# The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T.

Size: px
Start display at page:

Download "The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T."

Transcription

1 Che 5. Dieeil Geome o Sces 5. Sce i meic om I 3D sce c be eeseed b. Elici om z =. Imlici om z = 3. Veco om = o moe geel =z deedig o wo mees. Emle. he shee o dis hs he geoghicl om =coscoscossisi Emle. he clide bil o he ce = b i he -le hs he om = b - < < Emle 3. Sce o eolio b oig ce = q b bo he z-is cos = R z = si si cos =cos si q q b Secicl cses e: os wih = R + cos si A coe wih = m - ge ecos o he sce e d. Hece i oml is gie b ssmig o-sigl oi. I he sce is gie imlicil z = he

2 5. Meic oeies Disce o he sce is mesed b A d d d dz d d z z B A A d d d d ds whee G F F E A A B i sdd oio his is he s dmel om o he sce: Gd Fd E ds he i ge ˆ log he ce = is / ˆ B A he legh o he segme o he ce om = o = is d B d s / I wo ces i i i iesec gle o he sce he / / ˆ ˆ cos ds ds B B B A A da

3 A eleme e da will be gie b da [ ] [ d ] d d We he EG F deb B hs A B R R d o Regio R o he sce. 5.3 Ces Reclled h o geel sce ce sˆ d sˆ s knˆ whee Nˆ is he icil oml o he ce o o cose wih he oml o he sce. I lies o he sce he so h Dieeiig gi Noice h he sce oml is eedicl o d S ˆ kn D 3

4 he igh-hd side is he secod dmel om o he sce L M D is sdd oio. M N he oml ce o he ce i he sce is deied o be S D B Noe h ˆ ˆ N cos i.e. i is he comoe o i he diecio o. he ohe comoe o i he ge le is kow s he geodesic ce g becse o ohogoli i hs he mgide g si A sce ce o which g = ee oi is clled geodesic s sigh s ossible o he sce. Coside ow d s cio o he diecio d d d Le he L E M N F G LMN EFG As chges diecio i he sce will chiee mimm d miimm le less L: M: N = E: F: G i h cse is ideede o sch locios e clled mbilic ois d Seig he icil diecios d he coesodig icil d ces k e goeed b FN GM EN GL EM FL d EG F k LG NE FM k LN M 4

5 he solios sis EF G LG FM NE k k EG F LN M de kk EG F de D B K k k is clled he Gssi Ce. H k k is he me Ce Gemi Ce. I he wo diecios coesod o d d d d d d d d d d he E F G d d d d d d d d heeoe he wo icil diecios e ohogol. Some geomeicl meig o he ces e he ollowig. A sce is clled miiml i H = eewhee. A miiml sce wih bod l hs he smlles sce e mog ll sces wih bod l. I he icil diecios e ke s he meic ces he F M d L N k k E G ce i ohe diecio is he gie b LN E G K k k EG EG EG k cos k si whee is he gle bewee d which is kow s he Ele s oml. 3 I K> oi P o he sce he P is elliic oi. As k k he he sme sig so ll he sce is bedig he sme w i ll diecios. 5

6 4 I K< oi P he i is hebolic oi. ge diecios P c bed w o owds he ge le. 5 I K= he eihe Oe icil ce ol is zeo. he oi P is bolic oi d oe o he icil diecio is sigh e P. b Boh icil ce e zeo. he oi is secil e o mbilic oi d is l. Noe: Isoled l ois c eis o sces which is om l. E.g. he z 3 3 P moke sddle sce 6 Coside oi P o he sce z = B chge o coodies choose he oigi P d es log he icil diecios P lso z-is i he diecio o he sce oml P he he sce hs eqio z = locl o wih = - is he ge le d z 3 3 O # "! 6

7 Now kig A P = d E F G he icil diecios e ohogol. Also Hece z L M N 3 3 L M N O 3 3 k k O hese coics jsi he emiolog sed. he simles sce o which ll hee cses % o Gssi ce K occ is he os. \$ 5.4 Secil cses 5.4. Deeloble sces Coside sce i R 3 which is cosced b moig sigh lie his so clled led sce hs he om 7

8 whee is he osiio eco o oi o gie lie is he diecio o he moig lie geeos o i sigh lies e sed o joi wo gie ces he Emles e clides d coes. Now we look o codiios so h led sce c be olled io l le wiho disoio i.e. disces e eseed. I led sce is deeloble he ll he geeos eell lie o le heeoe he e eihe llel o iesec oe ohe. Now he iesecio o wo geeos d is goeed b 8

9 I cse ll he geeos e llel he boe codiio is lso sisied. heeoe i is he codiio o led sce becomes deeloble. As heeoe N M D B de LN M K o deeloble sces. de de B I cse he led sce is goeed b wo ces he codiio becomes his c is sed i he ge le mehod o geeig deeloble sce ssig hogh wo ces. 9

10 5.4. Eeloe o sce ces Regdig s mil o ces deedig o mee. hee m eis ce e which is geil o ee ce he meic le. Sch ce i i eiss is clled he eeloe o he mil o ces. I ems o he oigil mees i imlies is llel o d he sce oml is o deied hese ois: I cse o he deeloble sce he geeos will he eeloe i he e o llel. A eeloe sisies so log s he geeos e o llel hece he locio o commo ge occs d he eqio o he eeloe o he geeos is e

### One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

Oe of he commo descipios of cuilie moio uses ph ibles, which e mesuemes mde log he ge d oml o he ph of he picles. d e wo ohogol xes cosideed sepely fo eey is of moio. These coodies poide ul descipio fo

### Physics 232 Exam I Feb. 13, 2006

Phsics I Fe. 6 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio. The oio hs peiod o.59 secods. iiil ie i is oud o e 8.66 c o he igh o he equiliiu posiio d oig o he le wih eloci o sec.

### BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

### Physics 232 Exam I Feb. 14, 2005

Phsics I Fe., 5 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio wih gul eloci o dissec. gie is i ie i is oud o e 8 c o he igh o he equiliiu posiio d oig o he le wih eloci o.5 sec..

### Physics 232 Exam II Mar. 28, 2005

Phi 3 M. 8, 5 So. Se # Ne. A piee o gl, ide o eio.5, h hi oig o oil o i. The oil h ide o eio.4.d hike o. Fo wh welegh, i he iile egio, do ou ge o eleio? The ol phe dieee i gie δ Tol δ PhDieee δ i,il δ

### TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA

WO INERFIL OLLINER GRIFFIH RS IN HERMO- ELSI OMOSIE MEDI h m MISHR S DS * Deme o Mheml See I Ie o eholog BHU V-5 I he oee o he le o he e e o eeg o o olle Gh e he ee o he wo ohoo mel e e e emee el. he olem

### The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

Wold Alied cieces Joal (8): 898-95 IN 88-495 IDOI Pblicaios = h x g x x = x N i W whee is a eal aamee is a boded domai wih smooh boday i R N 3 ad< < INTRODUCTION Whee s ha is s = I his ae we ove he exisece

### Classification of Equations Characteristics

Clssiiion o Eqions Cheisis Consie n elemen o li moing in wo imensionl spe enoe s poin P elow. The ph o P is inie he line. The posiion ile is s so h n inemenl isne long is s. Le he goening eqions e epesene

### ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d.

ENGINEERING MATHEMATICS I QUESTION BANK Modle Usig the Leibit theoem id the th deivtive o the ollowig : b si c e d e Show tht d d! Usig the Leibit theoem pove the ollowig : I si b the pove tht b I si show

### Chapter 9. Application of Partial Differential Equations in Mechanical Engineering Analysis

Applied Egieeig Alsis - slides o clss echig* Chpe 9 Applicio o Pil Dieeil Eqios i Mechicl Egieeig Alsis * Bsed o he ook o Applied Egieeig Alsis i-r Hs plished Joh Wile & Sos 8 (ISBN 978974) (Chpe 9 pplicio

### Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Mmm lkelhood eme of phylogey BIO 9S/ S 90B/ MH 90B/ S 90B Iodco o Bofomc pl 00 Ovevew of he pobblc ppoch o phylogey o k ee ccodg o he lkelhood d ee whee d e e of eqece d ee by ee wh leve fo he eqece. he

### LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR

Reseh d ouiios i heis d hei Siees Vo. Issue Pges -46 ISSN 9-699 Puished Oie o Deee 7 Joi Adei Pess h://oideiess.e IPSHITZ ESTIATES FOR UTIINEAR OUTATOR OF ARINKIEWIZ OPERATOR DAZHAO HEN Dee o Siee d Ioio

### On the hydrogen wave function in Momentum-space, Clifford algebra and the Generating function of Gegenbauer polynomial

O he hoge we fco Moe-sce ffo geb he eeg fco of egebe oo Meh Hge Hss To ce hs eso: Meh Hge Hss O he hoge we fco Moe-sce ffo geb he eeg fco of egebe oo 8 HL I: h- hs://hches-oeesf/h- Sbe o J 8 HL s

### ME 141. Engineering Mechanics

ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

### DIFFERENCE EQUATIONS

DIFFERECE EQUATIOS Lier Cos-Coeffiie Differee Eqios Differee Eqios I disree-ime ssems, esseil feres of ip d op sigls pper ol speifi iss of ime, d he m o e defied ewee disree ime seps or he m e os. These

### T h e C S E T I P r o j e c t

T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

### P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

### S n. = n. Sum of first n terms of an A. P is

PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

### machine design, Vol.7(2015) No.2, ISSN pp

mchie desig Vo75 No IN 8-59 47-54 ON HE YNHEI OF PAIAL RACK MECHANIM: ON HE MAHEMAICAL MODELING ANALYICAL AND 3D OFWARE CREAING OF HE FACE RACK DRIVE EEH Emii ABADJIEVA * - Vei ABADJIEV Isie o Iomio d

### EE757 Numerical Techniques in Electromagnetics Lecture 9

EE757 uericl Techiques i Elecroeics Lecure 9 EE757 06 Dr. Mohed Bkr Diereil Equios Vs. Ierl Equios Ierl equios ke severl ors e.. b K d b K d Mos diereil equios c be epressed s ierl equios e.. b F d d /

### Dividing Algebraic Fractions

Leig Eheme Tem Model Awe: Mlilig d Diidig Algei Fio Mlilig d Diidig Algei Fio d gide ) Yo e he me mehod o mlil lgei io o wold o mlil meil io. To id he meo o he we o mlil he meo o he io i he eio. Simill

### FRACTIONAL MELLIN INTEGRAL TRANSFORM IN (0, 1/a)

Ieol Jol o Se Reeh Pblo Volme Ie 5 y ISSN 5-5 FRACTIONAL ELLIN INTEGRAL TRANSFOR IN / S.. Kh R..Pe* J.N.Slke** Deme o hem hh Aemy o Egeeg Al-45 Pe I oble No.: 98576F No.: -785759 Eml-mkh@gml.om Deme o

### Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

per I. Le α 7 d β 7. The α d β re he roos o he equio, such h α α, β β, --- α β d αβ. For, α β For, α β α β αβ 66 The seme is rue or,. ssume Cosider, α β d α β y deiiio α α α α β or some posiive ieer.

### Generalized Fibonacci-Type Sequence and its Properties

Geelized Fibocci-Type Sequece d is Popeies Ompsh Sihwl shw Vys Devshi Tuoil Keshv Kuj Mdsu (MP Idi Resech Schol Fculy of Sciece Pcific Acdemy of Highe Educio d Resech Uivesiy Udipu (Rj Absc: The Fibocci

### P-Convexity Property in Musielak-Orlicz Function Space of Bohner Type

J N Sce & Mh Res Vol 3 No (7) -7 Alble ole h://orlwlsogocd/deh/sr P-Coey Proery Msel-Orlcz Fco Sce o Boher ye Yl Rodsr Mhecs Edco Deree Fcly o Ss d echology Uerss sl Neger Wlsogo Cerl Jdoes Absrcs Corresodg

### OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

### Lecture 3 summary. C4 Lecture 3 - Jim Libby 1

Lecue su Fes of efeece Ivce ude sfoos oo of H wve fuco: d-fucos Eple: e e - µ µ - Agul oeu s oo geeo Eule gles Geec slos cosevo lws d Noehe s heoe C4 Lecue - Lbb Fes of efeece Cosde fe of efeece O whch

### 1. Six acceleration vectors are shown for the car whose velocity vector is directed forward. For each acceleration vector describe in words the

Si ccelerio ecors re show for he cr whose eloci ecor is direced forwrd For ech ccelerio ecor describe i words he iseous moio of he cr A ri eers cured horizol secio of rck speed of 00 km/h d slows dow wih

### Graphing Review Part 3: Polynomials

Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

### P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

### Chapter 3: Vectors and Two-Dimensional Motion

Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

### f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe

### Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * *

Dmis o Mrie Biologil Resores A FUNCTION * * * REVIEW OF SOME MATHEMATICS * * * z () z g(,) A tio is rle or orml whih estlishes reltioshi etwee deedet vrile (z) d oe or more ideedet vriles (,) sh tht there

### _ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

C C A 55NED n R 5 0 9 b c c \ { s AS EC 2 5? 9 Con 0 \ 0265 o + s ^! 4 y!! {! w Y n < R > s s = ~ C c [ + * c n j R c C / e A / = + j ) d /! Y 6 ] s v * ^ / ) v } > { ± n S = S w c s y c C { ~! > R = n

### Chapter 2. Review of Hydrodynamics and Vector Analysis

her. Ree o Hdrodmcs d Vecor Alss. Tlor seres L L L L ' ' L L " " " M L L! " ' L " ' I s o he c e romed he Tlor seres. O he oher hd ' " L . osero o mss -dreco: L L IN ] OUT [mss l [mss l] mss ccmled h me

### UNIT 1: ANALYTICAL METHODS FOR ENGINEERS

UNIT : ANALYTICAL METHODS FOR ENGINEERS Ui code: A// QCF Level: Credi vale: OUTCOME TUTORIAL SERIES Ui coe Be able o aalyse ad model egieerig siaios ad solve problems sig algebraic mehods Algebraic mehods:

### Math 2414 Homework Set 7 Solutions 10 Points

Mah Homework Se 7 Soluios 0 Pois #. ( ps) Firs verify ha we ca use he iegral es. The erms are clearly posiive (he epoeial is always posiive ad + is posiive if >, which i is i his case). For decreasig we

### ELECTROSTATICS. 4πε0. E dr. The electric field is along the direction where the potential decreases at the maximum rate. 5. Electric Potential Energy:

LCTROSTATICS. Quntiztion of Chge: Any chged body, big o smll, hs totl chge which is n integl multile of e, i.e. = ± ne, whee n is n intege hving vlues,, etc, e is the chge of electon which is eul to.6

### Ultrahigh Frequency Generation in GaAs-type. Two-Valley Semiconductors

Adv. Sudies Theo. Phys. Vol. 3 9 o. 8 93-98 lhigh Fequecy Geeio i GAs-ype Two-Vlley Seicoducos.. sov. K. Gsiov A. Z. Phov d A.. eiel Bu Se ivesiy 3 Z. Khlilov s. Az 48 Bu ciy- Physicl siue o he Azebij

### Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis 2/3/2007 Physics 253

Science Adeisemen Inegoenmenl Pnel on Clime Chnge: The Phsicl Science Bsis hp://www.ipcc.ch/spmfeb7.pdf /3/7 Phsics 53 hp://www.fonews.com/pojecs/pdf/spmfeb7.pdf /3/7 Phsics 53 3 Sus: Uni, Chpe 3 Vecos

### Finding Formulas Involving Hypergeometric Functions by Evaluating and Comparing the Multipliers of the Laplacian on IR n

Ieriol Jorl of Pril Differeil Eqios d Alicios,, Vol., No., 7-78 Ailble olie h://bs.scieb.com/ijde///3 Sciece d Edcio Pblishig DOI:.69/ijde---3 Fidig Formls Iolig Hergeomeric Fcios b Elig d Comrig he Mliliers

### Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data

Avlble ole wwwsceceeccom Physcs Poce 0 475 480 0 Ieol Cofeece o Mecl Physcs Bomecl ee Pmee smo Hyohess es of wo Neve Boml Dsbuo Poulo wh Mss D Zhwe Zho Collee of MhemcsJl Noml UvesyS Ch zhozhwe@6com Absc

### Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

### Degree of Approximation of Fourier Series

Ieaioal Mahemaical Foum Vol. 9 4 o. 9 49-47 HIARI Ld www.m-hiai.com h://d.doi.og/.988/im.4.49 Degee o Aoimaio o Fouie Seies by N E Meas B. P. Padhy U.. Misa Maheda Misa 3 ad Saosh uma Naya 4 Deame o Mahemaics

### EGN 3321 Final Exam Review Spring 2017

EN 33 l Em Reew Spg 7 *T fshg ech poblem 5 mues o less o pcce es-lke me coss. The opcs o he pcce em e wh feel he bee sessed clss, bu hee m be poblems o he es o lke oes hs pcce es. Use ohe esouces lke he

### Basic Results in Functional Analysis

Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

### Addition & Subtraction of Polynomials

Addiion & Sucion of Polynomil Addiion of Polynomil: Adding wo o moe olynomil i imly me of dding like em. The following ocedue hould e ued o dd olynomil 1. Remove enhee if hee e enhee. Add imil em. Wie

### Executive Committee and Officers ( )

Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

### Viewing in 3D. Viewing in 3D. Planar Geometric Projections. Taxonomy of Projections. How to specify which part of the 3D world is to be viewed?

Viewig i 3D Viewig i 3D How o speci which pa o he 3D wo is o e viewe? 3D viewig voume How o asom 3D wo cooiaes o D ispa cooiae? Pojecios Cocepua viewig pipeie: Xom o ee coos 3D cippig Pojec Xom o viewpo

### CSE590B Lecture 4 More about P 1

SE590 Lece 4 Moe abo P 1 Tansfoming Tansfomaions James. linn Jimlinn.om h://coses.cs.washingon.ed/coses/cse590b/13a/ Peviosly On SE590b Tansfomaions M M w w w w w The ncion w w w w w w 0 w w 0 w 0 w The

### Department of Mathematics. Birla Institute of Technology, Mesra, Ranchi MA 2201(Advanced Engg. Mathematics) Session: Tutorial Sheet No.

Dpm o Mhmics Bi Isi o Tchoog Ms Rchi MA Advcd gg. Mhmics Sssio: 7---- MODUL IV Toi Sh No. --. Rdc h oowig i homogos dii qios io h Sm Liovi om: i. ii. iii. iv. Fid h ig-vs d ig-cios o h oowig Sm Liovi bod

### Physics 201, Lecture 5

Phsics 1 Lecue 5 Tod s Topics n Moion in D (Chp 4.1-4.3): n D Kinemicl Quniies (sec. 4.1) n D Kinemics wih Consn Acceleion (sec. 4.) n D Pojecile (Sec 4.3) n Epeced fom Peiew: n Displcemen eloci cceleion

### Outline. Review Homework Problem. Review Homework Problem II. Review Dimensionless Problem. Review Convection Problem

adial diffsio eqaio Febay 4 9 Diffsio Eqaios i ylidical oodiaes ay aeo Mechaical Egieeig 5B Seia i Egieeig Aalysis Febay 4, 9 Olie eview las class Gadie ad covecio boday codiio Diffsio eqaio i adial coodiaes

### Generalisation on the Zeros of a Family of Complex Polynomials

Ieol Joul of hemcs esech. ISSN 976-584 Volume 6 Numbe 4. 93-97 Ieol esech Publco House h://www.house.com Geelso o he Zeos of Fmly of Comlex Polyomls Aee sgh Neh d S.K.Shu Deme of hemcs Lgys Uvesy Fdbd-

### Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Techc Appedx fo Iveoy geme fo Assemy Sysem wh Poduc o Compoe eus ecox d Zp geme Scece 2005 Lemm µ µ s c Poof If J d µ > µ he ˆ 0 µ µ µ µ µ µ µ µ Sm gumes essh he esu f µ ˆ > µ > µ > µ o K ˆ If J he so

### Ch.4 Motion in 2D. Ch.4 Motion in 2D

Moion in plne, such s in he sceen, is clled 2-dimensionl (2D) moion. 1. Posiion, displcemen nd eloci ecos If he picle s posiion is ( 1, 1 ) 1, nd ( 2, 2 ) 2, he posiions ecos e 1 = 1 1 2 = 2 2 Aege eloci

### Solutions to selected problems from the midterm exam Math 222 Winter 2015

Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

### BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

### S, we call the base curve and the director curve. The straight lines

Developable Ruled Sufaces wih Daboux Fame i iowsi -Space Sezai KIZILTUĞ, Ali ÇAKAK ahemaics Depame, Faculy of As ad Sciece, Ezica Uivesiy, Ezica, Tuey ahemaics Depame, Faculy of Sciece, Aau Uivesiy, Ezuum,

### ). So the estimators mainly considered here are linear

6 Ioic Ecooică (4/7 Moe Geel Cedibiliy Models Vigii ATANASIU Dee o Mheics Acdey o Ecooic Sudies e-il: vigii_siu@yhooco This couicio gives soe exesios o he oigil Bühl odel The e is devoed o sei-lie cedibiliy

### 1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

### I. Exponential Function

MATH & STAT Ch. Eoetil Fuctios JCCSS I. Eoetil Fuctio A. Defiitio f () =, whee ( > 0 ) d is the bse d the ideedet vible is the eoet. [ = 1 4 4 4L 4 ] ties (Resf () = is owe fuctio i which the bse is the

### ( ) ( ) Weibull Distribution: k ti. u u. Suppose t 1, t 2, t n are times to failure of a group of n mechanisms. The likelihood function is

Webll Dsbo: Des Bce Dep of Mechacal & Idsal Egeeg The Uvesy of Iowa pdf: f () exp Sppose, 2, ae mes o fale of a gop of mechasms. The lelhood fco s L ( ;, ) exp exp MLE: Webll 3//2002 page MLE: Webll 3//2002

### H STO RY OF TH E SA NT

O RY OF E N G L R R VER ritten for the entennial of th e Foundin g of t lair oun t y on ay 8 82 Y EEL N E JEN K RP O N! R ENJ F ] jun E 3 1 92! Ph in t ed b y h e t l a i r R ep u b l i c a n O 4 1922

### rank Additionally system of equation only independent atfect Gawp (A) possible ( Alb ) easily process form rang A. Proposition with Definition

Defiion nexivnol numer ler dependen rows mrix sid row Gwp elimion mehod does no fec h numer end process i possile esily red rng fc for mrix form der zz rn rnk wih m dcussion i holds rr o Proposiion ler

EEAICS I EADS UI CD PHOE VOICE AV PREIU I EADS REQ E E A + A + I A + I E B + E + I B + E + I B + E + H B + I D + UI CD PHOE VOICE AV PREIU I EADS REQ D + D + D + I C + C + C + C + I G G + I G + I G + H

### Optical flow equation

Opical Flow Sall oio: ( ad ae le ha piel) H() I(++) Be foce o poible ppoe we ake he Talo eie epaio of I: (Sei) Opical flow eqaio Cobiig hee wo eqaio I he lii a ad go o eo hi becoe eac (Sei) Opical flow

### African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS

Af Joul of See Tehology (AJST) See Egeeg See Vol. 4, No.,. 7-79 GENERALISED DELETION DESIGNS Mhel Ku Gh Joh Wylff Ohbo Dee of Mhe, Uvey of Nob, P. O. Bo 3097, Nob, Key ABSTRACT:- I h e yel gle ele fol

### -HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL

UPB Sc B See A Vo 72 I 3 2 ISSN 223-727 MUTIPE -HYBRID APACE TRANSORM AND APPICATIONS TO MUTIDIMENSIONA HYBRID SYSTEMS PART II: DETERMININ THE ORIINA Ve PREPEIŢĂ Te VASIACHE 2 Ace co copeeă oă - pce he

### PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

### 176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

### Extension of Hardy Inequality on Weighted Sequence Spaces

Jourl of Scieces Islic Reublic of Ir 20(2): 59-66 (2009) Uiversiy of ehr ISS 06-04 h://sciecesucir Eesio of Hrdy Iequliy o Weighed Sequece Sces R Lshriour d D Foroui 2 Dere of Mheics Fculy of Mheics Uiversiy

### Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Mh Csquee Go oe eco nd eco lgeb Dsplcemen nd poson n -D Aege nd nsnneous eloc n -D Aege nd nsnneous cceleon n -D Poecle moon Unfom ccle moon Rele eloc* The componens e he legs of he gh ngle whose hpoenuse

### Stenciling. 5 th Week, Reflection without Using the Stencil Buffer

Secilig 5 h Week, 9 Reflecio wihou Usig he Secil Buffe Blockig he Reflecio Usig he Secil Buffe Secil Buffe A off-scee buffe fo secial effecs Haig same esoluio as he back buffe a eh buffe To block eeig

### I N A C O M P L E X W O R L D

IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

### Review for the Midterm Exam.

Review for he iderm Exm Rememer! Gross re e re Vriles suh s,, /, p / p, r, d R re gross res 2 You should kow he disiio ewee he fesile se d he udge se, d kow how o derive hem The Fesile Se Wihou goverme

### F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

F.Y. Diplom : Sem. II [CE/CR/CS] Applied Mhemics Prelim Quesio Pper Soluio Q. Aemp y FIVE of he followig : [0] Q. () Defie Eve d odd fucios. [] As.: A fucio f() is sid o e eve fucio if f() f() A fucio

### Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

Modelg d redcg Sequeces: HMM d m be CRF Amr Ahmed 070 Feb 25 Bg cure redcg Sgle Lbel Ipu : A se of feures: - Bg of words docume - Oupu : Clss lbel - Topc of he docume - redcg Sequece of Lbels Noo Noe:

### Self-Calibration of PIV Video-Cameras in Scheimpflug Condition

Self-Clibio of PIV Video-Ces i Scheiflug Codiio T. Fouel J.-M. Lves S. Coude F. Collge LTSI UMR CNRS 556 ue Boui 4 Si-Eiee Fce LASMEA UMR CNRS 66 6377 Aubièe cede Fce Absc I ode o ioduce oe fleibili i

### Simple Methods for Stability Analysis of Nonlinear Control Systems

Poeeig of he Wol Coge o Egieeig Coe Siee 009 Vol II WCECS 009, Ooe 0-, 009, S Fio, USA Sile Meho fo Sili Ali of Nolie Cool Se R. Moek, Mee, IAENG, I. Sv, P. Pivoňk, P. Oe, M. Se A Thee eho fo ili li of

### Macroscopic Fields in Accelerators

48 E hs simil effect s v. d q E v Fo eltivistic ticles T hs simil effect s dt E c 3 8 V/m such Electic field is beod techicl limits. Electic fields e ol used fo ve lo eegies o Fo setig to coute ottig bems

### Fractional Fourier Series with Applications

Aeric Jourl o Couiol d Alied Mheics 4, 4(6): 87-9 DOI: 593/jjc446 Frciol Fourier Series wih Alicios Abu Hd I, Khlil R * Uiversiy o Jord, Jord Absrc I his er, we iroduce coorble rciol Fourier series We

### n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

### THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

T H S PA G E D E CLA SSFED AW E O 2958 RS u blc Recod Key fo maon Ma n AR MATEREL COMM ND D cumen Type Call N u b e 03 V 7 Rcvd Rel 98 / 0 ndexe D 38 Eneed Dae RS l umbe 0 0 4 2 3 5 6 C D QC d Dac A cesson

### ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

### Supplement: Gauss-Jordan Reduction

Suppleme: Guss-Jord Reducio. Coefficie mri d ugmeed mri: The coefficie mri derived from sysem of lier equios m m m m is m m m A O d he ugmeed mri derived from he ove sysem of lier equios is [ ] m m m m

### The formulae in this booklet have been arranged according to the unit in which they are first

Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge og to the ut whh the e fst toue. Thus te sttg ut m e eque to use the fomule tht wee toue peeg ut e.g. tes sttg C mght e epete to use fomule

### Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

### N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

### 1 Notes on Little s Law (l = λw)

Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

### Duration Notes 1. To motivate this measure, observe that the duration may also be expressed as. a a T a

Duio Noes Mculy defied he duio of sse i 938. 2 Le he sem of pymes cosiuig he sse be,,..., d le /( + ) deoe he discou fco. he Mculy's defiiio of he duio of he sse is 3 2 D + 2 2 +... + 2 + + + + 2... o

### Thermal Stresses of Semi-Infinite Annular Beam: Direct Problem

iol ol o L choloy i Eii M & Alid Scic LEMAS Vol V Fy 8 SSN 78-54 hl S o Si-ii Al B: Dic Pol Viv Fl M. S. Wh d N. W. hod 3 D o Mhic Godw Uiviy Gdchioli M.S di D o Mhic Svody Mhvidyly Sidwhi M.S di 3 D o

### Administrivia. Administrivia. Visual motion. CMPSCI 370: Intro. to Computer Vision. Optical flow

Admiisriia Fial eam: Thrsda, Ma 5, -3pm, Hasbrock 3 Reiew sessio poll Thrsda, April 8, 4-5pm, Locaio: TDB Tesda, Ma 3, 4-5pm, Locaio: TDB CMPSC 370: ro. o Comper Visio Reiew oes are posed o Moodle Opical

### Semiconductors materials

Semicoductos mteils Elemetl: Goup IV, Si, Ge Biy compouds: III-V (GAs,GSb, ISb, IP,...) IV-VI (PbS, PbSe, PbTe,...) II-VI (CdSe, CdTe,...) Tey d Qutey compouds: G x Al -x As, G x Al -x As y P -y III IV

### Reinforcement Learning

Reiforceme Corol lerig Corol polices h choose opiml cios Q lerig Covergece Chper 13 Reiforceme 1 Corol Cosider lerig o choose cios, e.g., Robo lerig o dock o bery chrger o choose cios o opimize fcory oupu

### Fresnel Dragging Explained

Fresel Draggig Explaied 07/05/008 Decla Traill Decla@espace.e.au The Fresel Draggig Coefficie required o explai he resul of he Fizeau experime ca be easily explaied by usig he priciples of Eergy Field

### SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

### Summary: Binomial Expansion...! r. where

Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly