Lecture 6. Entropy of an Ideal Gas (Ch. 3)

Size: px
Start display at page:

Download "Lecture 6. Entropy of an Ideal Gas (Ch. 3)"

Transcription

1 Lecture 6. Entropy o an Ideal Gas (Ch. oday we wll acheve an portant goal: we ll derve the equaton(s o state or an deal gas ro the prncples o statstcal echancs. We wll ollow the path outlned n the prevous lecture: Fnd Ω (... the ost challengng step (... Ω (... (... olve or (... o ar we have treated quantu systes whose states n the conguraton (phase space ay be enuerated. When dealng wth classcal systes wth translatonal degrees o reedo we need to learn how to calculate the ultplcty.

2 Multplcty or a ngle partcle - s ore coplcated than that or an Ensten sold because t depends on three rather than two acro paraeters (e.g.. Exaple: partcle n a onedensonal box -L L he total nuber o ways o llng up the cells n phase space s the product o the nuber o ways the space cells can be lled tes the nuber o ways the oentu cells can be lled Ω Ω space Ω p p x he total nuber o crostates: L px x p x L x -L L x p x -p x x Q.M. he nuber o crostates: L px x p x L p h x Quantu echancs (the uncertanty prncple helps us to nuerate all derent states n the conguraton (phase space: x p x h

3 Multplcty o a Monatoc Ideal Gas (spled For a olecule n a three-densonal box: the state o the olecule s a pont n the 6D space - ts poston (xyz and ts oentu (p x p y p z. he nuber o space crostates s: For olecules: x Ωspace here s soe oentu dstrbuton o olecules n an deal gas (Maxwell wth a long tal that goes all the way up to p ( / ( s the total energy o the gas. However the oentu vector o an average olecule s conned wthn a sphere o radus p ~ (/ / (/ s the average energy per olecule. hus or a sngle average olecule: he total nuber o crostates or olecules: However we have over-counted the ultplcty because we have assued that the atos are dstngushable. For ndstngushable quantu partcles the result should be dvded by! (the nuber o ways o arrangng dentcal atos n a gven set o boxes : Ω space Ω x y z p x y x p 4 π p p p p p Ω ΩspaceΩ p x p h x n p Ωndstngushable p! h z p

4 p z More ccurate Calculaton o Ω p p x p y Moentu constrants: partcle - partcles - px py pz p x p y pz px p y pz he accessble oentu volue or partcles the area o a -densonal hypersphere p / "area" π r! π Ω p! ( /! h / π / ( / r! [( /! π / ] 4π r he reason why atters: or a gven a olecule wth a larger ass has a larger oentu thus a larger volue accessble n the oentu space. Monatoc deal gas: ( degrees o reedo ( π / / e Ωndstngushable ( p h / ( Ω - the total # o quadratc degrees o reedo

5 Entropy o an Ideal Gas (onatoc (datoc 6 (polyatoc Monatoc deal gas: 4 ( / h π ( 4 / h ϕ π In general or a gas o polyatoc olecules: the acur- etrode equaton ( ( ϕ ( p Ω! /! / h π ( p h 4 ( / π an average volue per olecule an average energy per olecule

6 roble wo cylnders ( lter each are connected by a valve. In one o the cylnders Hydrogen (H at a C n another one Helu (He at a C. Fnd the entropy change ater xng and equlbratng. H : total For each gas: he teperature ater xng: H ( total H He : ( ( ( He ( He total.67 J/K

7 Entropy o Mxng Consder two derent deal gases ( ept n two separate volues ( at the sae teperature. o calculate the ncrease o entropy n the xng process we can treat each gas as a separate syste. In the xng process / reans the sae ( wll be the sae ater xng. he paraeter that changes s /: 4 ( / h π he total entropy o the syste s greater ater xng thus xng s rreversble. total / / / / total

8 Gbbs aradox I two xng gases are o the sae nd (ndstngushable olecules: ( / total ( h /!! Ω π h 4 ( / π Quantu-echancal ndstngushablty s portant! (even though ths equaton apples only n the low densty lt whch s classcal n the sense that the dstncton between erons and bosons dsappear. total because / and / avalable or each olecule rean the sae ater xng. total - apples only two gases are derent!

9 roble wo dentcal perect gases wth the sae pressure and the sae nuber o partcles but wth derent teperatures and are conned n two vessels o volue and whch are then connected. nd the change n entropy ater the syste has reached equlbru. h h 4 4 ( / / π π ( ( / α ( ( ( ( ( ( ( ( ( ( / / α α α at as t should be (Gbbs paradox ( ( / / α α - prove t!

10 n Ideal Gas: ro ( - to ( Ideal gas: ( degrees o reedo Ω / ( ( ( ϕ ( ( - the energy equaton o state - n agreeent wth the equpartton theore the total energy should be ½ tes the nuber o degrees o reedo. he heat capacty or a onatoc deal gas: C

11 artal Dervatves o the Entropy We have been consderng the entropy changes n the processes where two nteractng systes exchanged the theral energy but the volue and the nuber o partcles n these systes were xed. In general however we need ore than just one paraeter to specy a acrostate e.g or an deal gas oday we wll explore what happens we let the other two paraeters ( and vary and analyze the physcal eanng o the other two partal dervatves o the entropy: We are alar wth the physcal eanng only one partal dervatve o entropy: ( ( Ω When all acroscopc quanttes are allowed to vary: d d d d

12 herodynac Identty or d( ( onotonc as a uncton o ( quadratc degrees o reedo! ay be nverted to gve ( d d d d copare wth μ pressure checal potental hs holds or quas-statc processes ( μ are well-dene throughout the syste. d d d d μ μ shows how uch the syste s energy changes when one partcle s added to the syste at xed and. he checal potental unts J. - the so-called therodynac dentty or

13 he Exact Derental o ( d d d d μ he coecents ay be dented as: ( d d d d μ gan ths holds or quas-statc processes ( and are well dened. d d d d μ ype o nteracton Exchanged quantty Governng varable Forula theral energy teperature echancal volue pressure dusve partcles checal potental μ connecton between therodynacs and statstcal echancs

14 Mechancal Equlbru and ressure Let s x and but allow to vary (the ebrane s nsulatng pereable or gas olecules but ts poston s not xed. Followng the sae logc spontaneous exchange o volue between sub-systes wll drve the syste towards echancal equlbru (the ebrane at rest. he equlbru acropartton should have the largest (by ar ultplcty Ω ( and entropy (. eq he stat. phys. denton o pressure: - the sub-syste wth a saller volue-per-olecule (larger at the sae wll have a larger / t wll expand at the expense o the other sub-syste. In echancal equlbru: ( - the volue-per-olecule should be the sae or both sub-systes or s the sae ust be the sae on both sdes o the ebrane. /

15 he ressure Equaton o tate or an Ideal Gas Ideal gas: ( degrees o reedo he energy equaton o state ( : he pressure equaton o state ( : - we have nally derved the equaton o state o an deal gas ro rst prncples! ( ( ϕ

16 Quas-tatc rocesses d d d d δ Q δw (quas-statc processes wth xed hus or quas-statc processes : δq d (all processes δ Q d d Coent on tate Functons : δ Q - s an exact derental ( s a state uncton. hus the actor / converts δq nto an exact derental or quas-statc processes. Q Quasstatc adabatc (δq processes: d sentropc processes he quas-statc adabatc process wth an deal gas : const const - we ve derved these equatons ro the st Law and R On the other hand ro the acur-etrode equaton or an sentropc process : / const const

17 roble: (all the processes are quas-statc (a Calculate the entropy ncrease o an deal gas n an sotheral process. (b Calculate the entropy ncrease o an deal gas n an sochorc process. You should be able to do ths usng (a acur-etrode eq. and (b δq d d d d Ω / ( ( δq d δ Q d d d / [ g( ] const const Let s very that we get the sae result wth approaches a and b (e.g. or const: nce δq δw d δq (r..4

18 roble: body o ass M wth heat capacty (per unt ass C ntally at teperature s brought nto theral contact wth a heat bath at teperature.. (a how that << the ncrease n the entropy o the entre syste (bodyheat bath when equlbru s reached s proportonal to (. (b Fnd the body s a bactera o ass - g wth C4 J/(g K K.K. (c What s the probablty o ndng the bactera at ts ntal or t - s over the lete o the nverse (~ 8 s. (a body δq Cd C < heat bath δq Cd > C (b total body total heat bath C C 4 C J / K. α α C ( α α... > J / K

19 roble (cont. (b Ω or the (non-equlbru state wth bactera.k s greater than Ω n the equlbru state wth bactera K by a actor o Ω Ω J / K total 4 exp exp.8 / e J K 6 he nuber o ps trals over the lete o the nverse: 8 hus the probablty o the event happenng n trals: 6 (# events( probablty o occurrenceo an event

20 r... non-quasstatc copresson. cylnder wth ar ( - K a s copressed (very ast non-quasstatc by a pston (. F x -. Calculate δw δq and. W Q δ δ holds or all processes energy conservaton quasstatc and are welldened or any nteredate state quasstatc adabatc sentropc non-quasstatc adabatc [ ] J a ( x x x x d const d W δ [ ] d W δ J a he non-quasstatc process results n a hgher and a greater entropy o the nal state. const along the sentropc lne * δq or both Cauton: or non-quasstatc adabatc processes ght be non-zero!!! n exaple o a non-quasstatc adabatc process

21 Drect approach: adabatc quasstatc sentropc δ Q ( ( / const δ W / adabatc non-quasstatc - a K - J/K W J a - J

22 δ Q J o calculate we can consder any quasstatc process that would brng the gas nto the nal state ( s a state uncton. For exaple along the red lne that concdes wth the adabat and then shoots straght up. Let s neglect sall varatons o along ths path ( << so t won t be a bg stae to assue const: δ Q J J (adabata J/ K K Q J otal gan o entropy: he entropy s created because t s an rreversble non-quasstatc copresson. For any quas-statc path ro to we ust have the sae. Let s tae another path along the sother and then straght up: sother: ( d - - x a x K straght up : Q J J / K K J / K J / K J / K d J / K

23 he nverse process sudden expanson o an deal gas ( also generates entropy (adabatc but not quasstatc. ether heat nor wor s transerred: δw δq (we assue the whole process occurs rapdly enough so that no heat lows n through the walls. ecause s unchanged o the deal gas s unchanged. he nal state s dentcal wth the state that results ro a reversble sotheral expanson wth the gas n theral equlbru wth a reservor. he wor done on the gas n the reversble expanson ro volue to : δw rev he wor done on the gas s negatve the gas does postve wor on the pston n an aount equal to the heat transer nto the syste Q rev W rev Qrev Wrev x > x J/K hus by gong we wll ncrease the gas entropy by J/K

Fermi-Dirac statistics

Fermi-Dirac statistics UCC/Physcs/MK/EM/October 8, 205 Fer-Drac statstcs Fer-Drac dstrbuton Matter partcles that are eleentary ostly have a type of angular oentu called spn. hese partcles are known to have a agnetc oent whch

More information

Physical Chemistry I for Biochemists. Lecture 18 (2/23/11) Announcement

Physical Chemistry I for Biochemists. Lecture 18 (2/23/11) Announcement Physcal Chestry I or Bochests Che34 Lecture 18 (2/23/11) Yoshtaka Ish Ch5.8-5.11 & HW6 Revew o Ch. 5 or Quz 2 Announceent Quz 2 has a slar orat wth Quz1. e s the sae. ~2 ns. Answer or HW5 wll be uploaded

More information

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A.

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Chapter 3 Gas Mxtures Study Gude n PowerPont to accopany Therodynacs: An Engneerng Approach, 5th edton by Yunus A. Çengel and Mchael A. Boles The dscussons n ths chapter are restrcted to nonreactve deal-gas

More information

Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics *

Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics * tudy of the possblty of elnatng the Gbbs paradox wthn the fraework of classcal therodynacs * V. Ihnatovych Departent of Phlosophy, Natonal echncal Unversty of Ukrane Kyv Polytechnc Insttute, Kyv, Ukrane

More information

Physics 123. Exam #1. October 11, 2006

Physics 123. Exam #1. October 11, 2006 hyscs Exa # October, 006 roble /0 roble /0 roble /0 roble 4 /0 roble 5 /0 roble 6 /0 roble 7 /0 roble 8 /0 roble 9 /0 roble 0 /0 Total /00 Free-Response robles: lease show all work n order to receve partal

More information

Chapter 12 Lyes KADEM [Thermodynamics II] 2007

Chapter 12 Lyes KADEM [Thermodynamics II] 2007 Chapter 2 Lyes KDEM [Therodynacs II] 2007 Gas Mxtures In ths chapter we wll develop ethods for deternng therodynac propertes of a xture n order to apply the frst law to systes nvolvng xtures. Ths wll be

More information

Chapter One Mixture of Ideal Gases

Chapter One Mixture of Ideal Gases herodynacs II AA Chapter One Mxture of Ideal Gases. Coposton of a Gas Mxture: Mass and Mole Fractons o deterne the propertes of a xture, we need to now the coposton of the xture as well as the propertes

More information

Physic 231 Lecture 14

Physic 231 Lecture 14 Physc 3 Lecture 4 Man ponts o last lecture: Ipulses: orces that last only a short te Moentu p Ipulse-Moentu theore F t p ( ) Ipulse-Moentu theore ptot, p, p, p, p, ptot, Moentu and external orces F p ext

More information

total If no external forces act, the total linear momentum of the system is conserved. This occurs in collisions and explosions.

total If no external forces act, the total linear momentum of the system is conserved. This occurs in collisions and explosions. Lesson 0: Collsons, Rotatonal netc Energy, Torque, Center o Graty (Sectons 7.8 Last te we used ewton s second law to deelop the pulse-oentu theore. In words, the theore states that the change n lnear oentu

More information

PHYS 1443 Section 002 Lecture #20

PHYS 1443 Section 002 Lecture #20 PHYS 1443 Secton 002 Lecture #20 Dr. Jae Condtons for Equlbru & Mechancal Equlbru How to Solve Equlbru Probles? A ew Exaples of Mechancal Equlbru Elastc Propertes of Solds Densty and Specfc Gravty lud

More information

Quantum Particle Motion in Physical Space

Quantum Particle Motion in Physical Space Adv. Studes Theor. Phys., Vol. 8, 014, no. 1, 7-34 HIKARI Ltd, www.-hkar.co http://dx.do.org/10.1988/astp.014.311136 Quantu Partcle Moton n Physcal Space A. Yu. Saarn Dept. of Physcs, Saara State Techncal

More information

Chapter 8. Momentum Impulse and Collisions. Analysis of motion: 2 key ideas. Newton s laws of motion. Conservation of Energy

Chapter 8. Momentum Impulse and Collisions. Analysis of motion: 2 key ideas. Newton s laws of motion. Conservation of Energy Chapter 8 Moentu Ipulse and Collsons Analyss o oton: key deas Newton s laws o oton Conseraton o Energy Newton s Laws st Law: An object at rest or traelng n unor oton wll rean at rest or traelng n unor

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 16 Chapter 9 Physcs I 11.06.2013 Lnear oentu. Center of ass. Course webste: http://faculty.ul.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.ul.edu/danylov2013/physcs1fall.htl

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2013

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2013 Lecture 8/8/3 Unversty o Washngton Departent o Chestry Chestry 45/456 Suer Quarter 3 A. The Gbbs-Duhe Equaton Fro Lecture 7 and ro the dscusson n sectons A and B o ths lecture, t s clear that the actvty

More information

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F) EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental

More information

Obtaining U and G based on A above arrow line: )

Obtaining U and G based on A above arrow line: ) Suary or ch,,3,4,5,6,7 (Here soe olar propertes wthout underlne) () he three laws o herodynacs - st law: otal energy o syste (SYS) plus surroundng (SUR) s conserved. - nd law: otal change o entropy o the

More information

Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum

Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum Recall that there was ore to oton than just spee A ore coplete escrpton of oton s the concept of lnear oentu: p v (8.) Beng a prouct of a scalar () an a vector (v), oentu s a vector: p v p y v y p z v

More information

Physics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall

Physics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall Physcs 231 Topc 8: Rotatonal Moton Alex Brown October 21-26 2015 MSU Physcs 231 Fall 2015 1 MSU Physcs 231 Fall 2015 2 MSU Physcs 231 Fall 2015 3 Key Concepts: Rotatonal Moton Rotatonal Kneatcs Equatons

More information

10/2/2003 PHY Lecture 9 1

10/2/2003 PHY Lecture 9 1 Announceents. Exa wll be returned at the end of class. Please rework the exa, to help soldfy your knowledge of ths ateral. (Up to 0 extra cre ponts granted for reworked exa turn n old exa, correctons on

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

Introduction to Statistical Methods

Introduction to Statistical Methods Introducton to Statstcal Methods Physcs 4362, Lecture #3 hermodynamcs Classcal Statstcal Knetc heory Classcal hermodynamcs Macroscopc approach General propertes of the system Macroscopc varables 1 hermodynamc

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 10 - Phase Equilibria and Polymer Blends February 7, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 10 - Phase Equilibria and Polymer Blends February 7, 2001 Checal Engneerng 60/60 Polyer Scence and Engneerng Lecture 0 - Phase Equlbra and Polyer Blends February 7, 00 Therodynacs of Polyer Blends: Part Objectves! To develop the classcal Flory-Huggns theory for

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

The Kinetic Theory of Gases

The Kinetic Theory of Gases he Knetc heory o Gases CHER OULNE Molecular Model o an deal Gas Molar Specc Heat o an deal Gas dabatc rocesses or an deal Gas 4 he Equpartton o Enery he oltzann Dstrbuton Law 6 Dstrbuton o Molecular Speeds

More information

Chapter 5 rd Law of Thermodynamics

Chapter 5 rd Law of Thermodynamics Entropy and the nd and 3 rd Chapter 5 rd Law o hermodynamcs homas Engel, hlp Red Objectves Introduce entropy. Derve the condtons or spontanety. Show how S vares wth the macroscopc varables,, and. Chapter

More information

Thermodynamics Second Law Entropy

Thermodynamics Second Law Entropy Thermodynamcs Second Law Entropy Lana Sherdan De Anza College May 8, 2018 Last tme the Boltzmann dstrbuton (dstrbuton of energes) the Maxwell-Boltzmann dstrbuton (dstrbuton of speeds) the Second Law of

More information

Final Exam Solutions, 1998

Final Exam Solutions, 1998 58.439 Fnal Exa Solutons, 1998 roble 1 art a: Equlbru eans that the therodynac potental of a consttuent s the sae everywhere n a syste. An exaple s the Nernst potental. If the potental across a ebrane

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

How does the momentum before an elastic and an inelastic collision compare to the momentum after the collision?

How does the momentum before an elastic and an inelastic collision compare to the momentum after the collision? Experent 9 Conseraton o Lnear Moentu - Collsons In ths experent you wll be ntroduced to the denton o lnear oentu. You wll learn the derence between an elastc and an nelastc collson. You wll explore how

More information

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy.

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy. Elastc Collsons Defnton: to pont asses on hch no external forces act collde thout losng any energy v Prerequstes: θ θ collsons n one denson conservaton of oentu and energy occurs frequently n everyday

More information

Class: Life-Science Subject: Physics

Class: Life-Science Subject: Physics Class: Lfe-Scence Subject: Physcs Frst year (6 pts): Graphc desgn of an energy exchange A partcle (B) of ass =g oves on an nclned plane of an nclned angle α = 3 relatve to the horzontal. We want to study

More information

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale.

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale. Chapters 18 & 19: Themodynamcs revew ll macroscopc (.e., human scale) quanttes must ultmately be explaned on the mcroscopc scale. Chapter 18: Thermodynamcs Thermodynamcs s the study o the thermal energy

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

Review of Classical Thermodynamics

Review of Classical Thermodynamics Revew of Classcal hermodynamcs Physcs 4362, Lecture #1, 2 Syllabus What s hermodynamcs? 1 [A law] s more mpressve the greater the smplcty of ts premses, the more dfferent are the knds of thngs t relates,

More information

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by ES 5 (phy 40). a) Wrte the zeroth law o thermodynamcs. b) What s thermal conductvty? c) Identyng all es, draw schematcally a P dagram o the arnot cycle. d) What s the ecency o an engne and what s the coecent

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Lecture 2. 1/07/15-1/09/15 Unversty of Washngton Department of Chemstry Chemstry 453 Wnter Quarter 2015 We are not talkng about truth. We are talkng about somethng that seems lke truth. The truth we want

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

Thermodynamics and Gases

Thermodynamics and Gases hermodynamcs and Gases Last tme Knetc heory o Gases or smple (monatomc) gases Atomc nature o matter Demonstrate deal gas law Atomc knetc energy nternal energy Mean ree path and velocty dstrbutons From

More information

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e. SSTEM MODELLIN In order to solve a control syste proble, the descrptons of the syste and ts coponents ust be put nto a for sutable for analyss and evaluaton. The followng ethods can be used to odel physcal

More information

> To construct a potential representation of E and B, you need a vector potential A r, t scalar potential ϕ ( F,t).

> To construct a potential representation of E and B, you need a vector potential A r, t scalar potential ϕ ( F,t). MIT Departent of Chestry p. 54 5.74, Sprng 4: Introductory Quantu Mechancs II Instructor: Prof. Andre Tokakoff Interacton of Lght wth Matter We want to derve a Haltonan that we can use to descrbe the nteracton

More information

THERMODYNAMICS of COMBUSTION

THERMODYNAMICS of COMBUSTION Internal Cobuston Engnes MAK 493E THERMODYNAMICS of COMBUSTION Prof.Dr. Ce Soruşbay Istanbul Techncal Unversty Internal Cobuston Engnes MAK 493E Therodynacs of Cobuston Introducton Proertes of xtures Cobuston

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Physics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall

Physics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall Physcs 231 Topc 8: Rotatonal Moton Alex Brown October 21-26 2015 MSU Physcs 231 Fall 2015 1 MSU Physcs 231 Fall 2015 2 MSU Physcs 231 Fall 2015 3 Key Concepts: Rotatonal Moton Rotatonal Kneatcs Equatons

More information

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump Introducton to Terodynacs, Lecture -5 Pro. G. Cccarell (0 Applcaton o Control olue Energy Analyss Most terodynac devces consst o a seres o coponents operatng n a cycle, e.g., stea power plant Man coponents

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

STATISTICAL MECHANICAL ENSEMBLES 1 MICROSCOPIC AND MACROSCOPIC VARIABLES PHASE SPACE ENSEMBLES. CHE 524 A. Panagiotopoulos 1

STATISTICAL MECHANICAL ENSEMBLES 1 MICROSCOPIC AND MACROSCOPIC VARIABLES PHASE SPACE ENSEMBLES. CHE 524 A. Panagiotopoulos 1 CHE 54 A. Panagotopoulos STATSTCAL MECHACAL ESEMBLES MCROSCOPC AD MACROSCOPC ARABLES The central queston n Statstcal Mechancs can be phrased as follows: f partcles (atoms, molecules, electrons, nucle,

More information

and Statistical Mechanics Material Properties

and Statistical Mechanics Material Properties Statstcal Mechancs and Materal Propertes By Kuno TAKAHASHI Tokyo Insttute of Technology, Tokyo 15-855, JAPA Phone/Fax +81-3-5734-3915 takahak@de.ttech.ac.jp http://www.de.ttech.ac.jp/~kt-lab/ Only for

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Statistical mechanics handout 4

Statistical mechanics handout 4 Statstcal mechancs handout 4 Explan dfference between phase space and an. Ensembles As dscussed n handout three atoms n any physcal system can adopt any one of a large number of mcorstates. For a quantum

More information

Lecture 09 Systems of Particles and Conservation of Linear Momentum

Lecture 09 Systems of Particles and Conservation of Linear Momentum Lecture 09 Systes o Partcles and Conseraton o Lnear oentu 9. Lnear oentu and Its Conseraton 9. Isolated Syste lnear oentu: P F dp dt d( dt d dt a solated syste F ext 0 dp dp F, F dt dt dp dp d F F 0, 0

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Devce Applcatons Class 9 Group Theory For Crystals Dee Dagram Radatve Transton Probablty Wgner-Ecart Theorem Selecton Rule Dee Dagram Expermentally determned energy

More information

General Formulas applicable to ALL processes in an Ideal Gas:

General Formulas applicable to ALL processes in an Ideal Gas: Calormetrc calculatons: dq mcd or dq ncd ( specc heat) Q ml ( latent heat) General Formulas applcable to ALL processes n an Ideal Gas: P nr du dq dw dw Pd du nc d C R ( monoatomc) C C R P Specc Processes:

More information

PES 2130 Fall 2014, Spendier Lecture 7/Page 1

PES 2130 Fall 2014, Spendier Lecture 7/Page 1 PES 2130 Fall 2014, Spender Lecture 7/Page 1 Lecture today: Chapter 20 (ncluded n exam 1) 1) Entropy 2) Second Law o hermodynamcs 3) Statstcal Vew o Entropy Announcements: Next week Wednesday Exam 1! -

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

EXAMPLES of THEORETICAL PROBLEMS in the COURSE MMV031 HEAT TRANSFER, version 2017

EXAMPLES of THEORETICAL PROBLEMS in the COURSE MMV031 HEAT TRANSFER, version 2017 EXAMPLES of THEORETICAL PROBLEMS n the COURSE MMV03 HEAT TRANSFER, verson 207 a) What s eant by sotropc ateral? b) What s eant by hoogeneous ateral? 2 Defne the theral dffusvty and gve the unts for the

More information

Homework Chapter 21 Solutions!!

Homework Chapter 21 Solutions!! Homework Chapter 1 Solutons 1.7 1.13 1.17 1.19 1.6 1.33 1.45 1.51 1.71 page 1 Problem 1.7 A mole sample of oxygen gas s confned to a 5 lter vessel at a pressure of 8 atm. Fnd the average translatonal knetc

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

Solutions for Homework #9

Solutions for Homework #9 Solutons for Hoewor #9 PROBEM. (P. 3 on page 379 n the note) Consder a sprng ounted rgd bar of total ass and length, to whch an addtonal ass s luped at the rghtost end. he syste has no dapng. Fnd the natural

More information

5/24/2007 Collisions ( F.Robilliard) 1

5/24/2007 Collisions ( F.Robilliard) 1 5/4/007 Collsons ( F.Robllard) 1 Interactons: In our earler studes o orce and work, we saw, that both these quanttes arse n the context o an nteracton between two bodes. We wll now look ore closely at

More information

Thermodynamics and statistical mechanics in materials modelling II

Thermodynamics and statistical mechanics in materials modelling II Course MP3 Lecture 8/11/006 (JAE) Course MP3 Lecture 8/11/006 Thermodynamcs and statstcal mechancs n materals modellng II A bref résumé of the physcal concepts used n materals modellng Dr James Ellott.1

More information

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = "J j. k i.

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = J j. k i. Suppleentary Materal Dervaton of Eq. 1a. Assue j s a functon of the rate constants for the N coponent reactons: j j (k 1,,..., k,..., k N ( The dervatve wth respect to teperature T s calculated by usng

More information

Force = F Piston area = A

Force = F Piston area = A CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

ESCI 341 Atmospheric Thermodynamics Lesson 6 Thermodynamic Processes

ESCI 341 Atmospheric Thermodynamics Lesson 6 Thermodynamic Processes ESCI 341 Atmosherc Thermodynamcs Lesson 6 Thermodynamc Processes Reerences: An Introducton to Atmosherc Thermodynamcs, Tsons Introducton to Theoretcal Meteorology, Hess Physcal Chemstry (4 th edton), Lene

More information

Momentum and Collisions. Rosendo Physics 12-B

Momentum and Collisions. Rosendo Physics 12-B Moentu and Collsons Rosendo Physcs -B Conseraton o Energy Moentu Ipulse Conseraton o Moentu -D Collsons -D Collsons The Center o Mass Lnear Moentu and Collsons February 7, 08 Conseraton o Energy D E =

More information

Single Variable Optimization

Single Variable Optimization 8/4/07 Course Instructor Dr. Raymond C. Rump Oce: A 337 Phone: (95) 747 6958 E Mal: rcrump@utep.edu Topc 8b Sngle Varable Optmzaton EE 4386/530 Computatonal Methods n EE Outlne Mathematcal Prelmnares Sngle

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

Physics for Scientists and Engineers. Chapter 10 Energy

Physics for Scientists and Engineers. Chapter 10 Energy Physcs or Scentsts and Engneers Chapter 0 Energy Sprng, 008 Ho Jung Pak Introducton to Energy Energy s one o the ost portant concepts n scence although t s not easly dened Eery physcal process that occurs

More information

Lecture 3 Examples and Problems

Lecture 3 Examples and Problems Lecture 3 Examles and Problems Mechancs & thermodynamcs Equartton Frst Law of Thermodynamcs Ideal gases Isothermal and adabatc rocesses Readng: Elements Ch. 1-3 Lecture 3, 1 Wllam Thomson (1824 1907) a.k.a.

More information

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform Ths chapter deals wth chemcal reactons (system) wth lttle or no consderaton on the surroundngs. Chemcal Equlbrum Chapter 6 Spontanety of eactve Mxtures (gases) eactants generatng products would proceed

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

Lecture 20: Noether s Theorem

Lecture 20: Noether s Theorem Lecture 20: Noether s Theorem In our revew of Newtonan Mechancs, we were remnded that some quanttes (energy, lnear momentum, and angular momentum) are conserved That s, they are constant f no external

More information

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

#64. ΔS for Isothermal Mixing of Ideal Gases

#64. ΔS for Isothermal Mixing of Ideal Gases #64 Carnot Heat Engne ΔS for Isothermal Mxng of Ideal Gases ds = S dt + S T V V S = P V T T V PV = nrt, P T ds = v T = nr V dv V nr V V = nrln V V = - nrln V V ΔS ΔS ΔS for Isothermal Mxng for Ideal Gases

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Chapter 8. Linear Momentum, Impulse, and Collisions

Chapter 8. Linear Momentum, Impulse, and Collisions Chapte 8 Lnea oentu, Ipulse, and Collsons 8. Lnea oentu and Ipulse The lnea oentu p of a patcle of ass ovng wth velocty v s defned as: p " v ote that p s a vecto that ponts n the sae decton as the velocty

More information

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

The non-negativity of probabilities and the collapse of state

The non-negativity of probabilities and the collapse of state The non-negatvty of probabltes and the collapse of state Slobodan Prvanovć Insttute of Physcs, P.O. Box 57, 11080 Belgrade, Serba Abstract The dynamcal equaton, beng the combnaton of Schrödnger and Louvlle

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 12 7/25/14 ERD: 7.1-7.5 Devoe: 8.1.1-8.1.2, 8.2.1-8.2.3, 8.4.1-8.4.3 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 2014 A. Free Energy and Changes n Composton: The

More information

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6.

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6. r. 6.5-.7 (.) Rest Mass,ork by Changng orces Columba Rep 3pm, here RE 6.b (last day to drop) ed. 6.8-.9(.8,.9) Introducng Potental Energy RE 6.c Tues. H6: Ch 6 Pr s 58,59, 99(a-c), 05(a-c) moton s nether

More information

Momentum. Momentum. Impulse. Momentum and Collisions

Momentum. Momentum. Impulse. Momentum and Collisions Momentum Momentum and Collsons From Newton s laws: orce must be present to change an object s elocty (speed and/or drecton) Wsh to consder eects o collsons and correspondng change n elocty Gol ball ntally

More information

Irreversible Work of Separation and Heat-Driven Separation

Irreversible Work of Separation and Heat-Driven Separation J. Phys. Che. B 004, 08, 6035-604 6035 Irreversble Wor of Separaton and Heat-Drven Separaton Anatoly M. Tsrln and Vladr Kazaov*, Progra Syste Insttute, Russan Acadey of Scence, set. Botc, PerejaslaVl-Zalesy,

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 16 8/4/14 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 214. Real Vapors and Fugacty Henry s Law accounts or the propertes o extremely dlute soluton. s shown n Fgure

More information

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force.

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force. Unt 5 Work and Energy 5. Work and knetc energy 5. Work - energy theore 5.3 Potenta energy 5.4 Tota energy 5.5 Energy dagra o a ass-sprng syste 5.6 A genera study o the potenta energy curve 5. Work and

More information

Problem Points Score Total 100

Problem Points Score Total 100 Physcs 450 Solutons of Sample Exam I Problem Ponts Score 1 8 15 3 17 4 0 5 0 Total 100 All wor must be shown n order to receve full credt. Wor must be legble and comprehensble wth answers clearly ndcated.

More information

Chapter 21 - The Kinetic Theory of Gases

Chapter 21 - The Kinetic Theory of Gases hapter 1 - he Knetc heory o Gases 1. Δv 8.sn 4. 8.sn 4. m s F Nm. 1 kg.94 N Δ t. s F A 1.7 N m 1.7 a N mv 1.6 Use the equaton descrbng the knetc-theory account or pressure:. hen mv Kav where N nna NA N

More information

Preference and Demand Examples

Preference and Demand Examples Dvson of the Huantes and Socal Scences Preference and Deand Exaples KC Border October, 2002 Revsed Noveber 206 These notes show how to use the Lagrange Karush Kuhn Tucker ultpler theores to solve the proble

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Physics 111: Mechanics Lecture 11

Physics 111: Mechanics Lecture 11 Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

Chapter 7. Potential Energy and Conservation of Energy

Chapter 7. Potential Energy and Conservation of Energy Chapter 7 Potental Energy and Conservaton o Energy 1 Forms o Energy There are many orms o energy, but they can all be put nto two categores Knetc Knetc energy s energy o moton Potental Potental energy

More information