Conditional distributions, exchangeable particle systems, and stochastic partial differential equations

Size: px
Start display at page:

Download "Conditional distributions, exchangeable particle systems, and stochastic partial differential equations"

Transcription

1 Codiioal diribuio, exchageable paricle yem, ad ochaic parial differeial equaio Da Cria, Thoma G. Kurz, Yoojug Lee 23 July 2 Abrac Sochaic parial differeial equaio whoe oluio are probabiliy-meaurevalued procee are coidered. Meaure-valued procee of hi ype arie aurally a de Fiei meaure of ifiie exchageable yem of paricle ad a he oluio for filerig problem. I boh hee cae, he oluio i he codiioal diribuio of he oluio of a ochaic differeial equaio. The mai reul ae ha, uder mild odegeeracy codiio o he coefficie of he ochaic differeial equaio, he codiioal diribuio of i oluio charge ay ope e. Uder roger codiio we how ha i i aboluely coiuou wih repec o Lebegue meaure ad i deiy i poiive almo everywhere. A applicaio we how he exiece of a oluio of a yem of ieracig diffuio ad udy he properie of he oluio of he oliear filerig equaio wihi a framework ha allow for he igal oie ad he obervaio oie o be correlaed. The work wa moivaed by a model of ae price deermiaio i which he price i give a a quaile of he valuaio of ifiiely may idividual iveor. MSC 2 ubjec claificaio: 6H5, 6G9, 6G35, 6J25 Keyword: codiioal diribuio, ochaic parial differeial equaio, quaile procee, filerig equaio, meaure-valued procee Iroducio Le Ω, F, P be a probabiliy pace ad E, r a complee eparable meric pace. Le B ad W be d ad d -dimeioal adard Browia moio, ad le V be a cadlag E-valued Deparme of Mahemaic, Imperial College Lodo, 8 Quee Gae, Lodo SW7 2AZ, UK, d.cria@imperial.ac.uk Deparme of Mahemaic, Uiveriy of Wicoi-Madio, 48 Licol Drive, Madio, WI , USA, kurz@mah.wic.edu Deparme of Saiic, Harvard Uiveriy, 65 Sciece Ceer, Oe Oxford Sree, Cambridge, MA , USA, ylee@a.harvard.edu

2 proce. We aume ha B i idepede of W, V ad ha W i compaible wih V i he ee ha for each, W + W i idepede of F W,V, where F W,V = σw, V,. Le X be a d-dimeioal ochaic proce aifyig he equaio X = X + f X, V d + σ X, V dw + σ X, V db.. We aume ha, give V, X i codiioally idepede of W, V ad B, ha i, EfX F W,V,B = EfX V..2 For reao ha we will make clear below, we are iereed i he PR d -valued proce π = {π, }, where π i he codiioal diribuio of X give F W,V π ϕ = E ϕ X F W,V for ay ϕ BR d, he bouded, Borel-meaurable fucio o R d. The fir reul of he paper ae ha, uder very geeral odegeeracy ad regulariy codiio Aumpio A below, for >, π charge ay ope e A R d almo urely ad he ull e ca be choe idepede of A. Furher, uder addiioal codiio o he coefficie of., π i aboluely coiuou wih repec o Lebegue meaure o R d ad, wih probabiliy oe, i deiy i ricly poiive. Our primary iere i hee reul i o rea ifiie yem of ochaic differeial equaio X i = X i +, f X, i V d + σ X, i V dw +, σ X i, V db i,.3 where he B i are idepede adard Browia moio, {X i } i a exchageable equece ha i idepede of W ad {B i }, ad V = lim δ X i..4 We require he oluio {X i } o be exchageable o ha he limi i.4 exi by defiei heorem. See Theorem A.. I paricular, if he oluio of he yem i weakly uique, he {X i } mu be exchageable, o.4 mu exi. Uder a Lipchiz codiio o he fir variable ad a coiuiy codiio o he ecod, weak exiece of a exchageable oluio ca be how for which he B i are idepede of W ad V. By exchageabiliy, i= π ϕ = EϕX F W,V = E ϕx F i W,V i= 2

3 ad ice V i meaurable wih repec o F W,V V ϕ = E lim If rog uiquee hold, i= ϕx i F W,V i follow ha = lim E i= V ϕ = E ϕ X F W σv. ϕx i F W,V = π ϕ. I.3, he proce W i commo o all diffuio, while he procee B i, i are muually idepede Browia moio. Syem of hi ype have bee coidered by Kurz ad Proer 6 ad Kurz ad Xiog 7, 8 uder he aumpio ha he coefficie are Lipchiz fucio of V i he Waerei meric o PR d. Thi aumpio exclude a variey of iereig example. I paricular, for d =, we are iereed i equaio whoe coefficie are fucio of quaile of V, V α = if x R {x R V, x α}, ad he reul o π play a ceral role i provig exiece of oluio of a yem i which he coefficie are coiuou fucio of he quaile. Thi ype of applicaio arie aurally i he ae pricig lieraure. For iace, Lee 9, adopig he microecoomic approach formalized i Föllmer ad Schweizer 2, derive he equilibrium price a a quaile of he valuaio of ifiiely may iveor who compee for a ae hrough a coiuouime aucio yem. A ecod applicaio of he uppor reul i o he oluio of ochaic filerig problem. Le X, Y be he oluio of X = X + Y = f X, Y d + h X, Y d + k Y dw. σ X, Y dw + Here Y play he role of V, o B i o idepede of W, Y. iverible ad eig we have X = X + Y = + W = W + ky hx, Y d, σ X, Y db fx, Y + σx, Y ky hx, Y d σx, Y d W + k Y d W, 3 σ X, Y db Aumig ha ky i

4 ad uder mode aumpio o hx, y/ky, a Giraov chage of meaure give a equivale probabiliy meaure uder which B i idepede of W, Y. I hi framework we how ha he codiioal diribuio of X give F Y charge ay ope e. Moreover, uder addiioal codiio, i i aboluely coiuou wih repec o Lebegue meaure o R d, ad wih probabiliy oe i deiy i ricly poiive. The mai reul are proved uder he followig codiio o he coefficie of.. A f : R d R m R d, σ : R d R m R d R d, σ : R d R m R d R d are coiuou fucio, uiformly Lipchiz i he fir argume. Tha i, here exi a coa c uch ha f x, y f x, y c x x 2 for all x, x 2 R d ad y R m wih a imilar iequaliy holdig for σ ad σ. σ i poiive defiie, i.e., for ay y R m ad ξ, x R d wih ξ. ξ σ x, y ξ > For d >, almo urely, V ha pah wih fiie lef limi. I oher word, for all >, def V = lim V,< exi ad i fiie. A2 f, σ ad σ are coiuouly differeiable i he fir compoe. Theorem. Uder aumpio A, here exi a e Ω F of full meaure uch ha for every ω Ω, π ω charge every ope e, i.e., π ω A > for every oempy, ope e A. Theorem.2 Uder aumpio A+A2, here exi a e Ω F of full meaure uch ha for every ω Ω, π ω i aboluely coiuou wih repec o Lebegue meaure. Moreover if y ρ ω y i he deiy of π ω wih repec o Lebegue meaure, ρ ω i ricly poiive. The addiioal codiio i A required o rea he muli-dimeioal cae i o eeded whe d = becaue we are able o exploi he order rucure of R. For d >, he iegral of a oigular, marix-valued fucio may be igular, while for d =, he iegral of a o-zero real-valued fucio i alway o-zero, provided i doe o chage ig. Ackowledgeme. Thi work wa compleed while he fir wo auhor were viiig he Iaac Newo Iiue i Cambridge, UK. The hopialiy ad uppor provided by he Iiue i graefully ackowledged. The reearch of he fir auhor wa parially uppored by he EPSRC gra EP/H55/. The reearch of he ecod auhor wa uppored i par by NSF gra DMS

5 2 Proof of he properie of he codiioal diribuio Le Ϝ be a fucio Ϝ :, R d R d wih he followig properie: For each z R d, he fucio Ϝ, z i a meaurable, locally-bouded fucio. For each,, he fucio z Ϝ, z i differeiable. Ϝ, z will deoe he marix of parial derivaive Ϝ, z ij = j Ϝ i, z. For each z R d, he fucio Ϝ, z i a meaurable, locally-bouded fucio. Now coider a ew probabiliy meaure P z, aboluely coiuou wih repec o P, defied by dp z dp = exp Ϝ, z db Ϝ, z 2 d, F 2 where Ϝ, z i he row vecor Ϝ, z, Ϝ, z 2,..., Ϝ, z d. The, by Giraov heorem, he proce B z = {B z, } B z = B + Ϝ, z d i a Browia moio uder P z, idepede of W ad V. Sice B z, W, V ha he ame law uder P z a B, W, V ha uder P, i follow ha Xz give by dx z = f X z, V d + σ X z, V dw + σ X z, V db z 2. = f X z, V d + σ X z, V dw + σ X z, V db + σ X z, V Ϝ, z d. ha he ame law uder P z a X ha uder P, ad for ϕ BR d, E ϕ X F W,V = E z ϕ X z F W,V = E ϕ X z M z F W,V where M z i defied a M z = exp Ϝ, z db 2 Ϝ, z 2 d,

6 I he followig, we will ue a Fubii argume for he fucio ι, where z, ω ι ϕ X z M z e 2 z 2 2π d 2 i defied o he produc pace R d Ω. Coequely, we eed o kow ha ι i BR d F W,V -meaurable. Meaurabiliy i o immediae a X z i iiially defied for each z idividually. However, oe ca prove he exiece of a proce X z uch ha for each z, X z ad X z are idiiguihable ad z, ω ῑ X z i BR d F W,V -meaurable. More preciely, we ca aume ha X i opioal, ha i, he mappig, z, ω, R d Ω X z i meaurable wih repec o he σ-algebra geeraed by procee of he form ξi f i z i, i+, where = < <, f i CR d, ad ξ i i F W,V i -meaurable. To avoid furher meaurabiliy complicaio, from ow o, we will ue hi verio of he oluio of 2.. Hece, if ϕ : R d Ω R i a o-egaive, BR d F W,V -meaurable fucio, he codiioal verio of Fubii heorem for oegaive fucio give e 2 z z E ϕ X, F W,V = = E R d E ϕ X z, M z F W,V R d ϕ X z, M z e 2 z z 2π d 2 2π d 2 dz F W,V We rea he oe-dimeioal ad he muli-dimeioal cae eparaely. 2. The oe-dimeioal cae For >, le Ϝ, z = { z for, oherwie where a > i a arbirary poiive coa. I hi cae, 2. become dz. 2.3, 2.4 dx z = f X z, V d + σ X z, V dw + σ X z, V db σ X z, V z, d. Sice σ i poiive, wih probabiliy, he fucio z X z i a ricly icreaig, coiuou fucio ad lim z X z = ad lim z X z =. I paricular, z 6

7 X z i a coiuou bijecio, o if β, β i a o-empy ope ierval, he X β, β i a o-empy ope ierval. I paricular, X β, β ha poiive Lebegue meaure. Hece, if we chooe ϕ i 2.3 o be he idicaor fucio of a ope ierval β, β, he P X β, β F W,V = E e zb z2 + 2 dz F W,V. 2π X β,β Sice z e zb z2 + 2 i poiive o X β, β, i follow ha X z 2 + β,β e zb 2 dz i poiive wih probabiliy a i i codiioal expecaio. Thi prove Theorem. i he cae d =. Aumig ha f, σ ad σ are differeiable, z X z i differeiable wih probabiliy. I poiive derivaive i give by where i z = + J z def = dx z dz = σ X z, V exp i z d, 2.6 f X z, V 2 σ X z, V 2 2 σ X z, V 2 d σ X z, V dw + σ X z, V db + σ X z, V azd. Now, ice z X z i a bijecio, i i iverible, ad we ca defie { } exp X y B X y ν y = J X y. Takig ϕ = A, A BR, i 2.3 ad uig he chage of variable y = X z, P X A F W,V = E ν ydy 2π F W,V = E ν y F W,V dy. 2π Hece, he codiioal diribuio of X give F W,V o Lebegue meaure wih deiy A ρ y = E ν y F W,V. 2π A i aboluely coiuou wih repec Sice ν y i ricly poiive, by Lemma A.2, here exi a verio of ρ y uch ha wih probabiliy oe, ρ y > for all y R ad. Thi prove Theorem.2 i he cae d =. 7

8 Corollary 2. Uder aumpio A+A2, here exi a radom variable c,, k poiive almo urely uch ha if ρ ry c,, k. 2.7 r,y, k,k I paricular, he e Ω F of full meaure appearig i he aeme of Theorem.2 o which π ω i aboluely coiuou wih repec o Lebegue meaure ad he deiy of π ω wih repec o Lebegue meaure i ricly poiive ca be choe idepede of he ime variable,. Proof. Uig he idepedece properie of X, B, W, ad V, we have EfX, B F W,V = EfX, B V, for ay reaoable fucio f, hece here exi h f uch ha EfX, B, W, V F W,V = h f V, W, V. Sice ν y i a fucio of X, B, W ad V, hi implie ha ρ y = E ν y F W,V = E ν y F W,V 2π 2π Chooe m o be a arbirary poiive coa. Sice he fucio, x miν x, m i bouded, poiive ad joily coiuou i, x i follow ha i codiioal expecaio ρ m y = E miν x, m F W,V 2π ha a verio which i bouded, poiive ad joily coiuou i, x. Hece, 2.7 hold rue wih c,, k = if r,y, k,k ρ m r y >. Lemma 2.2 Uder codiio A+A2, he deiy fucio y ρ y i aboluely coiuou. Moreover, i i differeiable almo everywhere ad dρ dy y = dν E 2π dy y F W,V. 2.8 More geerally, if f, σ ad σ are m-ime coiuouly differeiable i he fir compoe, he he deiy fucio y ρ y i m -ime coiuouly differeiable ad m-ime differeiable almo everywhere. A imilar formula o 2.8 hold for higher derivaive of ρ a well.. 8

9 Proof. The fucio y ν y i coiuouly differeiable uder codiio A+A2 ad where ι x = ι 2 x = { exp { exp X X dν y dy = ι x ι 2 x, 2.9 y y B X y B X J X y B X J X y y } } y + y J X dj dx X y J X y 2 We wa o prove ha E dν y R dx dy <. I order o do ha, we how ha he propery hold for boh fucio o he righ had ide of 2.9. We how how hi i doe for he fir fucio. We have ha { } exp zb z2 + E ι 2 y dy = E B z + dz 2. R R J z = e z2 + 2 E e pzb p E J z q q E B z + r r dz 2. R e z2 + p 2 Q r z r E J z q q dz, 2.2 R where p, q, r, are choe o ha p < + ad + + = ad Q p q r r i a uiably choe polyomial o ha E B z + r Q r z for ay z R. To ge 2., we ued he chage of variable z = X y ha ad applied Hölder iequaliy o obai 2.. From 2.6 i follow ha where C i he marigale C = J ac σ exp σ X z, V dw + c f,σ, σ c σ z 2 up C, σ X z, V db, I 2.3 we ued he fac ha c σ def = if x,y σx, y > ad ha, 2.3,. c f,σ, σ c σ def = up x,y def = up x,y f x, y 2 σ x, y 2 2 σ x, y 2 σ x, y 9

10 are fiie quaiie. Thi follow from codiio A+A2. Hece, immediaely, where k = ac σ q exp qc f,σ, σ E E J z q ke qc σ z, 2.4 exp 2q up C, Noe ha k i fiie a he ruig maximum of he marigale C ha expoeial mome of all order. From 2.2 ad 2.4 we deduce immediaely he iegrabiliy of ι. The iegrabiliy of ι 2 follow i a imilar maer a all he erm ivolved a imilar o hoe appearig i ι. The oly erm ha i differe dj dj. Explicily i give by dz dz dj dz z = σ X z, V exp i z σ X z, V J z + di dz z d,. ad oe prove i a imilar maer ha dj E dz k e k z, 2.5 where k ad k are ome uiably choe coa. I follow ha ρ y ρ y 2 = E ν y ν y 2 F W,V 2π y dν = E y dy 2π y 2 dy F W,V y dν = E 2π dy ydy F W,V dy 2.6 y 2 ad we deduce from he above he abolue coiuiy of ρ ad, herefore, i differeiabiliy almo everywhere. We oe ha he la ideiy follow by he codiioal Fubii heorem a we have proved he iegrabiliy of dνy over he produc pace Ω R. The dy mehodology o how ha ρ ha higher derivaive i imilar. Oberve fir ha { } d m exp X y B X y 2 + ν y dy = 2 m J X y T, B, X y, dx dx X X y,... dxm X dx m y X y i a radom variable which ha mo- where T, B, X y, dx y,... dxm dx dx m me of all order corolled by a upper boud of he ype 2.5. Oe he how he iegrabiliy of dm ν y over he produc pace Ω R which implie he m-ime differeiabiliy dy m of ρ.

11 2.2 The mulidimeioal cae For α, =, 2,..., defie Le X α, z = {X α, z be i Jacobia J α, Ϝ α,, z = α,αz. 2.7 z, } be he oluio of 2. wih Ϝ replaced by Ϝ α,, ad le J α, z ij = j X α, i z. The J α, z = {J α, z, } i zero for α, ad for α, J α, aifie he followig ochaic differeial equaio J α, z = α f X α, z, V J α, z d + d i= α d i= α α σ i X α, m i= α z, V J α, z db i σ i X α, z, V α σ i X α,,αzi J α, z d z, V J α, z dw i σ X α, z, V α,αd, 2.8 where f : R d R m R d d i he marix-valued fucio defied a f x, v ij def = jf x, v i x j ad σ i, i =,..., d σ i, i =,..., m are fucio defied i he ame maer σ i, i =,..., d σ i, i =,..., m are he colum vecor of σ, repecively σ, σ = σ, σ 2,..., σ d, σ = σ, σ 2,..., σ m. Le Φ α, z = {Φ α, z, } ad Υ α, z = {Υ α, z, } be he oluio of he followig marix ochaic differeial equaio Φ α, z = I m ϖ z, X α, α i= d i= Υ α, z = I σ α i X α, σ α i X α, Υ α, α z, V Φ α, z d z, V Φ α, z dw i z, V Φ α, z db i, z κ z, X α, z, V d

12 where m i= d i= ϖ z, X α, z, V = f X α, z, V + Υ α, α Υ α, α κ z, X α, z, V = ϖ z, X α, z, V I i eay o check ha d i= z σ i X α, z, V dw i z σ i X α, z, V db i, σ i X α, z, V α,αzi m i= d Υ α, z Φ α, z =, σ i X α, z, V 2 d i= σ i X α, z, V 2. ad ice Υ α, z Φ α, z = I, i follow ha Υ α, z Φ α, z = I, for all, i.e., Φ α, z ad Υ α, z are o-igular ad ivere o each oher. The we ca wrie he oluio of 2.8 explicily a α J α, z = Φ α, z z σ X α, z, V d. Φ α, Υ α, α Ulike he oe-dimeioal cae, he Jacobia J α, z i o igular, J α, i oigular. Wrie z may be igular. However, ice z i oigular for α if ad oly if Γ α, z = α Υ α, α Γ α, z = σ Xα, α z, V α + + α α Υ α, α α z σ X α, z, V d σ X α, z I σ X α, z, V d. z, V σ Xα α, z, V α d Sice X α, z ad Υ α, z are joily coiuou i ad z, x, v σ x, v i coiuou, ad lim V = V, i follow ha, for almo all ω Ω ad each compac K R d, lim up α z K α α lim up z K α σ X α, z, V σ X α, z, V d = Υ α, z I σ X α, z, V d =. 2

13 Hece, Ω lim = { ω Ω lim up z K } J α, z σ X, V = for each compac K ha probabiliy. Le K K 2 be compac ube of R d wih R d = k K k, ad defie Lemma 2.3 Ω k, = {ω Ω J α,m z i oigular for m, z K k }. ad, i paricular, P k Ω k, =. Ω lim k Ω k, Proof. I i eough o prove ha Ω lim Ω k, for each k. Le ω Ω lim bu o i Ω k,. I follow ha here exi i, z i, i ad z i K k uch ha, for hi paricular ω, he correpodig Jacobia J i z i = J i z i ω are igular. Hece here exi correpodig λ i R d wih λ i = ad J i z i λ i =. If λ i a limi poi of {λ i }, he uiformiy over compac i he defiiio of Ω lim implie σ X, V λ =. Sice σ X, V i oigular, we have a coradicio. From 2.3 we ge ha, for ay e A ad ay k > π A = P X A F W,V = E r z dz F W,V {z X z A} Ωk, E {z R d X z A} r z dz F W,V, where r z def = exp z B B z z +. 2 Now for ω Ω k, he applicaio z K k X z i a coiuou bijecio. I i ijecive ice i Jacobia i alway o-igular. The urjeciviy follow by mea of he Ivere Fucio Theorem: Sice lim z X z =, he image of z X z i a cloed e. However, he image of z X z i a ope e, oo. Tha i becaue ay z R d ha he propery ha i ha a ope eighborhood U z o ha he fucio rericed o U z i a coiuou bijecio from U z o V Xz where V Xz i a ope eighborhood of 3

14 X z. Hece for ay z R d, he ope e V Xz i i he image of z X z. Sice R d ha o proper ube which i boh cloed ad ope, we ge he urjeciviy of z X z. So for ay ω Ω k ad A a ope e, he e { z R d X z A } ha poiive Lebegue meaure, hu ω {z R d X k z A} rk z dz i poiive o Ω k. Le ow Ω p = {ω Ω π A > }. The, for all k >, P Ω p P Ω k. Tha i becaue P Ω\Ω p Ω k =. If o Ω\Ωp Ωk = E Ω\Ω pπ A E {z R d X k z A} rk z dz F W,V Hece from he previou lemma we deduce ha π charge ay ope e A. Moreover he ull e ca be choe o be idepede of he e A, ice he opology R d ha a couable bae. Now if A i a e of Lebegue meaure, he π A = P X A F W,V = E Ω {z R d X z A} r z dz F W,V +E Ω\Ω {z R d X z A} r z dz F W,V. 2.9 Sice ω r z dz R d i uiformly iegrable, i follow ha he ecod erm i 2.9 coverge o. Hece π A = lim E Ω {z R d X z A} r z dz F W,V = lim E Ω r X y A de J X y dy F W,V >. Sice A r X y de J X y dy 4

15 i alway a iegral over a ull e, i follow ha he codiioal diribuio of X give F W,V i aboluely coiuou wih repec o he Lebegue meaure. Thi prove he fir par Theorem 2 For he ecod par of Theorem 2 le a i he oe-dimeioal cae A be he followig radom e A = {x R ρ y = }. The, from 2.9 we have ha = P X A F W,V Ω = E R A y {z R d X z A} r z dz F W,V 2π E Ω y r X y de J X y F W,V Hece A y E Ω y r X y R 2π de J X y F W,V dy = ad herefore for ay ω Ω, A i a e of Lebegue meaure where Ω i he followig icreaig equece { Ω = ω Ω E Ω y r X y de J X y F W,V dy > } >, y a.e.. Sice P Ω P Ω ad P lim Ω = i follow ha A i a e of Lebegue meaure wih probabiliy. Thi prove he ecod par of Theorem 2 for he mulidimeioal cae. 3 Weak exiece for SPDE wih coefficie depedig o quaile A decribed i he iroducio, we ow coider a ifiie yem of oe-dimeioal ieracig diffuio X i = X i + f X i, V α d + σ X, i V α dw + 5 σ X, i V α db i, 3.

16 where ad V α = if {x R v, x α} v = lim m m m δ X i. 3.2 We aume ha {X} i i exchageable ad require he oluio {X i } o be exchageable o ha he limi i 3.2 exi by defiei heorem. See Theorem A.. A i Kurz ad Xiog 7, v will be a oluio of he ochaic parial differeial equaio φ, v = φ, v + where φ, v deoe i= LV α φ, v d + φ, v = R φxv, dx σ, V α φ, v dw, 3.3 ad LV α φ = σx, V α 2 + σx, V α 2 d 2 φ 2 dx + fx, V α dφ 2 dx. I 3., he proce W i commo o all diffuio, while he procee B i, i are muually idepede Browia moio. We will aume he followig o he coefficie of he equaio. Q f : R R R, σ : R R R, σ : R R R are bouded, coiuou fucio, uiformly Lipchiz i boh argume ad coiuouly differeiable i he fir compoe ad σ i poiive defiie. The we have he followig: Theorem 3. There exi a weak oluio for he yem ad, hece, for he ochaic parial differeial equaio 3.3. Proof. Coider he Euler-ype approximaio of defied a follow: X i, where = X i, + f X i,, V α, d + V α, { = if σ X i, x R v, V α, dw + }, x α σ X i,, V α db i, 3.4 ad v i defied a i 3.2. The yem 3.4 ha a uique rog oluio. The exiece ad uiquee of he oluio i obaied progreively o ierval k, k+. We oe ha, o each uch ierval, he proce V α, i coa ad equal o he quaile of he empirical 6

17 meaure of he yem a he begiig of he ierval. Exiece ad uiquee of he oluio follow from he aumpio ha f, σ, ad σ are Lipchiz i he fir compoe. We alo have v ϕ = E ϕ X i, F W = E R ϕ X i, z M i, z e 2 z z 2π d 2 dz F W, 3.5 where X z i defied a i 2., ad i follow ha v charge every ope e ad, hece, ha V α, = if {x R v, x α} = up {x R v, x < α}. For each i, he boudede of he coefficie implie he equece {X i, } > i relaively compac i diribuio i D R,. Thi relaive compace ogeher wih he coiuiy of he procee eure relaive compace of {X } > i D R,. Takig a ubequece, if eceary, we ca aume ha {X } > coverge i diribuio o a coiuou proce X = X i i. By Lemma A.3 i he Appedix v coverge i diribuio o v defied by v = lim δ X i. To complee he proof, we eed he followig wo lemma. I he fir oe, we drop he aumpio ha V be a quaile, allowig i o ake value i a complee, eparable meric pace E, ad oly require ha he coefficie be bouded, Lipchiz coiuou i he fir variable, ad coiuou i he ecod. Lemma 3.2 Suppoe {V } are E-valued procee ad X z aifie dx z = f X z, V d + σ X z, V dw + σ X z, V db + σ X z, V zd. Defie ad Γ C, = M Bϕ, = M W ϕ, = i= C V d, C BE, ϕv db, ϕv dw, ϕ C b E, C b E. Suppoe ha Γ Γ, i L m E. See Appedix A.3. The for ϕ B,..., ϕ B k, ϕw,..., ϕ W l C b E, {Γ, MB ϕb,..., MB ϕb k, M W ϕw,..., MW ϕw l } i relaively compac i L m E D R k+l,, ad a ubequece ca be eleced alog which covergece hold for all choice 7

18 of ϕ B,..., ϕ B k, ϕw,..., ϕ W l C b E. For ay limi poi, M B ad M W are orhogoal marigale radom meaure aifyig M B ϕ, M B ϕ 2 = ϕ yϕ 2 yγdy, E M W ϕ, M W ϕ 2 = ϕ yϕ 2 yγdy, M B ϕ, M W ϕ 2 =, ad X z Xz aifyig X z = X z + f X z, v Γdv d + E, + σ X z, v M B dv d + E, where he ochaic iegral are defied a i 6. E E, E, σ X z, v M W dv d σ X z, v zγdv d, 3.6 Proof. Relaive compace follow from he fac ha EMBϕ, + h MBϕ, 2 F = E ϕy 2 Γ dy, + h F ϕ 2 h for each ϕ C b E ad imilarly for {MW }. Alog ay coverge ubequece, {Γ, MB, M W } aifie he covergece codiio i Theorem 4.2 of Kurz ad Proer 6. See Example 2. of 6. Uder he boudede ad Lipchiz codiio o f, σ, ad σ, X z coverge o he oluio of 3.6 by Theorem 7.4 of Kurz ad Proer 6. E Lemma 3.3 Le {X }be a equece of uiformly iegrable radom variable covergig i diribuio o a radom variable X ad {D } be a equece of σ-field defied o he probabiliy pace where {X } reide. Le {Y } be a equece of S-valued radom variable uch ha E X D = GY, where G : S R i coiuou. Suppoe X, Y X, Y. The E X Y = GY. Proof. Sice {X } i uiformly iegrable, i follow by Jee iequaliy ha {GY } i uiformly iegrable. The, employig he covergece i diribuio ad he uiform iegrabiliy, E GY gy = lim E GY gy = lim E X gy = E XgY, for every g C b S, ad he lemma follow. 8

19 We reur ow o he proof of Theorem 3.. Le ρ ϕ = R ϕ X i, z M i, z e 2 z z 2π d 2 From 3.5 ad he defiiio of Γ ad MW, for ay e fucio ϕ E ρ ϕ F W = E ρ ϕ F Γ,MW = v ϕ. Hece, leig Γ,, Γ ad W deoe he rericio of Γ, Γ, ad W o he ime ierval,, ρ, v, Γ,, W ρ, v, Γ, W, where By Lemma 3.3 ρ ϕ = Rd ϕ X i z M i z e 2 z z 2π d 2 E ρ ϕ F Γ,M W = v ϕ. A i he proof of Theorem., v charge ay ope e, ad by Lemma A.8, V α, coverge i diribuio o V α, where I ur, i follow ha M W ad M B aify ad V α = if {x R v, x α}. M B ϕ, = M α W ϕ, = ϕv α db, ϕv α dw, dz. dz. ϕ C b E, C b E. Applyig Theorem 7.4 of Kurz ad Proer 6, i follow ha X, V α,, v coverge i diribuio o X, V α, v which i a weak oluio of Quaile Proce Nex, we fid a equaio for he quaile proce V α = if{x R, v, x α}. Recall ha we coidered a ifiie yem of oe-dimeioal ieracig diffuio X i = X i + f X i, V α d + σ X, i V α dw + 9 σ X, i V α db i, 4.

20 where ad V α = if {x R v, x α} v = lim v where v = δ X i. 4.2 To prove he followig reul we chooe a bouded, mooh, ricly poiive fucio q : R R wih bouded fir ad ecod derivaive uch ha q x dx = ad R i= q x up x R qx <. 4.3 Defie he fucio, v,ɛ, v, ɛ F,ɛ, F ɛ : R R a follow x = i= q ɛ x X i F,ɛ x = x v,ɛ y dy v ɛ x = q R ɛ x y v dy F ɛ x = x vɛ y dy v,ɛ,, x R. The, he fucio v,ɛ = v, i follow ha v,ɛ of he probabiliy meaure wih deiie v,ɛ where q ɛ : R R, q ɛ x = q x ɛ ɛ mooh fucio ad, ice lim v Hece he quaile V Lebegue meaure uiquely defied by he formula F,ɛ, V = α are uiformly bouded coverge poiwie o v. ɛ wih repec o he coverge o he quaile V α,ɛ of he meaure wih deiy v ɛ wih repec o he Lebegue meaure, lim V = V α,ɛ. Moreover, ice alo he derivaive of he fucio v,ɛ coverge o he derivaive of he fucio v ɛ ad are uiformly bouded, i follow ha v,ɛ coverge o v ɛ uiformly o compac. I paricular hi implie ha lim v,ɛ V = dv. Similarly, lim,ɛ vv ɛ α,ɛ followig propoiio. x dx x=v = dvɛ x dx x=v α,ɛ Thi wo fac will be ued i he Propoiio 4. Aumig ha A+A2 hold rue ad ha f, σ ad σ are wice coiuouly differeiable i he fir compoe, he he quaile V α aify he followig evoluio equaio for ay > >. V α = V α + fvr α, Vr α dr + 2vr, V α r σvr α, Vr α dw r x σx, V r α v r x x=v α d. 4.4 I uffice o chooe q uch ha qx = c q exp x for x, where c q i he ormalizaio coa. 2

21 Proof. Fir, oe ha, by he defiiio of he quaile, Υ V, X,..., X =, where Υ : R + R i he mooh fucio Υ v, x,..., x = i= v q ɛ y x i dy α. Sice Υ v, x v,..., x = i= q ɛ v x i >, by he implici fucio heorem here exi a couable e of ball B x j, r j R j uch ha B x j, r j = R ad a couable e of mooh fucio Q,j : B x j, r j R uch ha V = Q,j X,..., X, if X,..., X B xj, r j. I paricular i follow ha V i a emi-marigale. Thi fac allow u o deduce he evoluio equaio for he emimarigale V. By applyig he geeralized Iô formula ee, for example, Kuia 4 we have = dυ V, X,..., X = Υ v + 2 Υ 2 v 2 + j= V, X,..., X Υ x j v which implie ha = v,ɛ dv + j= Υ x j V, X,..., X d V + 2 V, X,..., X dx j 2 Υ j= V, X,..., X d V, X j. V dv j= + 2 j= + 2 j= j= j= x 2 j f X j, V α qɛ V X j d σ X j, V α qɛ V X j dw q ɛ σ 2 X j, V α q ɛ V X j d + 2 q ɛ V V X j d V X j j= q ɛ j= j= V, X,..., X d X j σ X j, V α qɛ V X j db j V σ X i, V α d B j, V 2 σ 2 X j, V α q ɛ V X j d X j σ X i, V α d W, V

22 From hi ideiy i follow ha Therefore V = W, V = B i, V = dv = v,ɛ v,ɛ v,ɛ 2v,ɛ 2v,ɛ v,ɛ v,ɛ V 2 v,ɛ v,ɛ v,ɛ V j= V 2 V V j= V V V V V q ɛ Oberve ha he erm V v,ɛ V j= 2 j= σ 2 X, j V α qɛ V X j d j= σ X, j V α σ X, j V α 2 qɛ V X j 2 d σ X, j V α qɛ V X j d qɛ V X j d f X j, V α qɛ V X j d j= j= j= j= j= σ X j, V α qɛ V X j dw σ X j, V α qɛ V X j db j σ 2 X j, V α q ɛ q ɛ X j + σ 2 X j, V α q ɛ V X j d V X j d V V X j σ X i, V α d W, V σ X i, V α d B j, V 4.5 j= f X j, V α qɛ V X j i bouded by f, he upremum orm of f, wih imilar boud holdig for he ecod ad he hird erm i 4.5 ad for he erm appearig i he expreio for V, W, V, B i, V. The erm x 2v,ɛ x j= σ 2 x, V α + σ 2 x, V α q ɛ x X j i uiformly bouded by ɛ σ 2 + σ 2 followig propery 4.3 of he fucio q. A imilar boud ca be proved for all he remaiig erm i 4.5 are uiformly bouded o compac 22

23 a if if r, v,ɛ x i ricly poiive o compac uig he ighe of he equece v ad σ, σ, ad q ɛ are bouded. Uig hee boud, we ake he limi i 4.5 a ed o ifiiy o obai ha dv α,ɛ = v ɛ V α,ɛ R + v ɛ V α,ɛ R 2v ɛ V α,ɛ 2v ɛ V α,ɛ + v ɛ V α,ɛ f x, V α q ɛ V α,ɛ x v dx σ x, V α q ɛ V α,ɛ x v dx R σ 2 x, V α + σ 2 x, V α q ɛ V α,ɛ q ɛ V α,ɛ x v dx R v ɛ V α,ɛ R 2 q ɛ V α,ɛ v ɛ V α,ɛ d dw x v dx d 2 σ x, V α q ɛ V α,ɛ x v dx d R x σ x, V α v dx σ x, V α q ɛ V α,ɛ x v dx d 4.6 R Nex ice v x = lim ɛ v ɛ x a ɛ ed o, i follow ha V α = lim ɛ V α,ɛ. Followig from Corollary 2. ad he boudede of boh v r x ad v x rx o e of he form, k, k, we ca ake he limi i 4.6 a ɛ ed o o obai ha 2v, V α, V α x v x dv α = fv α, V α d + σv α, V α dw 2v, V α σ2 V α x=v α x σ 2 x, V α + σ 2 x, V α d + σv α, V α v, V α v x x=v d α x σx, V α v x d x=v α which give 4.4. Remark 4.2 See alo 9 for he equaio 4.4. Remark 4.3 Uder addiioal aumpio o he iiial diribuio of X for example if he diribuio of X i aboluely coiuou wih repec o he Lebegue meaure ad i deiy i wice coiuouly differeiable oe ca how ha 4.4 hold rue alo for =. 5 Applicaio o oliear filerig Le Ω, F, P be a probabiliy pace o which we have defied wo idepede d-dimeioal, repecively m -dimeioal adard Browia moio B = {B i d i=, } ad W = 23

24 {W i m i=, } Le X, Y be he oluio of he followig ochaic yem X = X + Y = f X, Y d + h X, Y d + k Y dw. σ X, Y dw + σ X, Y db Le F Y be σ-field geeraed by he proce Y ad π be he codiioal diribuio of X give he σ-field geeraed by he proce Y. We how ha π charge ay ope e. Moreover, uder addiioal codiio, we how ha i i aboluely coiuou wih repec o he Lebegue meaure o R d ad ha a poiive deiy. Here are he required codiio: F f : R d R m R d, h : R d R m R m, σ : R d R m R m R d, ad σ : R d R m R d R d are coiuou fucio, uiformly Lipchiz i he fir argume. We aume ha σ i poiive defiie, k : R m R m R m i iverible, k i bouded ad σk h : R d R m R d i a coiuou fucio, uiformly Lipchiz i he fir argume. The radom variable X ha fiie ecod mome. F2 f, σk h, σ ad σ are coiuouly differeiable i he fir compoe. We have he followig Corollary 5. Uder aumpio F, here exi a e Ω F of full meaure uch ha for every ω Ω, π ω charge ay ope e. Moreover uder aumpio A+A2, here exi a e Ω F of full meaure uch ha for every ω Ω, π ω i aboluely coiuou wih repec o he Lebegue meaure ad he deiy of π ω wih repec o he Lebegue meaure i poiive almo everywhere. Proof. Le Z = {Z, } be defied a Z = exp k Y h X, Y dw k Y h X, Y k Y h X, Y d. 2 Uder codiio F, Z i a marigale. Coider he probabiliy meaure P aboluely coiuou wih repec o P defied a d P = Z. dp F The, by Giraov heorem, he proce W } = { W, defied by W = W k Y h X, Y d 24

25 for i a Browia moio uder P idepede of B formula, E ϕ X F Y = Ẽ ϕ X ζ F Y ad, by Kalliapur-Sriebel, 5. where ζ = Z Ẽ Z F Y ad X = X + f + σk h X, Y d + σ X, Y d W + We oe ha, uder P, Y aifie he SDE hece Y = W = k Y d W, k Y dy σ X, Y db. ad i paricular F Y = F W,Y for all. From 5. we obai ha a i 2.3 ha e 2 z z π ϕ = E ϕ X z M z ζ F Y R d 2π d dz 2 where M z i he marigale defied i 2.2. The aalyi he proceed i a ideical fahio o ha i he proof of Theorem. ad.2. Remark 5.2 Noe ha we cao apply he reul of he Theorem. ad.2 uder he origial meaure P a he Browia moio B i o idepede of Y uder P. 25

26 A Appedix A. Covergece of equece of exchageable familie. Le S be a complee, eparable meric pace. A family of S-valued radom variable {ξ,..., ξ m } i exchageable if for every permuaio σ,..., σ m of,..., m, {ξ σ,..., ξ σm } ha he ame diribuio a {ξ,..., ξ m }. A equece ξ, ξ 2,... i exchageable if every fiie ubfamily ξ,..., ξ m i exchageable. Theorem A. defiei Le ξ, ξ 2,... be a exchageable equece of S-valued radom variable. The here i a PS-valued radom variable Ξ uch ha m Ξ = lim δ ξi m m ad, codiioed o Ξ, ξ, ξ 2,... are iid wih diribuio Z, ha i, for each f BS m, m =, 2,..., Efξ,..., ξ m Ξ = f, Ξ m. We will refer o Ξ a he defiei meaure for ξ, ξ 2,.... Proof of he followig lemma ca be foud i he Appedix of 3. Lemma A.2 For =, 2,..., le {ξ,..., ξ N } be exchageable, S-valued radom variable. We allow N =. Le Ξ be he correpodig empirical meaure, where if N =, we mea i= Ξ = N δ ξ N i, i= Ξ = lim m m m δ ξ i. Aume ha N ad ha for each m =, 2,..., {ξ,..., ξm} {ξ,..., ξ m } i S m. The {ξ i } i exchageable ad eig ξi = S for i > N, {Ξ, ξ, ξ2...} {Ξ, ξ, ξ 2,...} i PS S, where Ξ i he defiei meaure for {ξ i }. If for each m, {ξ,..., ξm} {ξ,..., ξ m } i probabiliy i S m, he Ξ Ξ i probabiliy i PS. The covere alo hold i he ee ha Ξ Ξ implie {ξ,..., ξm} {ξ,..., ξ m }. We are iereed i applyig he above lemma i he cae S = D E,. I ha eig, i addiio o he PD E, -valued radom variable Ξ, i i aural o coider he PE-valued procee Z = N N i= i= δ X i, where N may be ifiie which will have ample pah i D PE,. Ulike Ξ, covergece of Z i o alway aured. 26

27 Lemma A.3 For =, 2,..., le X = X,..., XN be exchageable familie of D E, - valued radom variable uch ha N ad X X i D E,. Defie Ξ = N N i= δ Xi PD E,, Ξ = lim m m m i= δ X i, Z = N N i= δ Xi PE, ad Z = lim m m m i= δ X i. a Le D Ξ = { : EΞ{x : x x } > }. The for,..., l / D Ξ, Ξ, Z,..., Z l Ξ, Z,..., Z l. b If X X i D E,, he X, Z X, Z i D E PE,. If X X i probabiliy i D E,, he X, Z X, Z i probabiliy i D E PE,. Remark A.4 a The e D Ξ i a mo couable. b If for i j, wih probabiliy oe, X i ad X j have o imulaeou dicoiuiie, he D Ξ = ad covergece of X o X i D E, implie covergece i D E,. I paricular, hi cocluio hold if he X i are coiuou. c If {X } i relaively compac i D E,, he {X, Z } i relaively compac i D E PE,. Lemma A.5 If X = X, X 2,... i a exchageable equece i D E,, he Z i coiuou if ad oly if for i j, wih probabiliy oe X i ad X j have o imulaeou dicoiuiy. A.2 Covergece of quaile For < α <, ad for µ PR, defie q α µ = if{x : µ, x α}. Noe ha µ i a poi of coiuiy for q α if ad oly if µq α µ, q α µ + ɛ > ad µq α µ ɛ, q α µ > for every ɛ >. Lemma A.6 Le {Y } be a equece of PR-valued radom variable uch ha Y Y. Suppoe ha wih probabiliy, he meaure Y charge every ope e. The q α Y q α Y for each < α <. Proof. The lemma follow by he coiuou mappig heorem. Lemma A.7 Suppoe z D PR, ad for each, z ad z charge every ope e. The if < α < ad z z i D PR,, q α z q α z i D R,. Proof. The lemma follow by Propoiio of Ehier ad Kurz ad he coiuiy properie of q α. The coiuou mappig heorem give he followig. Lemma A.8 Suppoe {Z } i a equece of procee i D PR, uch ha Z Z. If, wih probabiliy, Z ad Z charge every ope e for all, he for < α <, q α Z q α Z. 27

28 A.3 Covergece of radom meaure The followig reul are from Kurz 5. Le LS be he pace of meaure µ o, S uch ha µ, S < for each >, ad le L m S LS be he ubpace o which µ, S =. For µ LS, le µ deoe he rericio of µ o, S. Le ρ deoe he Prohorov meric o M, S, ad defie ρ o LS by ρµ, ν = e ρ µ, ν d, ha i, {µ } coverge i ρ if ad oly if {µ } coverge weakly for almo every. Lemma A.9 A equece of L m S, ρ-valued radom variable {Γ } i relaively compac if ad oly if for each ɛ > ad each >, here exi a compac K S uch ha if EΓ, K ɛ. Lemma A. Le {x, µ } D E, LS, ad x, µ x, µ. Le h CE S. Defie u = hx, yµ d dy, u = hx, yµd dy, S z = µ, S, ad z = µ, S., S a If x i coiuou o, ad lim z = z, he lim u = u. b If x, z, µ x, z, µ i D E R, LS, he x, z, u, µ x, z, u, µ i D E R R, LS. I paricular, lim u = u a all poi of coiuiy of z. c The coiuiy aumpio o h ca be replaced by he aumpio ha h i coiuou a.e. ν for each, where ν ME S i he meaure deermied by ν A B = µ{, y : x A,, y B}. d I boh a ad b, he boudede aumpio o h ca be replaced by he aumpio ha here exi a oegaive covex fucio ψ o, aifyig lim r ψr/r = uch ha up ψ hx, y µ d dy < A. for each >., S 28

29 A.4 Meaurabiliy ad poiiviy of radom fucio give by codiioal expecaio Lemma A. Le Ω, F, P be a complee probabiliy pace, E a complee, eparable meric pace, ad {F x, x E} a collecio of complee ub-σ-algebra of F. Suppoe ha for each A F, here exi a BE F meaurable proce X A idexed by E uch ha for each x, P A F x = X A x The for each bouded, BE F-meaurable proce Y here exi aoher BE F- meaurable proce Ŷ uch ha EY x Fx = Ŷ x a.. Proof. If Y x = B x A for B BE ad A F, he Ŷ x = BxX A x aifie he requireme of he lemma. Sice {B A : B BE, A F} i cloed uder ierecio ad geerae BE F ad he collecio of Y for which he cocluio of he lemma hold i cloed uder bouded moooe icreaig limi, he lemma follow by he moooe cla heorem for fucio. See Theorem 4.3 i he Appedix of Ehier ad Kurz. Lemma A.2 Suppoe ha he cocluio of Lemma A. hold ad ha Y i BE F- meaurable ad ricly poiive. The Ŷ ca be ake o be ricly poiive. Proof. Le A = {x, ω : Y x, ω } ad A = {x, ω : 2 Y x, ω < 2 }, =, 2,.... The =A = E Ω, ad we ca aume ha E A F x for all x, ω. Noe ha = lim a.. E Ak F x a.. k= for all x. If eceary, we ca replace E A F x by E Ak F x E Ak F x k= o eure k= E A k F x ad he replace E A F x by E Ak F x o eure k= E A k F x = for all x, ω. The 2 E A F x Ŷ x a.. = k= ad we ca replace Ŷ x by Ŷ x = 2 E A F x o be aured ha Ŷ x > for all x, ω. k= 29

30 Referece Sewar N. Ehier ad Thoma G. Kurz. Markov Procee: Characerizaio ad Covergece. Wiley Serie i Probabiliy ad Mahemaical Saiic: Probabiliy ad Mahemaical Saiic. Joh Wiley & So Ic., New York, 986. ISBN Ha Föllmer ad Mari Schweizer. A microecoomic approach o diffuio model for ock price. Mahemaical Fiace, 3: 23, Peer M. Koeleez ad Thoma G. Kurz. Macrocopic limi for ochaic parial differeial equaio of McKea-Vlaov ype. Probab. Theory Relaed Field, 46-2: , 2. ISSN doi:.7/ URL hp://dx.doi. org/.7/ H. Kuia. Sochaic differeial equaio ad ochaic flow of diffeomorphim. I École d éé de probabilié de Sai-Flour, XII 982, volume 97 of Lecure Noe i Mah., page Spriger, Berli, Thoma G. Kurz. Averagig for marigale problem ad ochaic approximaio. I Applied Sochaic Aalyi New Bruwick, NJ, 99, volume 77 of Lecure Noe i Corol ad Iform. Sci., page Spriger, Berli, Thoma G. Kurz ad Philip E. Proer. Weak covergece of ochaic iegral ad differeial equaio. II. Ifiie-dimeioal cae. I Probabiliic Model for Noliear Parial Differeial Equaio Moecaii Terme, 995, volume 627 of Lecure Noe i Mah., page Spriger, Berli, Thoma G. Kurz ad Jie Xiog. Paricle repreeaio for a cla of oliear SPDE. Sochaic Proce. Appl., 83:3 26, 999. ISSN Thoma G. Kurz ad Jie Xiog. Numerical oluio for a cla of SPDE wih applicaio o filerig. I Sochaic i Fiie ad Ifiie Dimeio, Tred Mah., page Birkhäuer Boo, Boo, MA, 2. 9 Yoojug Lee. Modelig he radom demad curve for ock: A ieracig paricle repreeaio approach. 24. URL hp:// reearch.hml. 3

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Présentée pour obtenir le grade de. Docteur en Science **************TITRE**************

Présentée pour obtenir le grade de. Docteur en Science **************TITRE************** UNIVRSITÉ MOHAMD KHIDR FACULTÉ DS SCINCS XACTS T SCINC D LA NATUR T D LA VI BISKRA *************************** THÈS Préeée pour obeir le grade de Doceur e Sciece Spécialié: Probabilié **************TITR**************

More information

Ruled surfaces are one of the most important topics of differential geometry. The

Ruled surfaces are one of the most important topics of differential geometry. The CONSTANT ANGLE RULED SURFACES IN EUCLIDEAN SPACES Yuuf YAYLI Ere ZIPLAR Deparme of Mahemaic Faculy of Sciece Uieriy of Aara Tadoğa Aara Turey yayli@cieceaaraedur Deparme of Mahemaic Faculy of Sciece Uieriy

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

Minimal Supersolutions of Convex BSDEs

Minimal Supersolutions of Convex BSDEs Miimal Superoluio of Covex BSDE Samuel Drapeau a,1,, Gregor Heye a,2,, Michael Kupper a,3, Jauary 22, 2013 ABSTRACT We udy he oliear operaor of mappig he ermial value ξ o he correpodig miimal uperoluio

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Weak Solutions of Mean Field Game Master Equations

Weak Solutions of Mean Field Game Master Equations Weak Soluio of Mea Field Game Maer Equaio Cheche Mou ad Jiafeg Zhag March 5, 19 Abrac I hi paper we udy maer equaio ariig from mea field game problem, uder he Lary-Lio moooiciy codiio. Claical oluio of

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution:

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution: Exercie: Show ha Soluio: y ¾ y ¾¾ L c Þ y ¾¾ p c. ¾ L c Þ F y (l Fc (l I[c,(l "l¹c Þ P( y c

More information

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim Lecure 3 Impora Special FucioMATH-GA 45. Complex Variable The Euler gamma fucio The Euler gamma fucio i ofe ju called he gamma fucio. I i oe of he mo impora ad ubiquiou pecial fucio i mahemaic, wih applicaio

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

The Inverse of Power Series and the Partial Bell Polynomials

The Inverse of Power Series and the Partial Bell Polynomials 1 2 3 47 6 23 11 Joural of Ieger Sequece Vol 15 2012 Aricle 1237 The Ivere of Power Serie ad he Parial Bell Polyomial Miloud Mihoubi 1 ad Rachida Mahdid 1 Faculy of Mahemaic Uiveriy of Sciece ad Techology

More information

Heat Equation Derivative Formulas for Vector Bundles

Heat Equation Derivative Formulas for Vector Bundles Joural of Fucioal Aalyi 183, 4218 (21) doi:1.16jfa.21.3746, available olie a hp:www.idealibrary.com o Hea Equaio Derivaive Formula for Vecor Budle Bruce K. Driver 1 Deparme of Mahemaic-112, Uiveriy of

More information

arxiv: v1 [math.nt] 13 Dec 2010

arxiv: v1 [math.nt] 13 Dec 2010 WZ-PROOFS OF DIVERGENT RAMANUJAN-TYPE SERIES arxiv:0.68v [mah.nt] Dec 00 JESÚS GUILLERA Abrac. We prove ome diverge Ramauja-ype erie for /π /π applyig a Bare-iegral raegy of he WZ-mehod.. Wilf-Zeilberger

More information

TIME RESPONSE Introduction

TIME RESPONSE Introduction TIME RESPONSE Iroducio Time repoe of a corol yem i a udy o how he oupu variable chage whe a ypical e ipu igal i give o he yem. The commoly e ipu igal are hoe of ep fucio, impule fucio, ramp fucio ad iuoidal

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by Sae-Space Model I geeral, he dyaic equaio of a luped-paraeer coiuou ye ay be repreeed by x & f x, u, y g x, u, ae equaio oupu equaio where f ad g are oliear vecor-valued fucio Uig a liearized echique,

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

1. Introduction. Markovian stochastic control problems on a given horizon of time T can typically be written as. β(xu α,α u,e)ñ(du, de).

1. Introduction. Markovian stochastic control problems on a given horizon of time T can typically be written as. β(xu α,α u,e)ñ(du, de). SIAM J. CONROL OPIM. Vol. 54, No. 4, pp. 2090 2115 c 2016 Sociey for Idurial ad Applied Mahemaic A WEAK DYNAMIC PROGRAMMING PRINCIPLE FOR COMBINED OPIMAL SOPPING/SOCHASIC CONROL WIH E f -EXPECAIONS ROXANA

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

Review - Week 10. There are two types of errors one can make when performing significance tests:

Review - Week 10. There are two types of errors one can make when performing significance tests: Review - Week Read: Chaper -3 Review: There are wo ype of error oe ca make whe performig igificace e: Type I error The ull hypohei i rue, bu we miakely rejec i (Fale poiive) Type II error The ull hypohei

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017 Deparme of Ecoomic The Ohio Sae Uiveriy Ecoomic 8723 Macroecoomic Theory Problem Se 3 Skech of Soluio Profeor Sajay Chugh Sprig 27 Taylor Saggered Nomial Price-Seig Model There are wo group of moopoliically-compeiive

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 ME 31 Kiemaic ad Dyamic o Machie S. Lamber Wier 6.. Forced Vibraio wih Dampig Coider ow he cae o orced vibraio wih dampig. Recall ha he goverig diereial equaio i: m && c& k F() ad ha we will aume ha he

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

1 Infinitesimal Generators

1 Infinitesimal Generators Ifiieimal Geeraor. Le {T : } i a emi-group of bouded operaor i Baach pace X, i.e., i aifie ha T T = T + for all, > ad T = I. Le f = l T. Suppoe ha f i bouded o [, a], how ha f i ub-addiive, i.e., f + f

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

CHAPTER 2 Quadratic diophantine equations with two unknowns

CHAPTER 2 Quadratic diophantine equations with two unknowns CHAPTER - QUADRATIC DIOPHANTINE EQUATIONS WITH TWO UNKNOWNS 3 CHAPTER Quadraic diophaie equaio wih wo ukow Thi chaper coi of hree ecio. I ecio (A), o rivial iegral oluio of he biar quadraic diophaie equaio

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability:

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability: Oulie Sabiliy Sab Sabiliy of Digial Syem Ieral Sabiliy Exeral Sabiliy Example Roo Locu v ime Repoe Fir Orer Seco Orer Sabiliy e Jury e Rouh Crierio Example Sabiliy A very impora propery of a yamic yem

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform.

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform. Theoreical Phyic Prof. Ruiz, UNC Aheville, docorphy o YouTue Chaper Q Noe. Laplace Traform Q1. The Laplace Traform. Pierre-Simo Laplace (1749-187) Courey School of Mhemic ad Siic Uiveriy of S. Adrew, Scolad

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing Noe for Seember, Iroducio o Hyohei Teig Scieific Mehod. Sae a reearch hyohei or oe a queio.. Gaher daa or evidece (obervaioal or eerimeal) o awer he queio. 3. Summarize daa ad e he hyohei. 4. Draw a cocluio.

More information

Computable Analysis of the Solution of the Nonlinear Kawahara Equation

Computable Analysis of the Solution of the Nonlinear Kawahara Equation Diache Lu e al IJCSE April Vol Iue 49-64 Compuale Aalyi of he Soluio of he Noliear Kawahara Equaio Diache Lu Jiai Guo Noliear Scieific eearch Ceer Faculy of Sciece Jiagu Uiveri Zhejiag Jiagu 3 Chia dclu@uj.edu.c

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Solutions to Problems 3, Level 4

Solutions to Problems 3, Level 4 Soluios o Problems 3, Level 4 23 Improve he resul of Quesio 3 whe l. i Use log log o prove ha for real >, log ( {}log + 2 d log+ P ( + P ( d 2. Here P ( is defied i Quesio, ad parial iegraio has bee used.

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

( ) ( ) ( ) ( ) ( ) ( ) ( ) (2)

( ) ( ) ( ) ( ) ( ) ( ) ( ) (2) UD 5 The Geeralized Riema' hypohei SV aya Khmelyy, Uraie Summary: The aricle pree he proo o he validiy o he geeralized Riema' hypohei o he bai o adjume ad correcio o he proo o he Riema' hypohei i he wor

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

Chapter 14 Necessary and Sufficient Conditions for Infinite Horizon Control Problems

Chapter 14 Necessary and Sufficient Conditions for Infinite Horizon Control Problems Chaper 14 Neceary ad Sufficie Codiio for Ifiie Horizo Corol Problem I may opimal corol problem i ecoomic he plaig horizo i aumed o be of ifiie legh. Thi mea ha he pero who olve uch a opimal corol problem

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

Math 2414 Homework Set 7 Solutions 10 Points

Math 2414 Homework Set 7 Solutions 10 Points Mah Homework Se 7 Soluios 0 Pois #. ( ps) Firs verify ha we ca use he iegral es. The erms are clearly posiive (he epoeial is always posiive ad + is posiive if >, which i is i his case). For decreasig we

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 7, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( xyz,, ) = 0, mulivariable Taylor liear expasio aroud f( xyz,, ) f( xyz,, ) + f( xyz,, )( x

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation Alied Mahemaic, 0, 3, 03-08 h://dx.doi.org/0.436/am.0.306 Publihed Olie Ocober 0 (h://www.scirp.org/oural/am) wo mlici Ruge-Kua Mehod for Sochaic Differeial quaio Fuwe Lu, Zhiyog Wag * Dearme of Mahemaic,

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( x, y, z ) = 0, mulivariable Taylor liear expasio aroud f( x, y, z) f( x, y, z) + f ( x, y,

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES The Aals of Probabiliy 996, Vol, No 3, 3077 GAUSSIAN CAOS AND SAMPLE PAT PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES BY MICAEL B MARCUS AND JAY ROSEN Ciy College of CUNY ad College

More information

Solution of the Hyperbolic Partial Differential Equation on Graphs and Digital Spaces: a Klein Bottle a Projective Plane and a 4D Sphere

Solution of the Hyperbolic Partial Differential Equation on Graphs and Digital Spaces: a Klein Bottle a Projective Plane and a 4D Sphere Soluio of he Hyperbolic Parial Differeial Equaio o Graph ad Digial Space: a Klei Bole a Projecive Plae ad a 4D Sphere Alexader V. Evako Diae, Laboraory of Digial Techologie, Mocow, Ruia Email addre: evakoa@mail.ru

More information

On The Eneström-Kakeya Theorem

On The Eneström-Kakeya Theorem Applied Mahemaics,, 3, 555-56 doi:436/am673 Published Olie December (hp://wwwscirporg/oural/am) O The Eesröm-Kakeya Theorem Absrac Gulsha Sigh, Wali Mohammad Shah Bharahiar Uiversiy, Coimbaore, Idia Deparme

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

Applying the Moment Generating Functions to the Study of Probability Distributions

Applying the Moment Generating Functions to the Study of Probability Distributions 3 Iformaica Ecoomică, r (4)/007 Applyi he Mome Geerai Fucios o he Sudy of Probabiliy Disribuios Silvia SPĂTARU Academy of Ecoomic Sudies, Buchares I his paper, we describe a ool o aid i provi heorems abou

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

Existence of Solutions for Volterra Integro-Differential Equations with Implicit Derivative

Existence of Solutions for Volterra Integro-Differential Equations with Implicit Derivative Ieraioal Joural o Scieiic a Iovaive Mahemaical Reearch IJSIMR Volume 6 Iue 4 8 PP -5 ISSN 347-37X Pri & ISSN 347-34 Olie DOI: hp://xoiorg/43/347-3464 wwwarcjouralorg Exiece o Soluio or Volerra Iegro-Diereial

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Suggested Solutions to Assignment 1 (REQUIRED)

Suggested Solutions to Assignment 1 (REQUIRED) EC 45 dvaced Macroecoomic Irucor: Sharif F ha Deparme of Ecoomic Wilfrid Laurier Uiveri Wier 28 Suggeed Soluio o igme (REQUIRED Toal Mar: 5 Par True/ Fale/ Ucerai Queio [2 mar] Explai wh he followig aeme

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series Mahemaical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol.7, No.5, 7 A Sudy O (H, )(E, q) Produc Summabiliy Of Fourier Series Ad Is Cojugae Series Sheela Verma, Kalpaa Saxea * Research Scholar

More information

Functional Weak Laws for the Weighted Mean Losses or Gains and Applications

Functional Weak Laws for the Weighted Mean Losses or Gains and Applications Applied Mahemaic 5 6 847-863 Publihed Olie May 5 i SciRe hp://wwwcirporg/joural/am hp://dxdoiorg/436/am56579 Fucioal Wea Law for he Weighed Mea Loe or Gai ad Applicaio Gae Samb Lo Serige Touba Sall 3 Pape

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique MASSACHUSETTS ISTITUTE OF TECHOLOGY 6.265/5.070J Fall 203 Lecure 4 9/6/203 Applicaios of he large deviaio echique Coe.. Isurace problem 2. Queueig problem 3. Buffer overflow probabiliy Safey capial for

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution Applied Mathematic E-Note, 9009, 300-306 c ISSN 1607-510 Available free at mirror ite of http://wwwmaththuedutw/ ame/ A Tail Boud For Sum Of Idepedet Radom Variable Ad Applicatio To The Pareto Ditributio

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

Electrical Engineering Department Network Lab.

Electrical Engineering Department Network Lab. Par:- Elecrical Egieerig Deparme Nework Lab. Deermiaio of differe parameers of -por eworks ad verificaio of heir ierrelaio ships. Objecive: - To deermie Y, ad ABD parameers of sigle ad cascaded wo Por

More information