca o be eaily ued for RBDSD. Ideed, i i o poible o prove ha he oluio ay above he obacle for all ime, by oly uig he claical BSD echic. Thi i due o he fac ha he oluio hould be adaped o a family (F ) which i o a filraio. We give here a mehod which allow u o overcome hi difficuly i he Lipchiz cae. The idea coi o ar from he pealized baic RBDSD wih f ad g idepede from (y, z). We raform i o a RBDSD wih f = g =, for which we prove he exiece ad uiquee of oluio by pealizaio mehod. The ecio heorem i he oly ued i he imple coex where f = g = o prove ha he oluio of he RBDSD (wih f = g = ) ay above he obacle for each ime. A ew ype of compario heorem i alo eablihed ad ued i hi coex. The (geeral) cae, where he coefficie f, g deped o (y, z), i reaed by a Picard ype approximaio. I he cae where he coefficie f i oly coiuou, we eablih he exiece of a maximal ad a miimal oluio. I hi cae, we approximae f by a equece of Lipchiz fucio (f ) ad ue a compario heorem which i eablihed here for RBDSD.

10 9 Oher ew reul, we geeralize he above reul o he cae of wo reflecig barrier procee, we obai he real valued double refleced backward doubly ochaic differeial equaio (i hor DRBDSD): Y = ξ+ f (, Y, Z ) d+ g (, Y, Z ) d B + dk + dk Z dw, T. (6) We eablih he exiece ad uiquee of oluio for equaio (6) uder uiformly Lipchiz codiio o he coefficie. I he cae where he coefficie f i oly coiuou, we eablih he exiece of a oluio. The hei i orgaized a follow. The fir par of hi hei i o he Backward Sochaic Differeial quaio Y = ξ + f(, Y, Z )d Z dw. (7) I Chaper 1, we pree, a exiece ad uiquee heorem for oluio of BSD (7) where he coefficie i Lipuchiz, ad we give he compario reul i hi cae ad we prove he exiece i he cae where he geeraor are coiuou wih liear growh. I Chaper 2, we prove exiece ad uiquee reul of oluio of refleced backward ochaic differeial equaio Y = ξ + f(, Y, Z )d + K T K Z db. (8) where he coefficie i Lipichiz ad exiece oly i he cae where he geeraor are coiuou wih liear growh. The ecod par of hi hei i o he Backward Doubly Sochaic Differeial quaio Y = ξ + f(, Y, Z )d + g(, Y, Z )d B Z dw. (9) I Chaper 3, we give a backgroud o BDSD, we prove exiece ad uiquee reul of oluio of BDSD (9) where f ad g are Lipichiz, ad he geeralize hi cae where f i coiuou wih liear growh ad we prove alo he reul compario for BDSD. I Chaper 4, i hi chaper we eablih a ew reul of BDSD, i whe he oluio i forced o ay above a give ochaic proce, called he obacle. We obai he real

11 1 valued refleced BDSD Y = ξ + f(, Y, Z )d + g(, Y, Z )d B + K T K Z dw. (1) We prove he exiece ad uiquee of oluio for equaio (1) uder uiformly Lipchiz codiio o he coefficie. I he cae where he coefficie f i oly coiuou, we eablih he exiece of a maximal ad a miimal oluio. I Chaper 5, we give oher ew reul i for double refleced backward doubly ochaic differeial equaio (i hor DRBDSD): Y = ξ+ f (, Y, Z ) d+ g (, Y, Z ) db + dk + dk Z dw, T. (11) We eablih he exiece ad uiquee of oluio for equaio (11) uder uiformly Lipchiz codiio o he coefficie. I he cae where he coefficie f i oly coiuou, we eablih he exiece of a oluio.

12 Par I BACKGROUND ON BACKWARD STOCHASTIC DIFFRNTIAL QUATIONS. 11

13 Chaper 1 xiece reul of backward ochaic differeial equaio We prove he exiece ad uiquee of oluio for backward ochaic differeial equaio wih lipchiz geeraor ad quared iegrable ermial codiio, we prove moreover he exiece of a oluio whe he geeraor i merely coiuou. 1.1 Iroducio Backward ochaic differeial equaio (BSD) have bee fir iroduced by. Pardoux ad S. Peg [39] who proved exiece ad uiquee of adaped oluio for hee equaio uder uiable Lipchiz ad liear growh codiio o he coefficie. The pricipal iere of BSD i ha hey provide a ueful framewark for formulaig may problem a i fiace heory, ochaic corol ad i he game heory. Followig he idea of J.P. Lepelier ad J. Sa Mari [27], we ue a approximaio argume o prove he exiece of a oluio of oe dimeioal BSD wih a coiuou coefficie. 1.2 BSD wih Lipchiz coefficie Le coider a filered pace (Ω, F, P, F, W, [, 1]) be a complee Wieer pace i R,i.e. (Ω, F, P ) i a complee probabiliy pace, (F, [, 1]) i a righ coiuou 12

14 Secio 1.2. BSD wih Lipchiz coefficie 13 icreaig family of complee ub σ algebra of F, (W, [, 1]) i a adard Wieer proce i R wih repec o (F, [, 1]). We aume ha F = σ[w, ] N, where N deoe he oaliy of P -ull e. Now, we defie he followig wo objec : (H1.1) A ermial value ξ L 2 (Ω, F 1, P ). (H1.2) A fucio proce f defied o Ω [, 1] R k R k wih value i R k ad aifie he followig aumpio : (i) for all (y, z) R k R k : (ω, ) f(ω,, y, z) i F -progreively meaurable. (ii) 1 f(,, ) 2 d < (iii) for ome K > ad all y, y L k, z, z R k, ad (ω, ) Ω [, 1] f(ω,, y, z) f(ω,, y, z ) K( y y + z z ). Le u coider he followig kid of pace of variable or procee. (1) L 2 T (Rk ) i he pace of all F T -meaurable radom variable X : Ω R k aifyig X 2 = ( X 2 ) <. (2) H 2 T (Rk ) i he pace of all he predicable proce φ : Ω [, T ] R k uch ha φ 2 = ( φ 2 d) <. Such procee are aid o be quare iegrable. Le u ow iroduce our BSD : Give a daa (f, ξ) we wa o olve he followig backward ochaic differeial equaio: Y = ξ + f(, Y, Z )d Z dw, T. (1.1) Defiiio A oluio of equaio (1.1) i a pair of procee (Y, Z) progreively meaurable ad aifyig : ( f(, Y, Z ) + Z 2 )d <, ad equaio (1.1). We ow make more precie he depedece of he orm of he oluio (Y, Z) upo he daa (ξ, f). Propoiio Le aumpio (H1.1) ad (H1.2) hold. The here exi a coa C, which deped oly o K, uch ha (up T Y 2 ) + ( Y 2 (e α(1 ) ξ 2 + where α = 1 + 2K + 2K 2. Z 2 d) C( ξ 2 + e α( ) f(,, ) 2 d/f ), f(,, ) 2 d)

15 Secio 1.2. BSD wih Lipchiz coefficie 14 Before provig propoiio (1.2.2), le u fir prove he iequaliy up T Y 2 + ( Defie for each N, he oppig ime τ = if{ T ; Y }, Z 2 d) <. (1.2) ad he procee By oig Y = Y τ. Z = 1 [,τ]()z, we have Y = ξ + 1 [,τ]()f(, Y, Z )d Z dw, T. If we apply Iô formula o he proce Y 2, he Y 2 + which implie ( Y 2 + If we ake K 2ε 2 Z 2 d = ξ [,τ]() ) f(, Y, Z )d Z 2 d) ξ 2 + 1, we ge 2 + K 2ε 2 Z 2 d. Y Now i follow from Growall lemma ha O he oher had, up N From Faou lemma, we ca ee ha Y, Z dw, ( f(,, ) 2 d + (1 + 2K + 2ε 2 ) Y 2 )d Z 2 d C(1 + up T Y 2 C. up Z 2 d. N up Y 2. T Y 2 )d.

16 Secio 1.2. BSD wih Lipchiz coefficie 15 Burkholder-Davi-Gudy iequaliy implie ha up T Y 2. I follow ha τ T a.. Uig agai Faou lemma, we obai Z 2 d. Proof. (of propoiio 1.2.2) Sice (Y, Z) aifie equaio (1.1) ad (2.12), Y, Z dw =, becaue he local marigale, { Y, Z dw, T } i uiformly iegrable from he Burkholder-Davi-Gudy iequaliy for ochaic iegral ee (barlow ad proer) ad he fac ha up T ad from Doob iequaliy, we obai up T (Y ) Z dw C( up Y 2 ) 1/2 ( up T T (Y ) Z dw C( up Y 2 ) 1/2 ( up T T From Iô formula, (H1.2)(iii) ad chwarz iequaliy, Y 2 + Z 2 d ξ ξ (Y ) f(, Y, Z )d 2 Z dw 2 ) 1/2, Z 2 d) 1/2 <, Y, Z dw ( f(,, ) 2 + (1 + 2K + 2K 2 ) Y Z 2 )d Y, Z dw. Takig expecaio ad uig Growall lemma we ge up Y 2 + Z 2 d C( ξ 2 + f(,, ) 2 d) <. T The he reul follow from he Burkholder-Davi-Gudy iequaliy. The ecod reul follow by akig he codiioal expecaio i he followig iequaliy e a Y e a Z 2 d e at ξ e a f(,, ) 2 d 2 e a Y, Z dw. 2 We hall ow prove exiece ad uiquee for BSD (1.1) uder codiio (H1.1) ad (H1.2).

17 Secio 1.2. BSD wih Lipchiz coefficie 16 Theorem (Pardoux-Peg) Uder codiio (H1.1), (H1.2), here exi a uique oluio for equaio (1.1). Proof. xiece.fir, le u prove ha he BSD ha oe oluio. Le Y = ξ + Y = (ξ + f()d Z dw, f()d/f ), ad {Z, T } i give by Iô marigale repreeaio heorem applied o he quare iegrable radom variable ξ + f()d, ha i ξ + f()d = (ξ + f()d) + Z dw, T, Takig he codiioal expecaio wih repec o F, we deduce ha Y = ξ + f()d Z dw, T, i.e. (Y, Z) i a oluio of our BSD. Le u defie he followig equece, Z ) N uch ha Y = Z = ad +1, Z +1 ) i he uique oluio of he BSD (1) Z +1 i a predicable proce ad( Z +1 2 d) <, (2) Y +1 = ξ + f(, Y, Z )d Z +1 dw, T. We hall prove ha he equece, Z ) i Cauchy. Uig Iô formula, we obai for every > m ad he, e α Y +1 Y m = e α Y +1 Y m e α Z +1 Z m+1 2K 2 d + α e α Y +1 Y m+1 2 d e α +1 Y m+1 ) [f(, Y, Z ) f(, Y m, Z m )]d e α +1 Y m+1 ) (Z +1 Z m+1 )dw, e α Z +1 Z m+1 2 d + α e α Y +1 Y m+1 [ Y e α Y +1 Y m+1 2 d Y m + Z Z m ]d

18 Secio 1.2. BSD wih Lipchiz coefficie 17 which implie e α Y +1 Y m (K 2 ε 2 α) Chooig α ad ε uch ha 2 ε 2 e α Z +1 Z m+1 2 d + 2 ε e α Z 2 Z m 2 ]d. e α Y +1 Y m ( I follow immediaely ha e α Y e α Y e α Y +1 Y m+1 2 d + 2 ε 2 = 1 2 ad α 4K2 = 1, he Y m 2 d + Coequely,, Z ) N i a Cauchy equece. Le e α Z +1 Z m+1 2 d e α Z Z m 2 ]d). Y m 2 d + e α Z Z m 2 ]d C 2. Y = lim Y, ad Z = lim Z. I i eay o ee ha (Y, Z) i a oluio of our BSD. e α Y Y m 2 d Uiquee.Le {(Y, Z ); T } ad {(Y, Z ); T } deoe wo oluio of our BSD, ad defie {( Y, Z ), T } = {(Y Y, Z Z ), T }. I follow from Iô formula ha Hece [ Y 2 + [ Y 2 + Z 2 d] = 2 Z 2 d] C he reul follow from Growall lemma. Y, f(, Y, Z ) f(, Y, Z ) d. Y 2 d + frac12 Z 2 d. The followig propoiio how, i paricular, he exiece ad uiquee reul for liear backward ochaic differeial equaio. Such a way i well-kow i mahemaical fiace, where he oluio of a liear BSD i i fac he pricig ad hedgig raegy of he coige claim ξ (ee [14]).

19 Secio 1.3. Compario heorem 18 Propoiio Le (β, γ) be a bouded (R, R )-valued progreively meaurable proce, Φ be a eleme of H 2 T (R), ad ξ be a eleme of L2 T (Rk ). The he Liear BSD Y = ξ + (Φ + Y β + Z γ )d ha a uique oluio (Y, Z) i H 2 T (R) H2 T (R ) give explicily by : Λ Y = [ξλ T + Z dw (1.3) Λ Φ d/f ], (1.4) where Λ i he adjoi proce defied by he forward liear ochaic differeial equaio, Λ = 1 + Λ β d + Λ γ dw, Proof. By heorem1.2.3, here exi a uique oluio o he BSD (1.3). Uig Iô formula we obai Λ Y + Λ Φ d = Y + Λ Y γ dw + Λ Y Z dw. Sice up T Y ad up T Λ are quare iegrable, herefore he local marigale {Λ Y + Λ Φ d, [, T ]} i a uiformly iegrable marigale, whoe -ime value i he F -codiioal expecaio of i ermial value. 1.3 Compario heorem We ae i he oe dimeioal cae a compario heorem (fir obaied by Peg,[38]). Theorem (Compario heorem)le (f 1, ξ 1 ) ad (f 2, ξ 2 ) be wo daa of BSD, ad le (Y 1, Z 1 ) ad (Y 2, Z 2 ) be he aociaed oluio. We uppoe ha ξ 1 ξ 2 P a.., ad f 1 (, y, z) f 2 (, y, z) d P a.. The we have Y 1 Y 2 Proof. We ue he follow oaio We obai he follow BSD δ(y ) = δ(ξ ) + we ca wrie P a.. δ(y ) = Y 1 Y 2, δ(z ) = Z 1 Z 2, δ(ξ ) = ξ 1 ξ 2. δ(y ) = δ(ξ ) + (f 1 (, Y 1, Z 1 ) f 2 (, Y 2, Z 2 ))d δ(z )dw, T, (α δ(y ) + β δ(z ) + f 1 (, Y 2, Z 2 ) f 2 (, Y 2, Z 2 ))d δ(z )dw, T,

20 Secio 1.4. BSD wih coiuou coefficie 19 where {α ; T } i defied by α = { (f 1 (, y 1, z 1 ) f 1 (, y 2, z 2 ))(δ(y )) 1 if Y 1 Y 2,, if Y 1 = Y 2. ad he R valued proce {β, T } a follow. For 1 i, le Z (i) deoe he -dimeioal vecor whoe compoe are equal o hoe of Z 2, ad whoe i la compoe are equal o hoe of Z 1. Wih hi oaio, we defie for each 1 i, { (f 1 (, Y β i 2, Z (i) ) f 1 (, Y 2, Z i 1 )(δ(z)) i 1 if Z 1i =, if Z 1i = Z 2i. Z 2i, Sice f i a Lipchiz fucio, α ad β are bouded procee, for T, le We have for T, δ(y ) = Γ, δ(y ) + Hece Γ, = exp[ δ(y ) = (Γ, δ(y ) + β r, dw r + (α r β r 2 Γ,r (f 1 (r, Y 2 r, Z 2 r ) f 2 (r, Y 2 r, Z 2 r ))dr 2 )dr]. Γ,r (δ(z r ) + β r δ(y r ))dw r. Γ,r (f 1 (r, Y 2 r, Z 2 r ) f 2 (r, Y 2 r, Z 2 r ))dr/f ) The reul follow from hi formula ad he egaiviy of δ(ξ) ad (f 1 (r, Y 2 r, Z 2 r ) f 2 (r, Y 2 r, Z 2 r )). 1.4 BSD wih coiuou coefficie Now we prove he exiece of a oluio for oe dimeioal backward ochaic differeial equaio where he coefficie i coiuou, i ha a liear growh, ad he ermial codiio i quared iegrable. we alo obai he exiece of a miimal oluio. Fir le u coider he followig aumpio : (H1.3) (i) The fucio f i R-valued. (ii) here exi a coa C uch ha P a.., f(, y, z) C(1 + y + z ) for ay (, y, z) [, T ] R 1+d (iii) P a.. for ay [, T ], he fucio which wih (y, z) (, y, z) i coiuou. The we have he followig reul:

21 Secio 1.4. BSD wih coiuou coefficie 2 Theorem (Lepelier-Sa Mari [27]).The BSD aociaed wih (f, ξ) ha a maximal oluio (Y, Z), i.e., we have Y S 2, Z H 2 (R d ), Y = ξ + f(, Y, Z )d Z dw. ad if (Y, Z ) i aoher oluio for (1.5) he P a.., Y Y. (1.5) The idea of he proof i o give a approximaio of he coefficie f by a Lipchiz equece of fucio f, ad eablih ha he limi of he equece, Z ) of correpodig oluio for BSD (ξ, f ) i a oluio of BSD wih parameer (ξ, f). Lemma Le g : R R be a coiuou fucio wih liear growh, ha i here exi a coa K < uch ha x R p g(x) K(1 + x ). The he equece of fucio i well defied for K ad i aifie : {g ) ( 1) (x) = if {g(y) + x y } y Q (i) liear growh : x R, g (x) K(1 + x ); (ii) moooiciy i : x R, g (x) ; (iii) Lipchiz codiio : x, y R, g (x) g (y) x y, (iv) Srog covergece : if x which coverge o x R we have, lim g (x ) = g(x), d a.e, Proof. By he liear growh hypohei o g, g i well defied for K. Alo i follow a oce ha g g. Agai, from he liear growh codiio o g, we obai g (x) if K K y + K x y = K(1 + x ) y Q from which (i) hold. Propery (ii) i evide from he defiiio of he equece (g ). Take ε > ad coider y ε Q uch ha g (x) g(y ε ) + x y ε ε g(y ε ) + y y ε + x y ε y y ε ε g(y ε ) + y y ε x y ε ε g(y ε ) x y ε.

22 Secio 1.4. BSD wih coiuou coefficie 21 Therefore, ierchagig he role of x ad y, ad ice ε i arbirary we deduce ha g (x) g (y) x y. I order o prove (iv), coider lim x = x. Take for every, y Q uch ha g(x ) g (x ) g(y )+ x y 1. Sice (g(x )) i bouded ad g ha liear growh, we deduce ha (y ) i bouded, ad o i (g(y )). Coequely, lim up y x <, ad i paricular y x. Moreover from which he reul follow. g(x ) g (x ) g(y ) 1. Proof. (of heorem 1.4.1) For, le, Z ) be he oluio of he BSD aociaed wih (f, ξ). O he oher had le (Ỹ, Z) be he oluio of he BSD aociaed wih ( C(1 + y + z ), ξ). The compario heorem (1.3.1), implie ha for ay, Y Y +1 Ỹ. I follow ha P a.. for ay T, Y Y ad he equece ) coverge i H 2 (R) o a proce Y which alo upper emi-coiuou. Now by Iô formula wih ) 2, uig he iequaliy ab ε a ε b 2 for ay ε > ad a, b R ad ice f (, y, z) C(1 + y + z ) we deduce ha he equece (Z ) i uiformly bouded i H 2 (R). Nex le, m. The uig Iô formula yield: Y m ) 2 + Z Z m 2 d = 2 2 Y m )(f (, Y, Z ) f m (, Y m Y m )(Z Z m )dw, T., Z m ))d The he equece (Z ) i of Cauchy ype i H 2 (R d ) ad coverge o a proce (Z ) which belog o H 2 (R d ). Now he pair of procee aifie, Y = ξ + = Y f (, Y, Z )d f (, Y, Z ) + Z dw Z dw, T. Bu for ay oppig ime ν we have lim ( Yν Y ν ) =, lim ( ν (Z Z )dw ) = hrough Bulkhoder-Davi-Gudy iequaliy. Fially ( ν (f (, Y, Z ) f(, Y, Z ))d ) ( + ( f (, Y, Z ) f(, Y, Z ) 1 [ Y + Z k] d) f (, Y, Z ) f(, Y, Z ) 1 [ Y + Z >k] d)

23 Secio 1.4. BSD wih coiuou coefficie 22 Bu here exi a ubequece which we ill deoe by uch ha he fir erm i he righ coverge o a ice P a.. ad for ay T, (f (, y, z)) coverge uiformly o f(, y, z) o compac ube of R 1+d. The ecod erm i majoriie by a coa δ k which coverge o a k. Heceforh he lef coverge o a. I follow ha for ay ν a oppig ime we have : Y ν = Y ν f(, Y, Z )d + ν Z dw. Fially he opioal ecio heorem (ee [1], page22) implie ha (Y, Z) i a oluio for (1.5). Now if (Y, Z ) i aoher oluio for (1.5), he compario heorem implie ha Y Y ice f f. Therefore akig he limi we obai Y Y ad he Y i maximal. Remark I he ame way a previouly ha we ued a icreaig approximaio of f we would have coruced he miimal oluio of (1.5).

24 Chaper 2 Refleced Backward Sochaic Differeial quaio We udy refleced oluio of oe-dimeioal backward ochaic differeial equaio. We prove uiquee ad exiece by approximaio via pealizaio, we how ha whe he coefficie ha Lipchiz, ad we prove he exiece of a oluio of RBSD wih coiuou ad liear growh coefficie. 2.1 Iroducio I hi ecio, we udy he cae where he oluio i forced o ay above a give ochaic proce, called he obacle. A icreaig proce i iroduced which puhe he oluio upward, o ha i may remai above he obacle. The exiece i eablihed via approximaio i coruced by pealizaio of he corai, we prove alo a compario heorem, imilar o ha i [14], for o-refleced BSD. Fially we prove he exiece of a refleced oluio of oe-dimeioal backward ochaic differeial equaio wih coiuou ad liear growh coefficie. 2.2 Refleced BSD wih Lipchiz coefficie Alog wih hi ecio he dimeio i equal o 1. So we are goig o deal wih oluio of BSD whoe compoe Y are forced o ay above a give barrier. Le {B, T } be a d-dimeioal browia moio defied o a probabiliy pace 23

25 Secio 2.2. Refleced BSD wih Lipchiz coefficie 24 (Ω, F, P ). Le {F, T } be he aural filraio of {B }, where F coai all P ull e of F ad le P be he σ algebra of predicable ube of Ω [, T ]. Le u iroduce ome oaio. L 2 = {ξ i a F T meaurable radom variable.. ( ξ 2 ) < } H 2 = {{ϕ, T } i a predicable proce.. ( ϕ 2 d) < } S 2 = {{ϕ, T } i a predicable proce.. ( up ϕ 2 ) < } T ad we defie : (I) a ermial value ξ L 2. (II) a coefficie f, which i a map : f : Ω [, T ] R R d R uch ha (y, z) R R d, f(., y, z) H 2, (III) for ome K > ad all y, y R, z, z R d, a.. f(, y, z) f(, y, z ) K( y y + z z ) (IV) A obacle {S, T }, which i a coiuou progreively meaurable realvalued proce aifyig : (up T (S + ) 2 ) <. We hall alway aume ha S T ξ a... Defiiio The oluio of RBSD i a riple {(Y, Z, K ), T } of F progreively meaurable procee akig value i R, R d ad R +, repecively, ad aifyig: (V) Z H 2, i paricular Z 2 d < (V ) Y S 2 ad K T L 2 (VI) Y = ξ + f(, Y, Z )d + K T K Z db, T (VII) Y S, T (VIII) {K } i coiuou ad icreaig, K = ad (Y S )dk =. Our mai reul i hi ecio i Theorem (L karoui e al.[15]) Uder he above aumpio, i paricular (I), (II), (III) ad (IV), he RBSD wih (V), (VI), (VII), (VIII) ha a uique oluio (Y, Z, K). Our prove baed o approximaio via pealizaio. I he followig c will deoe a coa whoe value ca vary from lie o lie.

26 Secio 2.2. Refleced BSD wih Lipchiz coefficie 25 Proof. For each N, le {, Z ); T } deoe he uique pair of F progreively meaurable procee wih value i R R d aifyig Z 2 d < ad Y = ξ + f(, Y, Z )d + where ξ ad f aify he above aumpio. We defie K = S ) d S ) d, T. Z db (2.1) We ow eablih a priori eimae, uiform i, o he equece, Z, K ). Ideed uig Iô formula wih ) 2 ad akig expecaio yield : Y 2 + Z 2 d = ξ f(, Y, Z )Y d + 2 Y dk bu for ay T we have, ξ c(1 + (f(,, ) + K Y + K Z ) Y d + 2 Y 2 d) Z 2 d + 1 ( up (S + ) 2 ) + α(kt K ) 2, α T S dk Hece K T K = Y ξ f(, Y, Z )d + Z db. (K T K ) 2 c{( Y 2 ) + ξ ( chooig α = (1/3c), we have 2 3 ( Y 2 ) From Growall lemma i follow ha up ( Y 2 ) + T Z 2 d c(1 + ( Y 2 + Z 2 )d)}, Y 2 d). Z 2 d + (K T ) 2 c, N. Uig agai equaio (2.1) ad he Burkholder-Davi-Gudy iequaliy, we deduce ha ( up Y 2 + T Z 2 d + (KT ) 2 ) c, N. (2.2)

27 Secio 2.2. Refleced BSD wih Lipchiz coefficie 26 We defie f (, y, z) = f(, y, z) + (y S ), f (, y, z) f +1 (, y, z), ad i follow from he compario heorem (for orefleced BSD ee ([34])) ha Y Y +1, T, a.. Hece Y Y, T, a.. ad from (2.2) ad Faou lemma, ( up Y 2 ) c. T I he follow by domiaed covergece ha (Y Y ) 2 d a. (2.3) Now we prove lim (up T (Y S ) 2 =, hi propery i he key poi i he proof of our reul. Le (Ỹ, Z ) be he oluio of he followig BSD : Ỹ = ξ + (f(, Y, Z ) (Ỹ S ))d Z db By compario we have P a.. T, Y F oppig ime uch ha ν T. The, Ỹ, for ay. Now le ν be a Ỹ ν = [ξ exp( (T ν)) + ν {f(, Y, Z ) + S } exp( ( ν))d/f ν }] Sice S i coiuou he ξ exp( (T ν)) + ν S exp( ( ν))d ξ1 {ν=t } + S ν 1 {ν<t } P a.. ad i mea quare. O he oher had Therefore, exp( ( ν))f(, Y, Z )d 1 { ν 2 Ỹ ν ξ1 {ν=t } + S ν 1 {ν<t } L 2 a (f(, Y, Z )) 2 d} 1/2. ad he Y ν S ν a.. From ha ad he ecio heorem (ee [1]), i follow ha P a.., [, T ], Y S ad he heorem implie ha up T S ), T, P a.. Now Dii S ) a. Fially he cocluio em from he domiaed covergece heorem ice for ay, Y 1 S + Y S ad

28 Secio 2.2. Refleced BSD wih Lipchiz coefficie 27 he S ) Y 1 + S +. Now i follow from Iô formula ha for ay m ( Y Y m 2 ) + Sice m, he Z Z m 2 d = K + 2 [f(, Y, Z m ) f(, Y m, Z m )](Y Y m )d(k K m ) ( Y Y m 2 + Y S ) dk m + 2 Y m )(dk dk m ) up T (Y eimae (2.2) ad he fac lim (up T Z Z m 2 d c Y Y m S ) 2 = yield Y m )d Y m Z Z m )d (Y m S ) dk (2.4) Y m ) KT m, ad uig he 2 d + 2 up S ) KT m a heceforh here exi a proce (Z ) T which belog of H 2 (R d ) ad which i he H 2 (R d ) limi of (Z ). Nex goig back o (2.4), akig he upermum ad uig Burkholder-Davi-Gudy iequaliy o obai up (Y T Y m ) 2 + T Z Z m 2 d 2[ up (Y S ) KT m ] + ε up T T + 1 ε Z Z m 2 d + c Y Y Y m 2 Y m 2 d where ε >. We choe ε < 1 implie ha up 2 T (Y Y m ) a, m ad he up T (Y Y ) a, moreover Y = (Y ) T i a coiuou proce. Now ice for ay ad T K = Y Y f(, Y, Z )d + Z db he we have alo, up T K K m 2 a, m. Hece here exi a F adaped o-decreaig ad coiuou proce (K ) T, K = uch ha up T K K 2 a. Fially we prove he limiig proce (Y, Z, K) = (Y, Z, K ) T refleced BSD aociaed wih (f, ξ, S). Obviouly he procee (Y, Z, K ) T aify : Y = ξ + f(, Y, Z )d + K T K Z db, T. i he oluio of he

29 Secio 2.3. Compario heorem for RBSD 28 O he oher had ice lim [up T ((Y S ) ) 2 ] = he P a.., T, Y S. We have alo (Y S )dk = ice he equece ) ad (K ) coverge uiformly repecively o Y ad K ad hak o S )dk = ( S ) ) 2 d. 2.3 Compario heorem for RBSD We prove a compario heorem, imilar o ha of [34] for o-refleced BSD. Theorem Le (ξ, f, S) ad (ξ, f, S ) be wo Refleced BSD, each oe aifyig all he aumpio (I), (II), (III) ad (IV), ad uppoe i addiio he followig : 1) ξ ξ a.. 2) f(, y, z) f (, y, z) dp da.e., (y, z) R R d, 3) S S, T, a.. Le (Y, Z, K) be a oluio of he RBSD (ξ, f, S) ad (Y, Z, K ) a oluio of he RB- SD (ξ, f, S ). The Y Y, T a.. Proof. Applyig Iô formula o (Y Y ) + 2, ad akig expecaio, we ge (Y Y ) {Y>Y } Z Z 2 d 2 (Y Y ) + [f(, Y, Z ) f (, Y, Z )]d Sice o {Y > Y }, Y > S S, we have + 2 (Y Y ) + (dk dk ) = Aume ow ha he Lipchiz codiio o f. The (Y Y ) K 1 {Y>Y } Z Z 2 d (Y Y ) + (dk dk ). (Y Y ) + dk. (Y Y ) + [f(, Y, Z ) f(, Y, Z )]d (Y Y ) + ( (Y Y 1 {Y>Y } Z Z 2 d + c ) + Z Z )d (Y Y ) + 2 d.

30 Secio 2.4. Refleced BSD wih coiuou coefficie 29 Hece (Y Y ) + 2 c (Y Y ) + 2 d. ad from Growall lemma, (Y Y ) + =, T. 2.4 Refleced BSD wih coiuou coefficie We are give hree objec : 1) a ermial value ξ L 2 (Ω, F T, P ). 2) a coefficie f which i a map uch ha : f : [, T ] Ω R R d R i) (y, z) R R d, (, ω) f(, ω, y, z) i P meaurable. ii) P a.. [, T ], f(, ω, y, z) i coiuou i (y, z) o R R d. Moreover here exi a coa C > uch ha for ay (, y, z) [, T ] R R d, f(, ω, y, z) C(1+ y + z ) 3) A obacle {S, T }, which i coiuou ad F progreively meaurable proce aifyig : We hall alway aume ha S T ξ a.. ( up (S ) 2 ) <. T Theorem (A.Maoui)[29]. Le (ξ, f, S) be a riple aifyig he above aumpio 1)-3). The here exi a F progreively meaurable riple{(y, Z, K ), T } oluio of he refleced BSD : Y = ξ + uch ha : i ) (Y 2 + Z 2 )d <, ii ) Y S, T, f(, y, z)d + K T K Z db ; T. (2.5) iii ) {K, T } i a coiuou ad icreaig proce, K =, ad (Y S )dk =. To prove heorem (2.4.1), we eed a impora reul which give a approximaio of coiuou fucio by Lipchiz fucio (ee [27]) f (x) = if y Q {f(y) + x y }.

31 Secio 2.4. Refleced BSD wih coiuou coefficie 3 Proof. Coider, f defie below. The f i a meaurable fucio a well a a Lipchiz fucio. Moreover, ice ξ L 2 ad {S, T } aify 3), we ge from l karoui e al. [15] ha here i a uique oluio, Z, K ), T for RBSD aifyig equaio 2.6 ad: Y = ξ + f (, Y, Z )d + KT K Z db (2.6) ( Y 2 + Z 2 )d <, Y S, T, {K, T } i a coiuou ad icreaig proce, K = ad S )dk =. Uig he compario heorem of RBSD i l karoui e al. (1996)[15], we obai m K, Y Y m, d dp a.. (2.7) The idea of he proof of heorem (2.4.1) i o eablih ha he limi of he equece, Z, K ) i a oluio of he RBSD (2.6) wih parameer (f, ξ, S). From ow o he proof will be divided io four ep. Sep 1: There exi a coa C, uch ha K, (up T Y 2 + Z 2 d + (KT )2 ) C. C > deoe a coa, whoe value may vary from lie o lie. From Iô formula applied o ) 2, i follow ha ) 2 + Z 2 = ξ f (, Y, Z )Y d + 2 Y dk 2 Y Z db, Takig expecaio, ad uig he fac ha Y Z db i uiformly iegrable(ee [15]) ad ued he ideiy S )dk =, we deduce Y 2 + Z 2 = ξ f (, Y, Z )Y d + 2 S dk. uig he uiform liear growh of f ad he iequaliy 2ab a2 + ε εb2, ε >, Y 2 + Z 2 C(1 + Y 2 d) Z 2 d + 1 ( up (S + ) 2 ) + ε((kt K ) 2 ). ε T

32 Secio 2.4. Refleced BSD wih coiuou coefficie 31 Now from (2.6), we ge ((K T K ) 2 ) C( ) 2 + ξ Chooig α = 1, we obai 3C 2 3 ) Z 2 C(1+ ( ) 2 + Z 2 )d). ) 2 d), ) 2 C(1+ ) 2 d). (2.8) I he follow from Growall lemma ha : up T Y 2 C, ad from (2.8) ad he la iequaliy we ge Z 2 d C, (K T ) 2 C. The reul of ep 1 he from equaio (2.6), he above eimae ad he Burkholder- Davi-Gudy iequaliy. Sep 2.We hould prove ha he equece of procee Z coverge i H 2 (R). We have from (2.7) ad he reul of ep 1. Y Y +1, T, P a.. ad up T ( Y 2 ) C. Hece Y Y, T, P a.., ad from Faou lemma, we have (up T Y 2 ) C. I he follow by he domiaed covergece heorem ha Y Y 2 d a. (2.9) For all p K, from Iô formula for =, ad uig he fac Y obai Y Y p 2 + Z Z p 2 d S, we Y p )(f (, Y, Z ) f p (, Y p, Z p ))d S )dk + 2 (Y p S )dk p, From he ideiy S )dk =, ad uig he Hölder iequaliy, we have Z Z p 2 d 2( Y Y p 2 d) 1/2 ( f (, Y, Z ) f p (, Y p, Z p ) 2 d) 1/2, Now, uig he uiform liear growh o he equece (f ) ad he fac, Z ) i bouded, we obai he exiece of a coa C depedig oly o K, T, ξ 2 ad (up T (S + ) 2 ) uch ha, p, Z Z p C Y Y p 1/2.

33 Secio 2.4. Refleced BSD wih coiuou coefficie 32 The from (2.9), (Z ) i a Cauchy equece i H 2 (R d ), ad here exi a F progreively meaurable proce Z uch ha Z Z i H 2 (R d ), a. Hece, ( Y Sep 3.We prove ha (up T Y From Iô formula, we have Y Y p 2 + Z Z p 2 d = 2 Y p 2 + Z Z p 2 )d a, p. (2.1) + 2 Y p 2 ) a, p. Y p )(f (, Y, Z ) f p (, Y p, Z p ))d Y p )(dk dk p ) 2 From he above proof, we have p, Y p )(dk dk p ). The Y Y p 2 2 from which we deduce ( up Y Y p 2 ) 2( T Y p )(f (, Y, Z ) f p (, Y p, Z p ))d 2 Y + 2( up T Y p 2 d) 1/2 ( Y p )(Z Z p )db ). Y p )(Z Z p )db. Y p )(Z Z p )db, f (, Y, Z ) f p (, Y p, Z p )) 2 d) 1/2 Uig agai he uiform liear growh o he equece (f ) ad he fac ha, Z ) i bouded, we deduce ( f (, Y, Z ) f p (, Y p, Z p )) 2 d) 1/2 C. (2.11) Aferward, from he Burkholder-Davi-Gudy iequaliy, we obai 2( up T Y p )(Z Z p )db ) 1 ( up Y Y p 2 ) + C Z Z p 2 d. 2 T Hece, from (2.11) ad he above iequaliy ( ) ( up Y Y p 2 ) C ( Y Y p 2 d) 1/2 + Z Z p 2 d. T The from (2.1), we have ( up Y Y p 2 ), a, p, (2.12) T

34 Secio 2.4. Refleced BSD wih coiuou coefficie 33 from which we deduce ha P a.., Y coverge uiformly i o Y ad ha Y i a coiuou proce. Sep 4. Now accordig o (2.6), we have for all, p K, ( up K K p 2 ) Y Y p 2 + ( up T + C + ( up T T Y Y p 2 ) f (, Y, Z ) f p (, Y p, Z p ) 2 d (Z Z p )db 2 ). (2.13) We eed o how ha he equece of procee (f (., Y, Z )) coverge o f(., Y, Z) i H 2 (R). Thi i deduce from he followig fac : a) Y Y i H 2 (R) ad d dp a.. b) Sice Z Z i H 2 (R) he here exi a proce Z i H 2 (R d ) ad a ubequece uch ha, Z Z, Z Z, d dp a.. Therefore, from he lemma (1.4.2) we ge f (, Y, Z ) f(, Y, Z ), d a.. a ad f (, Y, Z ) K(1 + Y + Y + Z ). Thu, i follow by he domiaed covergece heorem ha f (, Y, Z ) f(, Y, Z ) 2 d a. (2.14) From Burkholder-Davi-Gudy iequaliy ad (2.12)-(2.14) we obai ( up K K p 2 ) a, p. T Coequely, here exi a progreively meaurable proce K wih value i R uch ha ( up K K 2 ) a, (2.15) T ad he {K, T } i clearly a icreaig ( wih K = ) ad a coiuou proce. Takig limi i he RBSD (2.6) we obai ha he riple {(Y, Z, K ), T } i a oluio of he RBSD (2.5). Now from Sep 1., we have ( Y 2 + Z 2 )d C, akig limi i hi iequaliy, we obai i ) ( Y 2 + Z 2 )d C. O he oher had, we have K, Y S, [, T ], akig limi we have clearly ii ). From (2.12) ad (2.15) we have S )dk (Y S )dk, P a.. a, uig he ideiy S )dk =, we obai (Y S )dk =.

35 Par II BACKWARD DOUBLY STOCHASTIC DIFFRNTIAL QUATIONS. 34

36 Chaper 3 Backgroud o backward doubly ochaic differeial equaio I hi chaper, a ew cla of backward ochaic differeial equaio i iveigaed. which allow u o produce a probabiliic repreeaio of cerai quai-liear ochaic parial differeial equaio, we prove he exiece ad uiquee of a oluio where he coefficie i Lipchiz, afer we obai a compario heorem of hee Backward Doubly SD. A oe of i applicaio, we prove he exiece of a oluio for BDSD wih coiuou coefficie. 3.1 Iroducio Thi ew kid of backward SD eem o be uiable o give a probabiliic repreeaio for a yem of parabolic ochaic parial differeial equaio (SPD). We refer o Pardoux ad Peg (1994)[35] for he lik bewee SPD ad BDSD i he paricular cae where oluio of SPD are regular. I ecio 1, we udy exiece ad uiquee of he oluio where he coefficie i Lipchiz, i ecio 2 ad 3, we hall prove he compario heorem of BDSD. The we udy BDSD wih coiuou coefficie a a applicaio of he compario heorem. 35

37 Secio 3.2. BDSD wih Lipchiz coefficie Backward doubly ochaic differeial equaio wih Lipchiz coefficie Noaio ad aumpio Le T be a fixed fial ime. Throughou hi par {W, T } ad {B, T } will deoe wo idepede d-dimeioal Browia moio (d 1), defied o he complee probabiliy pace (Ω, F, P). Le N deoe he cla of P-ull e of F. For each [, T ], we defie F F W F B,T N, I oher word he σ-field F, T, are P-complee. We oice ha he family of σ-algebra F = {F } T i eiher icreaig or decreaig; i paricular, i i o a filraio. For ay 1, we coider he followig pace of procee: 1. The Baach pace M 2 (F, [, T ]; R ) of all equivalece clae (wih repec o he meaure dp d) where each equivalece cla coai a -dimeioal joily meaurable radom proce {ϕ, [, T ]} which aifie: (i) ϕ 2 d < ; (ii) ϕ i F -meaurable, for d-almo all [, T ]. Uually a equivalece cla will be ideified wih (oe of) i member. 2. S 2 (F, [, T ]; R ) i he e of coiuou -dimeioal radom procee which aify: (i) up ϕ 2 < ; T (ii) ϕ i F -meaurable, for a.e [, T ]. We coider coefficie (f, g) wih he followig properie: f : Ω [, T ] R R d R, g : Ω [, T ] R R d R d, uch ha here exi F -adaped procee {f, g : T } wih value i [1, + ) ad wih he propery ha for ay (, y, z) [, T ] R R d, he followig hypohee are aified for ome ricly poiive fiie coa L ad < α < 1 uch ha for ay

38 Secio 3.2. BDSD wih Lipchiz coefficie 37 (y 1, z 1 ), (y 2, z 2 ) R R d, : f (, y, z), g (, y, z) are F -meaurable procee, (H3.1) (i) f (, y 1, z 1 ) f (, y 2, z 2 ) 2 c ( y 1 y z 1 z 2 2), (ii) g (, y 1, z 1 ) g (, y 2, z 2 ) 2 c y 1 y α z 1 z 2 2. We poi ou ha by C we alway deoe a fiie coa whoe value may chage from oe lie o he ex, ad which uually i (ricly) poiive xiece ad uiquee heorem Suppoe ha we are give a ermial codiio ξ L 2 (Ω, F T, P) Defiiio By defiiio a oluio o a BDSD (ξ, f, g, ) i a pair (Y, Z) S 2 (F, [, T ]; R ) M 2 ( F, [, T ]; R d), uch ha for ay T Y = ξ + f (, Y, Z ) d + g (, Y, Z ) db Z dw. (3.1) Here db deoe he claical backward Iô iegral wih repec o he Browia moio B. Our mai goal i hi ecio i o prove he followig heorem. Theorem Uder he above hypohei (H3.1) here exi a uique oluio for he BDSD (3.1). Le u fir eablih he reul i Theorem for BDSD, where he coefficie f, g do o deped o (y, z). More preciely, le f, ad g : Ω [, T ] R d aify (H3.1), ad le ξ be a before. Coider he equaio: Y = ξ + The we have he followig reul. f () d + g () db Z dw. (3.2) Theorem Uder he hypohei (H3.1), here exi a uique oluio o equaio (3.2). Proof. xiece. To how he exiece, we coider he filraio G = F W F B T ad he marigale [ M = ξ + f () d + g () ] db /G, (3.3)

39 Secio 3.2. BDSD wih Lipchiz coefficie 38 which i clearly a quare iegrable marigale by (H3.1). A exeio of Iô marigale repreeaio heorem yield he exiece of a G -progreively meaurable proce (Z ) wih value i R d uch ha Z 2 d < ad M T = M + Z dw. (3.4) We ubrac he quaiy f () d + g () db from boh ide of he marigale i (3.3) ad we employ he marigale repreeaio i (3.4) o obai where Y = ξ + f () d + h () dk + g () db Z dw, [ Y = ξ + f () d + g () ] db /G. I remai o how ha (Y ) ad (Z ) are i fac F -adaped. For Y, hi i obviou ice for each, Y = (Θ/F F B ) Where Θ i F F B meaurable. Hece F B i idepede of F σ(θ), ad Now Z dw = ξ + Y = (Θ/F ). f () d + g () db Y, ad he righ ide i FT W F,T B meaurable. Hece, from Iô marigale repreeaio heorem, Z, < < T i F W F,T B adaped. Coequely Z i F W F,T B meaurable, for ay <, o i i F W F,T B meaurable. Uiquee. I immediae, ice if (Y, Z) i he differece of wo oluio, Hece by orhogoaliy Y + Z dw =, T. ( Y 2 ) + ad Y P a.., Z = ddp a.e. We will alo eed he followig Iô-formula. T r[z Z ]d =,

40 Secio 3.2. BDSD wih Lipchiz coefficie 39 Lemma Le α S 2 (F, [, T ]; R ), β M 2 (F, [, T ]; R ), γ M 2 ( F, [, T ]; R d), ad δ M 2 ( F, [, T ]; R d) be uch ha: α = α + The, for ay fucio φ C 2 (R, R) φ (α ) = φ (α ) + I paricular, + Proof. See [35]. α 2 = α β d + φ (α ), β d + φ (α ), δ dw 1 2 γ 2 d + α, β d + 2 δ 2 d. γ db + δ dw. φ (α ), γ db Tr[φ (α ) γ γ ] d α, γ db + 2 Tr[φ (α ) δ δ ] d. α, δ dw Nex, we eablih a a priori eimae for he oluio of he BSD i (3.1). for ha ake, we eed a addiioal aumpio o g. (H3.2) { here exi c uch ha for all(, y, z) [, T ] R k R k d, gg (, y, z) zz + c( g(,, ) 2 + y 2 )I. Propoiio Aume, i addiio o he codiio of Theorem(3.2.3), ha (H3.2) hold ad for ome p > 2, ξ (Ω, F, P, R k ) ad The ( f(,, ) p + g(,, ) p )d <. ( up Y p + ( Z 2 ) p/2 ) <. T Proof. By lemma applied o ϕ(x) = x p, we obai ha Y p + p 2 = ξ p + p Y p 2 Z 2 d + p 2 (p 2) Y p 4 (Z Z Y, Y )d Y p 2 f(, Y, Z ), Y d + p Y p 2 Y, g(, Y, Z )db + p Y p 2 g(, Y, Z ) 2 d 2 + p 2 (p 2) Y p 4 gg (, Y, Z )Y, Y d p Y p 2 Y, Z dw.

41 Secio 3.2. BDSD wih Lipchiz coefficie 4 Takig he expecaio, we ge ( Y p ) + p 2 Y p 2 Z 2 d + p 2 (p 2) Y p 4 Z Z Y, Y d ( ξ p ) + p Y p 2 f (, Y, Z ), Y d + p 2 Y p 2 g (, Y, Z ) 2 d + p 2 (p 2) Y p 4 gg (, Y, Z )Y, Y )d. We ca coclude from (H3.1) ha for ay α < α < 1, here exi c(α ) uch ha g(, y, z) c(α )( y 2 + g(,, ) 2 ) + α z 2. Bu from (H3.1), (H3.2) ad he fac ha 2 ab 1 α 2c a2 + 2c 1 α b2, c >, i follow ha here exi a coa θ > ad c uch ha ( Y p ) + θ ( ξ p ) + c Y p 2 Z 2 d ( Y p + f (,, ) p + g (,, ) p )d The, from Growall Lemma we obai ( ) up Y p + Y p 2 Z 2 d < T Applyig he ame iequaliie we have already ued o he fir ideiy of he proof, we deduce ha Y p ξ p + c ( Y p + f(,, ) p + g(,, ) p )d + p Y p 2 Y, g(, Y, Z )db p Y p 2 Y, Z dw from he Burkholder-Davi-Gudy iequaliy, we ge (up T Y p ) ξ p + c ( Y p + f(,, ) p + g(,, ) p )d + c Y 2p 4 gg (, Y, Z )Y, Y d + c Y 2p 4 Z Z Y, Y d

42 Secio 3.2. BDSD wih Lipchiz coefficie 41 We eimae he la erm a follow : T Y 2p 4 Z Z Y, Y d (Y p/2 T Y p 2 Z 2 d we deduce ha Now we have + Z 2 d = ξ 2 Y Hece for ay δ >, g(, Y, Z ) 2 d (up T Y p ) Y p 2 Z 2 d (up T Y p ) < f(, Y, Z ), Y d + 2 Y, Z dw ( Z 2 d) p/2 (1 + δ)( g(, Y, Z ) 2 d) p/2 + c(δ, p)[ ξ p + Y p + + Paig o expecaio Y, g(, Y, Z )db p/2 + Y, Z dw p/2 ] ( Z 2 d) p/2 (1 + δ) 2 α( Z 2 d) p/2 + c (δ, p) + c(δ, p)[ Z Y d p/2 ] + c(δ, p)[( Y, g(, Y, Z )db Y 2 Z 2 d) p/4 ] (1 + δ) 2 α( Z 2 d) p/2 + c (δ, p) + c(δ, p){(up T Y p/2 )[( Z d) p/2 + ( Z 2 d) p/4 ]} [(1 + δ) 2 α + (1 + δ)][( Z 2 d) p/2 ] + c (δ, p). The ecod par of he reul ow follow, if we chooe δ > mall eough uch ha (1 + δ) 2 α + (1 + δ) < 1 f(, Y, Z ), Y d p/2 We ca ow ur o he proof of heorem 3.2.2

43 Secio 3.2. BDSD wih Lipchiz coefficie 42 Proof Uiquee.Le (Y 1, Z 1 ) ad (Y 2, Z 2 ) be wo oluio. Defie The Y = Y = Y 1 Y 2, Z = Z 1 Z 2, T [f(, Y 1, Z 1 ) f(, Y 2, Z 2 )]d + Applyig Iô formula o Y 2 yield : Y 2 + Z 2 d = 2 + Hece from (H3.1) ad he iequaliy ab 1 2(1 α) a2 + 1 α Y 2 + Z 2 d c(α) [g(, Y 1, Z 1 ) g(, Y 2, Z 2 )]db Z dw. f(, Y 1, Z 1 ) f(, Y 2, Z 2 ), Y d g(, Y 1, Z 1 ) g(, Y 2, Z 2 ) 2 d. Y 2 d + 1 α 2 2 b2, Z 2 d + α where < α < 1 i he coa appearig i (H3.1). Coequely Y α 2 Z 2 d c(α) Y 2 d. Z 2 d. From Growall lemma, ( Y 2 ) =, T, ad hece Z 2 =. xiece.we defie recurively a equece, Z ) =,1,... a follow. Le Y, Z. Give, Z ), +1, Z +1 ) i he uique oluio, coruced a i heorem (3.2.3), of he followig equaio : Y +1 = ξ + f(, Y, Z )d + g(, Y, Z )db Z +1 dw. (3.5) Le Y +1 Y +1 Y, Z +1 Z +1 Z, T. The ame compuaio a i he proof of uiquee yield : ( Y +1 2 ) + Z +1 2 d = 2 + Le β R. By iegraio by par, we deduce ( Y +1 2 e β ) + β = 2 + f(, Y, Z ) f(, Y 1, Z 1 ), Y +1 g(, Y, Z ) g(, Y 1 Y +1 2 e β d + Z +1 2 e β d f(, Y, Z ) f(, Y 1, Z 1 ), Y +1 e β d g(, Y, Z ) g(, Y 1, Z 1 ) 2 e β d., Z 1 ) 2 d.

44 Secio 3.3. Compario Theorem of BDSD 43 There exi c, γ > uch ha ( Y +1 2 e β ) + (β γ) (c Y α Z 2 )e β d. 2 Now chooe β = γ + 2c 2c, ad defie c = 1+α ( Y +1 2 e β ) α 2 I follow immediaely ha Y +1 2 e β d + 1+α, (c Y Z +1 2 )e β d (c Y 2 + Z 2 )e β d. (c Y Z +1 2 )e β d ( 1 + α ) 2 Z +1 2 e β d (c Y 2 + Z 2 )e β d. ad, ice 1+α 2 < 1,, Z ) =,1,... i a Cauchy equece i M 2 (, T ; R k ) M 2 (, T ; R k l ). I i he eay o coclude ) =,1,... i alo Cauchy i S 2 ([, T ]; R k ), ad ha olve equaio (3.1). (Y, Z ) = lim, Z ) 3.3 Compario Theorem of Backward doubly ochaic differeial equaio I hi ecio, we oly coider oe-dimeioal BDSD. We coider he followig BDSD : ( T ) Y 1 = ξ 1 + Y 2 = ξ 2 + f 1 (, Y 1, Z 1 )d + f 2 (, Y 2, Z 2 )d + g(, Y 1, Z 1 )db g(, Y 2, Z 2 )db Z 1 dw (3.6) Z 2 dw (3.7) where BDSD (3.6) ad (3.7) aify he codiio of heorem (3.2.2). The here exi wo pair of meaurable procee (Y 1, Z 1 ) ad (Y 2, Z 2 ) aifyig BDSD (3.6) ad (3.7), repecively. Aume (H3.3) { ξ 1 ξ 2, f 1 (, Y, Z) f 2 (, Y, Z), The we have he followig compario heorem. a.., a..,

45 Secio 3.3. Compario Theorem of BDSD 44 Theorem Aume BDSD (3.6) ad (3.7) aify he codiio of heorem (3.2.2), le (Y 1, Z 1 ) ad (Y 2, Z 2 ) be oluio of BDSD (3.6) ad (3.7), repecively. If (H3.3) hold, he Y 1 Y 2, a., [, T ]. Proof. The pair (Y 1 Y 2, Z 1 Z 2 ) aifie he followig BDSD. Y 1 Y 2 = (ξ 1 ξ 2 ) + + (f 1 (, Y 1, Z 1 ) f 2 (, Y 2, Z 2 ))d (g(, Y 1, Z 1 ) g(, Y 2, Z 2 ))db (Z 1 Z 2 )dw, T. Applyig Iô formula o (Y 1 Y 2 ) 2, we ge (Y 1 Y 2 ) 2 = (ξ 1 ξ 2 ) From (H3.3), we have ξ 1 ξ 2, o (Y 1 Y 2 ) (f 1 (, Y 1, Z 1 ) f 2 (, Y 2, Z 2 ))d (Y 1 Y 2 ) (g(, Y 1, Z 1 ) g(, Y 2, Z 2 ))db 1 Y 1 Y 2 g(, Y 1, Z 1 ) g(, Y 2 (Y 1 Y 2 ) (Z 1 Z 2 )dw (ξ 1 ξ 2 ) 2 =., Z 2 ) 2 d 1 Y 1 Y 2 Z1 Z 2 2 d. (3.8) Sice (Y 1, Z 1 ) ad (Y 2, Z 2 ) are i S 2 ([, T ]; R) M 2 (, T ; R d ) i eaily follow ha Le = 2 = 2 2 (Y 1 Y 2 ) (Z 1 Z 2 )dw =, (Y 1 Y 2 ) (g(, Y 1, Z 1 ) g(, Y 2, Z 2 ))db =. = 1 + 2, (Y 1 Y 2 ) (f 1 (, Y 1, Z 1 ) f 2 (, Y 2, Z 2 ))d (Y 1 Y 2 ) (f 1 (, Y 1, Z 1 ) f 1 (, Y 2, Z 2 ))d (Y 1 Y 2 ) (f 1 (, Y 2, Z 2 ) f 2 (, Y 2, Z 2 ))d

46 Secio 3.4. BDSD wih coiuou coefficie 45 where 1 = 2 2 = 2 (Y 1 Y 2 ) (f 1 (, Y 1, Z 1 ) f 1 (, Y 2, Z 2 ))d (Y 1 Y 2 ) (f 1 (, Y 2, Z 2 ) f 2 (, Y 2, Z 2 ))d. From (H3.1) ad Youg iequaliy, i follow ha 1 2C (2C + (Y 1 Y 2 ) ( Y 1 Y 2 + Z 1 Z 2 )d C2 1 α ) (Y 1 Y 2 ) 2 d + (1 α) Uig he aumpio (H3.1), agai, we deduce = C 1 Y 1 Y 2 g(, Y 1, Z 1 ) g(, Y 2, Z 2 ) 2 d 1 Y 1 Y 2 [C Y 1 Y 2 (Y 1 Y 2 ) 2 d + α Takig expecaio o boh ide of (3.8), we ge (Y 1 Y 2 ) 2 C By Growall iequaliy, i follow ha Tha i, Y 1 Y 2, a.., [, T ]. 2 + α Z 1 Z 2 2 ]d 1 Y 1 Y 2 Z1 Z 2 2 d. (Y 1 Y 2 ) 2 d. (Y 1 Y 2 ) 2 = [, T ]. 1 Y 1 Y 2 Z1 Z 2 2 d, 3.4 Backward doubly ochaic differeial equaio wih coiuou coefficie I hi ecio we udy BDSD wih coiuou coefficie. We coider coefficie (f, g) wih he followig properie: f : Ω [, T ] R R d R, g : Ω [, T ] R R d R l,

47 Secio 3.4. BDSD wih coiuou coefficie 46 uch ha here exi F -adaped procee {f, g : T } wih value i [1, + ) ad wih he propery ha for ay (, y, z) [, T ] R R d, he followig hypohee are aified for ome ricly poiive fiie coa K, L ad < α < 1 uch ha for ay (y 1, z 1 ), (y 2, z 2 ) R R d, : f (, y, z), g (, y, z) are F -meaurable procee, (H3.4) (i) f (, y, z) K (1 + y + z ), (ii) g (, y 1, z 1 ) g (, y 2, z 2 ) 2 c y 1 y α z 1 z 2 2. Theorem Uder he above hypohee (H3.4) ad if ξ L 2, here exi a oluio for he BDSD (3.1). Moreover, here i a miimal oluio (Y, Z) of BDSD (3.1) i he ee ha, for ay oher oluio (Y, Z) of BDSD (3.1), we have Y Y. We ill aume ha l = d = 1. Before givig he proof of Theorem 3.4.1, we defie, a he claical approximaio ca be proved by adapig he proof give i J. J. Aliber ad K. Bahlali [1], he equece f (, y, z) aociaed o f, f (, y, z) = if [f(, y, z) + ( y y,z Q y + z z )], he for N,f i joily meaurable ad uiformly liear growh i y, z wih coa N. We alo defie he fucio. F (, y, z) = N(1 + y + Z ) Give ξ L 2, by heorem (3.2.2), here exi wo pair of procee, Z ) ad (U, V ), which are he oluio o he followig BDSD, repecively, Y = ξ + f (, Y, Z )d + g(, Y, Z )db Z dw (3.9) U = ξ + F (, U, V )d + From heorem (3.3.1) ad lemma 1 (ee [27]), we ge g(, U, V )db V dw (3.1) m N, Y m Y U, d dp a.. (3.11) Lemma There exi a coa A > depedig oly o N, C, α, T ad ξ, uch ha N, Y A, Z A; U A, V A

48 Secio 3.4. BDSD wih coiuou coefficie 47 Proof. Fir of all, we prove ha U ad V are all bouded. Clearly, from 3.11 here exi a coa B depedig oly o N, C, α, T ad ξ, uch ha ( Applyig Iô formula o U 2, we have Y 2 d) 1/2 B, ( U 2 d) 1/2 B, V B. U 2 = ξ U V dw + U F (, U, V )d + 2 g(, U, V ) 2 d U g(, U, V )db From (H3.1), for all α < α < 1, here exi a coa C(α ) > uch ha From 3.12 ad 3.13, i follow ha U 2 + V 2 d (3.12) g(, u, v) 2 C(α )( u 2 + g(,, ) 2 ) + α v 2 (3.13) V 2 d ξ 2 + 2N 2 U V dw + C(α ) U (1 + U + V )d + 2 ξ 2 + N 2 (T ) + C(α ) α 2 V 2 d + (1 + 2N + C(α ) + 2N 2 ) 1 α + 2 U g(, U, V )db 2 Takig expecaio, we ge by Youg iequaliy, U g(, U, V )db ( U 2 + g(,, ) 2 )d + α V 2 d g(,, ) 2 d U 2 d U V dw. U α 2 V 2 d ( ξ 2 + N 2 T + C(α ) g(,, ) 2 d) + (1 + 2N + C(α ) + 2N 2 ) U 1 α 2 d + 2 up U g(, U, V )db + 2 up T T U V dw. (3.14)

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

Minimal Supersolutions of Convex BSDEs

Minimal Supersolutions of Convex BSDEs Miimal Superoluio of Covex BSDE Samuel Drapeau a,1,, Gregor Heye a,2,, Michael Kupper a,3, Jauary 22, 2013 ABSTRACT We udy he oliear operaor of mappig he ermial value ξ o he correpodig miimal uperoluio

More information

Conditional distributions, exchangeable particle systems, and stochastic partial differential equations

Conditional distributions, exchangeable particle systems, and stochastic partial differential equations Codiioal diribuio, exchageable paricle yem, ad ochaic parial differeial equaio Da Cria, Thoma G. Kurz, Yoojug Lee 23 July 2 Abrac Sochaic parial differeial equaio whoe oluio are probabiliy-meaurevalued

More information

Ruled surfaces are one of the most important topics of differential geometry. The

Ruled surfaces are one of the most important topics of differential geometry. The CONSTANT ANGLE RULED SURFACES IN EUCLIDEAN SPACES Yuuf YAYLI Ere ZIPLAR Deparme of Mahemaic Faculy of Sciece Uieriy of Aara Tadoğa Aara Turey yayli@cieceaaraedur Deparme of Mahemaic Faculy of Sciece Uieriy

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

TIME RESPONSE Introduction

TIME RESPONSE Introduction TIME RESPONSE Iroducio Time repoe of a corol yem i a udy o how he oupu variable chage whe a ypical e ipu igal i give o he yem. The commoly e ipu igal are hoe of ep fucio, impule fucio, ramp fucio ad iuoidal

More information

1. Introduction. Markovian stochastic control problems on a given horizon of time T can typically be written as. β(xu α,α u,e)ñ(du, de).

1. Introduction. Markovian stochastic control problems on a given horizon of time T can typically be written as. β(xu α,α u,e)ñ(du, de). SIAM J. CONROL OPIM. Vol. 54, No. 4, pp. 2090 2115 c 2016 Sociey for Idurial ad Applied Mahemaic A WEAK DYNAMIC PROGRAMMING PRINCIPLE FOR COMBINED OPIMAL SOPPING/SOCHASIC CONROL WIH E f -EXPECAIONS ROXANA

More information

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim Lecure 3 Impora Special FucioMATH-GA 45. Complex Variable The Euler gamma fucio The Euler gamma fucio i ofe ju called he gamma fucio. I i oe of he mo impora ad ubiquiou pecial fucio i mahemaic, wih applicaio

More information

CHAPTER 2 Quadratic diophantine equations with two unknowns

CHAPTER 2 Quadratic diophantine equations with two unknowns CHAPTER - QUADRATIC DIOPHANTINE EQUATIONS WITH TWO UNKNOWNS 3 CHAPTER Quadraic diophaie equaio wih wo ukow Thi chaper coi of hree ecio. I ecio (A), o rivial iegral oluio of he biar quadraic diophaie equaio

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Heat Equation Derivative Formulas for Vector Bundles

Heat Equation Derivative Formulas for Vector Bundles Joural of Fucioal Aalyi 183, 4218 (21) doi:1.16jfa.21.3746, available olie a hp:www.idealibrary.com o Hea Equaio Derivaive Formula for Vecor Budle Bruce K. Driver 1 Deparme of Mahemaic-112, Uiveriy of

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

Weak Solutions of Mean Field Game Master Equations

Weak Solutions of Mean Field Game Master Equations Weak Soluio of Mea Field Game Maer Equaio Cheche Mou ad Jiafeg Zhag March 5, 19 Abrac I hi paper we udy maer equaio ariig from mea field game problem, uder he Lary-Lio moooiciy codiio. Claical oluio of

More information

Review - Week 10. There are two types of errors one can make when performing significance tests:

Review - Week 10. There are two types of errors one can make when performing significance tests: Review - Week Read: Chaper -3 Review: There are wo ype of error oe ca make whe performig igificace e: Type I error The ull hypohei i rue, bu we miakely rejec i (Fale poiive) Type II error The ull hypohei

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017 Deparme of Ecoomic The Ohio Sae Uiveriy Ecoomic 8723 Macroecoomic Theory Problem Se 3 Skech of Soluio Profeor Sajay Chugh Sprig 27 Taylor Saggered Nomial Price-Seig Model There are wo group of moopoliically-compeiive

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution:

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution: Exercie: Show ha Soluio: y ¾ y ¾¾ L c Þ y ¾¾ p c. ¾ L c Þ F y (l Fc (l I[c,(l "l¹c Þ P( y c

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation Alied Mahemaic, 0, 3, 03-08 h://dx.doi.org/0.436/am.0.306 Publihed Olie Ocober 0 (h://www.scirp.org/oural/am) wo mlici Ruge-Kua Mehod for Sochaic Differeial quaio Fuwe Lu, Zhiyog Wag * Dearme of Mahemaic,

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

arxiv: v1 [math.nt] 13 Dec 2010

arxiv: v1 [math.nt] 13 Dec 2010 WZ-PROOFS OF DIVERGENT RAMANUJAN-TYPE SERIES arxiv:0.68v [mah.nt] Dec 00 JESÚS GUILLERA Abrac. We prove ome diverge Ramauja-ype erie for /π /π applyig a Bare-iegral raegy of he WZ-mehod.. Wilf-Zeilberger

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

arxiv: v1 [math.pr] 16 Dec 2018

arxiv: v1 [math.pr] 16 Dec 2018 218, 1 17 () arxiv:1812.7383v1 [mah.pr] 16 Dec 218 Refleced BSDEs wih wo compleely separaed barriers ad regulaed rajecories i geeral filraio. Baadi Brahim ad Oukie Youssef Ib Tofaïl Uiversiy, Deparme of

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments I.J. Egieerig ad Maufacurig, 1,, 36-43 Publihed Olie April 1 i MECS (hp://www.mec-pre.e) DOI: 1.5815/ijem.1..6 Available olie a hp://www.mec-pre.e/ijem Variaioal Ieraio Mehod for Solvig Differeial Equaio

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

( ) ( ) ( ) ( ) ( ) ( ) ( ) (2)

( ) ( ) ( ) ( ) ( ) ( ) ( ) (2) UD 5 The Geeralized Riema' hypohei SV aya Khmelyy, Uraie Summary: The aricle pree he proo o he validiy o he geeralized Riema' hypohei o he bai o adjume ad correcio o he proo o he Riema' hypohei i he wor

More information

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by Sae-Space Model I geeral, he dyaic equaio of a luped-paraeer coiuou ye ay be repreeed by x & f x, u, y g x, u, ae equaio oupu equaio where f ad g are oliear vecor-valued fucio Uig a liearized echique,

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 ME 31 Kiemaic ad Dyamic o Machie S. Lamber Wier 6.. Forced Vibraio wih Dampig Coider ow he cae o orced vibraio wih dampig. Recall ha he goverig diereial equaio i: m && c& k F() ad ha we will aume ha he

More information

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment Overview of Te Two-Sample -Te: Idepede Sample Chaper 4 z-te Oe Sample -Te Relaed Sample -Te Idepede Sample -Te Compare oe ample o a populaio Compare wo ample Differece bewee Mea i a Two-ample Experime

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

The Inverse of Power Series and the Partial Bell Polynomials

The Inverse of Power Series and the Partial Bell Polynomials 1 2 3 47 6 23 11 Joural of Ieger Sequece Vol 15 2012 Aricle 1237 The Ivere of Power Serie ad he Parial Bell Polyomial Miloud Mihoubi 1 ad Rachida Mahdid 1 Faculy of Mahemaic Uiveriy of Sciece ad Techology

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Computable Analysis of the Solution of the Nonlinear Kawahara Equation

Computable Analysis of the Solution of the Nonlinear Kawahara Equation Diache Lu e al IJCSE April Vol Iue 49-64 Compuale Aalyi of he Soluio of he Noliear Kawahara Equaio Diache Lu Jiai Guo Noliear Scieific eearch Ceer Faculy of Sciece Jiagu Uiveri Zhejiag Jiagu 3 Chia dclu@uj.edu.c

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

1 Infinitesimal Generators

1 Infinitesimal Generators Ifiieimal Geeraor. Le {T : } i a emi-group of bouded operaor i Baach pace X, i.e., i aifie ha T T = T + for all, > ad T = I. Le f = l T. Suppoe ha f i bouded o [, a], how ha f i ub-addiive, i.e., f + f

More information

PIECEWISE N TH ORDER ADOMIAN POLYNOMIAL STIFF DIFFERENTIAL EQUATION SOLVER 13

PIECEWISE N TH ORDER ADOMIAN POLYNOMIAL STIFF DIFFERENTIAL EQUATION SOLVER 13 Abrac PIECEWISE N TH ORDER ADOMIAN POLYNOMIAL A piecewie h order Adomia polyomial olver for iiial value differeial equaio capable of olvig highly iff problem i preeed here. Thi powerful echique which employ

More information

Solution of the Hyperbolic Partial Differential Equation on Graphs and Digital Spaces: a Klein Bottle a Projective Plane and a 4D Sphere

Solution of the Hyperbolic Partial Differential Equation on Graphs and Digital Spaces: a Klein Bottle a Projective Plane and a 4D Sphere Soluio of he Hyperbolic Parial Differeial Equaio o Graph ad Digial Space: a Klei Bole a Projecive Plae ad a 4D Sphere Alexader V. Evako Diae, Laboraory of Digial Techologie, Mocow, Ruia Email addre: evakoa@mail.ru

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability:

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability: Oulie Sabiliy Sab Sabiliy of Digial Syem Ieral Sabiliy Exeral Sabiliy Example Roo Locu v ime Repoe Fir Orer Seco Orer Sabiliy e Jury e Rouh Crierio Example Sabiliy A very impora propery of a yamic yem

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Solutions to Problems 3, Level 4

Solutions to Problems 3, Level 4 Soluios o Problems 3, Level 4 23 Improve he resul of Quesio 3 whe l. i Use log log o prove ha for real >, log ( {}log + 2 d log+ P ( + P ( d 2. Here P ( is defied i Quesio, ad parial iegraio has bee used.

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

Chapter 14 Necessary and Sufficient Conditions for Infinite Horizon Control Problems

Chapter 14 Necessary and Sufficient Conditions for Infinite Horizon Control Problems Chaper 14 Neceary ad Sufficie Codiio for Ifiie Horizo Corol Problem I may opimal corol problem i ecoomic he plaig horizo i aumed o be of ifiie legh. Thi mea ha he pero who olve uch a opimal corol problem

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

A Comparative Study of Adomain Decompostion Method and He-Laplace Method

A Comparative Study of Adomain Decompostion Method and He-Laplace Method Applied Mahemaic,, 5, 5-6 Publihed Olie December i SciRe. hp://www.cirp.org/joural/am hp://d.doi.org/.6/am..5 A Comparaive Sudy of Adomai Decompoio Mehod ad He-Laplace Mehod Badradee A. A. Adam, Deparme

More information

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral Usig Lii's Ideiy o Approimae he Prime Couig Fucio wih he Logarihmic Iegral Naha McKezie /26/2 aha@icecreambreafas.com Summary:This paper will show ha summig Lii's ideiy from 2 o ad arragig erms i a cerai

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

Conditional Probability and Conditional Expectation

Conditional Probability and Conditional Expectation Hadou #8 for B902308 prig 2002 lecure dae: 3/06/2002 Codiioal Probabiliy ad Codiioal Epecaio uppose X ad Y are wo radom variables The codiioal probabiliy of Y y give X is } { }, { } { X P X y Y P X y Y

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 8 Compuer Orgaizaio Chaper. Overview of Pipeliig Chau Yu Laudry Example Laudry Example A, Bria, Cahy, Dave each have oe load of clohe o wah, dry, ad fold Waher ake 0 miue A B C D Dryer ake 0 miue Folder

More information

JURY. Mohamed MNIF, Professeur, Ecole Nationale d'ingénieurs de Tunis, Tunis

JURY. Mohamed MNIF, Professeur, Ecole Nationale d'ingénieurs de Tunis, Tunis Achref BACHOUCH Mémoire préeé e vue de l obeio du grade de Doceur de l Uiverié du Maie ou le label de L Uiverié Nae Ager Le Ma e de l'ecole Naioale d'igéieur de Tui ou le label de L Uiverié de Tui EL Maar

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

NON-EXPONENTIAL SANOV AND SCHILDER THEOREMS ON WIENER SPACE: BSDES, SCHRÖDINGER PROBLEMS AND CONTROL. October 3, 2018

NON-EXPONENTIAL SANOV AND SCHILDER THEOREMS ON WIENER SPACE: BSDES, SCHRÖDINGER PROBLEMS AND CONTROL. October 3, 2018 NON-EXPONENTIAL SANOV AND SCHILDER THEOREMS ON WIENER SPACE: BSDES, SCHRÖDINGER PROBLEMS AND CONTROL. JULIO BACKHOFF-VERAGUAS, DANIEL LACKER, AND LUDOVIC TANGPI Ocober 3, 28 Absrac. We derive ew limi heorems

More information

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing Noe for Seember, Iroducio o Hyohei Teig Scieific Mehod. Sae a reearch hyohei or oe a queio.. Gaher daa or evidece (obervaioal or eerimeal) o awer he queio. 3. Summarize daa ad e he hyohei. 4. Draw a cocluio.

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Suggested Solutions to Assignment 1 (REQUIRED)

Suggested Solutions to Assignment 1 (REQUIRED) EC 45 dvaced Macroecoomic Irucor: Sharif F ha Deparme of Ecoomic Wilfrid Laurier Uiveri Wier 28 Suggeed Soluio o igme (REQUIRED Toal Mar: 5 Par True/ Fale/ Ucerai Queio [2 mar] Explai wh he followig aeme

More information

Electrical Engineering Department Network Lab.

Electrical Engineering Department Network Lab. Par:- Elecrical Egieerig Deparme Nework Lab. Deermiaio of differe parameers of -por eworks ad verificaio of heir ierrelaio ships. Objecive: - To deermie Y, ad ABD parameers of sigle ad cascaded wo Por

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

An approximate approach to the exponential utility indifference valuation

An approximate approach to the exponential utility indifference valuation A approximae approach o he expoeial uiliy idifferece valuaio akuji Arai Faculy of Ecoomics, Keio Uiversiy, 2-15-45 Mia, Miao-ku, okyo, 18-8345, Japa e-mail: arai@ecokeioacjp) Absrac We propose, i his paper,

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

Integration by Parts and Quasi-Invariance for Heat Kernel Measures on Loop Groups

Integration by Parts and Quasi-Invariance for Heat Kernel Measures on Loop Groups joural of fucioal aalysis 149, 47547 (1997) aricle o. FU97313 Iegraio by Pars ad Quasi-Ivariace for Hea Kerel Measures o Loop Groups Bruce K. Driver* Deparme of Mahemaics, 112, Uiversiy of Califoria, Sa

More information

Pricing Interest Rate-Sensitive Credit Portfolio Derivatives

Pricing Interest Rate-Sensitive Credit Portfolio Derivatives Workig Paper Serie Naioal Cere of Compeece i Reearch Fiacial Valuaio ad Rik Maageme Workig Paper No. 354 Pricig Iere Rae-Seiive Credi Porfolio Derivaive Philippe Ehler Philipp J. Schoebucher Fir verio:

More information

Inference of the Second Order Autoregressive. Model with Unit Roots

Inference of the Second Order Autoregressive. Model with Unit Roots Ieraioal Mahemaical Forum Vol. 6 0 o. 5 595-604 Iferece of he Secod Order Auoregressive Model wih Ui Roos Ahmed H. Youssef Professor of Applied Saisics ad Ecoomerics Isiue of Saisical Sudies ad Research

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information