The non-negativity of probabilities and the collapse of state

Size: px
Start display at page:

Download "The non-negativity of probabilities and the collapse of state"

Transcription

1 The non-negatvty of probabltes and the collapse of state Slobodan Prvanovć Insttute of Physcs, P.O. Box 57, Belgrade, Serba Abstract The dynamcal equaton, beng the combnaton of Schrödnger and Louvlle equatons, produces noncausal evoluton when the ntal state of nteractng quantum and classcal mechancal systems s as t s demanded n dscussons regardng the problem of measurement. It s found that state of quantum mechancal system nstantaneously collapses due to the non-negatvty of probabltes. 1 Introducton Quantum and classcal mechancs are causal theores. By ths we mean that durng evolutons, that are governed by dynamcal equatons of these theores, states cannot change ther purtes. (Of course, ths holds only n the cases wth no stochastc terms n the Hamltonan.) However, there are stuatons n whch purty of state can be changed. Ths noncontnuous change happens when quantum system nteracts wth some classcal system. An example of ths s a process of measurement wth a well known reducton - collapse, of state. Theory that unfes quantum and classcal mechancs by descrbng nteracton of classcal and quantum systems has to be based on such dynamcal equaton whch can produce noncausal evolutons. The dynamcal equaton of hybrd systems - quantum and classcal systems n nteracton, whch was frstly ntroduced by Aleksandrov [1], produces noncausal evoluton n a case 1

2 addressng the problem of measurement. More precsely, If the state of quantum system before the measurement s the superposton of the egenstates of measured observable,.e., ψ, and f the apparatus before the measurement s n the state wth sharp values of poston and momentum, then the pure ntal noncorrealted state has to evolve nto some mxed correlated state. The equaton of moton governng ths process s just the combnaton of Schrödnger - von Neumann, and Louvlle equatons. Interestng s that for ths transton only the regular type Hamltonan s needed (that s Hamltonan wth no stochastc terms). On the other hand, mportant role s played by the non-negatvty of states, whch resembles the non-negatvty of probabltes, and ths s what we shall dscuss n ths artcle. In order to nvestgate mentoned non-negatvty of states, we shall ntroduce operator form of classcal mechancs. Our approach to ths problem s very smlar to the one proposed by Sudarshan et al. n [2-4]. 2 Operator form of classcal mechancs The classcal mechancs, n dfference to quantum mechancs, s characterzed by the possblty of smultaneous measurement of both poston and momentum wth vanshng devatons. Due to ths, the algebra representng observables of classcal mechancs has to be the commutatve one. In the drect product of two rgged Hlbert spaces H q H p one can defne commutatve algebra of classcal observables as the algebra (over R) of polynomals of the operators ˆq cm =ˆq Î and ˆp cm = Î ˆp. These operators represent coordnate and momentum of classcal system. States can be defned, lke n standard phase space formulaton, as functons of poston and momentum, whch are now operators. That s, pure states are defned by: δ(ˆq q(t)) δ(ˆp p(t)) = δ(q q(t))δ(p p(t)) q q p p dqdp = = q(t) q(t) p(t) p(t), (1) whle (noncoherent) mxtures are ρ(ˆq cm, ˆp cm,t). These states are postve and Hermtan operators normalzed to δ 2 (0) f ρ(q, p, t) R, ρ(q, p, t) 0and ρ(q, p, t) dq dp = 1. If one calculates the mean values by the Ansatz: f = Trf(ˆq cm, ˆp cm )ρ(ˆq cm, ˆp cm,t), (2) Trρ(ˆq cm, ˆp cm ) 2

3 then f wll be equal to standardly calculated: f = f(q, p)ρ(q, p, t)dqdp. (3) The dynamcal equaton n operator formulaton s defned as: ρ(ˆq cm, ˆp cm,t) = t H(ˆq cm, ˆp cm ) ρ(ˆq cm, ˆp cm,t) ρ(ˆq cm, ˆp cm,t) H(ˆq cm, ˆp cm ). (4) ˆq cm ˆp cm ˆq cm ˆp cm It s obvous that ths form s equvalent to the standard classcal mechancs snce the latter appears through the kernels of the operator formulaton (expressed wth respect to the bass q p ). Let us further remark that ths formulaton of classcal mechancs employs formalsm of standard quantum mechancs. More precsely, the drect product of two rgged Hlbert spacesh q H p used here s the carbon copy of the one used n quantum mechancs when the coordnates of system wth two degrees of freedom are under consderaton. The only dfference comes from the fact that we have neglected non-commutng operators here snce they have no physcal meanng. All other aspects of the formalsm are the same or smlar. Wthout gong nto detals snce t s beyond the scope of ths artcle, t should be stressed that ths holds for all formal problems and respectve solutons as well. 3 Hybrd systems One can use operator form of classcal mechancs n order to analyze the nteracton between classcal and quantum systems. Mathematcal framework s based on drect product of the Hlbert space and two rgged Hlbert spaces (n case when consdered classcal and quantum systems have only one degree of freedom). The frst Hlbert space H qm s as n the standard quantum mechancs, whle the other two are rgged Hlbert spaces that were dscussed n prevous secton. So, for descrpton of so called hybrd systems one uses H qm H q cm Hp cm. The state of the composte system s the statstcal operator ˆρ qm (t) ˆρ cm (t), where the frst one acts n H qm representng the state of quantum 3

4 system and second one acts n Hcm q Hp cm representng the classcal system. The propertes of these operators are as n standard quantum mechancs and as gven n prevous secton. The evoluton of hybrd systems state s governed by the Hamltonan Ĥ = ˆV qm ˆV cm,where: ˆV qm = V qm (ˆq qm, ˆp qm )=V qm (ˆq Î Î, ˆp Î Î), and: ˆV cm = V cm (ˆq cm, ˆp cm )=V cm (Î ˆq Î,Î Î ˆp). Snce t s Hermtan, operator ˆV qm can be dagonalzed n form: v ψ ψ Î Î. Obvously, the operator ˆV cm s dagonal wth respect to the bass q p. The dynamcal equaton for hybrd systems s the generalzaton of Schrödnger and Louvlle equatons or, more precsely, ther combnaton gven by: ˆρ qm (t) ˆρ cm (t) t = 1 h [ ˆV qm, ˆρ qm (t)] ˆρ cm (t) ˆV cm + + ˆρ qm(t) ˆV qm + ˆV qmˆρ qm (t) {ˆV cm, ˆρ cm (t)}, (5) 2 where operator form of the Posson bracket {, } s defned by (4). Smlar equaton appeared n [1,5-7]. There one can fnd detaled dscussons regardng the propertes of there gven dynamcal equatons of hybrd systems. 4 Process of measurement In lterature, an deal quantum measurement s consdered as nteracton between the quantum system, descrbed by the state ψ(t) n a Hlbert space H qm, and the measurng apparatus - classcal system, ntally n the state φ(t o ). The measurement process s such that: a.) the quantum system, before the measurement beng n one of the egenstates of the measured observable, say ψ (t o ), does not change the state durng the measurement (repeated measurement has to gve the same results ) and b.) the classcal system undergoes transton from ntal state φ(t o ) to φ (t). Ths 4

5 transton enables one to fnd out what s the state of measured quantum mechancal system. The problem of the measurement s the followng: f the ntal state of the quantum system was superposton of the egenstates of measured observable, that s f ψ(t o ) = c ψ (t o ), then, due to assumed lnearty of the evoluton, the state of the composte system would be ψ(t) = c ψ (t) φ (t), whch s n contradcton wth the obvous fact that classcal system cannot be n superposed states. Many other processes can be related to ths one n more or less straghtforward manner. Wthn the operator formulaton of the classcal mechancs and hybrd systems, the process of measurement can be descrbed as follows. The ntal state: ˆρ qm (t o ) ˆρ cm (t o )= c c j ψ (t o ) ψ j (t o ) q(t o ) q(t o ) p(t o ) p(t o ), j (6) evolves accordng to the dynamcal equaton (5) where ˆV qm s the measured observable. The last term on the RHS of (5), due to whch ˆρ cm (t) depends on ˆρ qm (t), n ths case becomes: j v + v j c c j 2 ψ (t) ψ j (t) {ˆV cm, ˆρ cm (t)}. Ths term suggests that correlated state can be assumed n the form of: c c j ψ (t) ψ j (t) q j (t) q j (t) p j (t) p j (t). (7) j But, such operator, despte of beng the soluton of (5), s not non-negatve one,. e., some events would have negatve probabltes f ths operator s taken as the state of composte system. The only meanngful soluton of dynamcal equaton s: c 2 ψ ψ q (t) q (t) p (t) p (t). (8) Ths operator s Hermtan and postve one. 5

6 5 Dscusson The ntal state of hybrd systems (6) s dempotent (up to the norm) whle the evolved state n consdered case (8) s not. Thus, n the absence of some ad hoc ntroduced stochastc terms n the Hamltonan and/or nonlnear terms n the equaton of moton, ths equaton produces noncausal evoluton: the ntal noncorrelated pure state evolves n mxed correlated state. From the evolved state t follows that to each state of the measured quantum system ψ (whch s the egenstate of the measured observable), there corresponds one state of the measurng apparatus (wth sharp values of poston and momentum) q (t) p (t) and each of these states happens wth the probablty c (t o ) 2. Consequently, soluton (8) s n agreement wth the projecton postulate of orthodox quantum mechancs. The formal descrpton of the collapse of quantum mechancal state could be the followng. Intal state of the hybrd system should be seen as c j (t) ψ ψ j q (t) q j (t) p (t) p j (t) j for t = t o snce ths correlated state s desgned to be as pure, Hermtan and non-negatve for t t o as s the ntal one. The partal dervatons wthn the Posson bracket on the rght hand sde of the dynamcal equaton, whch s the generator of tme transformaton, for t>t o annhlate nondagonal classcal mechancal terms of the state accordng to ˆq q (t) q j (t) = ˆq δ(ˆq q (t)) δ,j, ˆp p (t) p j (t) = ˆp δ(ˆp p (t)) δ,j, snce the classcal mechancal j terms of desgned state for t>t o do not commute wth coordnate and momentum of the classcal system, the meanng of whch s that they are not functons of the only avalable observables. For t = t o these dervatves do not vansh snce q (t o )=q o and p (t o )=p o for all. Ths means that dynamcal equaton nstantaneously changes j terms of classcal mechancal state at t o and then forbds further tme evoluton of these terms,. e., these terms become constant. Snce there s no other possblty for the state of hybrd system to be non-negatve operator, 6

7 j terms of classcal mechancal state has to vansh n order to be tme ndependent and, n ths way, they annhlate j terms of quantum mechancal state. Ths s seen as the collapse of state of quantum mechancal system. Smlar reasonng holds n some other cases of the nteracton between classcal and quantum systems. The pure ntal states can evolve n noncoherent mxtures, whle noncoherent mxtures cannot evolve nto coherent mxtures (pure states),. e. the process s rreversble. Therefore, the entropy ncreases or stays constant as the consequence of the superposton of two lnear dynamcal equatons and the non-negatvty of probablty. References [1] I. V. Aleksandrov, Zet. Nat., 36a, (1981), 902 [2] T. N. Shery and E. C. G. Sudarshan, Phys. Rev., 13D, (1978) 4580 [3] T. N. Shery and E. C. G. Sudarshan, Phys. Rev., 20D, (1979) 857 [4] S.R.Gautamet al., Phys. Rev., 20D, (1979) 3081 [5] W. Boucher and J. Trashen, Phys. Rev., 37D, (1988) 3522 [6] O.V.PrezhdoandV.V.Ksl,Phys.Rev.,56A, (1997) 162 [7] A. Anderson, Phys. Rev. Lett., 74, (1995) 621 7

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

Density matrix. c α (t)φ α (q)

Density matrix. c α (t)φ α (q) Densty matrx Note: ths s supplementary materal. I strongly recommend that you read t for your own nterest. I beleve t wll help wth understandng the quantum ensembles, but t s not necessary to know t n

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors:

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors: MACQUARIE UNIVERSITY Department of Physcs Dvson of ICS Phys304 Quantum Physcs II (2005) Quantum Mechancs Summary The followng defntons and concepts set up the basc mathematcal language used n quantum mechancs,

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

2. Postulates of Quantum Mechanics. [Last revised: Friday 7 th December, 2018, 21:27]

2. Postulates of Quantum Mechanics. [Last revised: Friday 7 th December, 2018, 21:27] 2. Postulates of Quantum Mechancs [Last revsed: Frday 7 th December, 2018, 21:27] 24 States and physcal systems In the prevous chapter, wth the help of the Stern-Gerlach experment, we have shown the falure

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Einstein-Podolsky-Rosen Paradox

Einstein-Podolsky-Rosen Paradox H 45 Quantum Measurement and Spn Wnter 003 Ensten-odolsky-Rosen aradox The Ensten-odolsky-Rosen aradox s a gedanken experment desgned to show that quantum mechancs s an ncomplete descrpton of realty. The

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY CIPRIAN ACATRINEI Natonal Insttute of Nuclear Physcs and Engneerng P.O. Box MG-6, 07725-Bucharest, Romana E-mal: acatrne@theory.npne.ro. Receved March 6, 2008

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

10. Canonical Transformations Michael Fowler

10. Canonical Transformations Michael Fowler 10. Canoncal Transformatons Mchael Fowler Pont Transformatons It s clear that Lagrange s equatons are correct for any reasonable choce of parameters labelng the system confguraton. Let s call our frst

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Chap 5. Dynamics in Condensed Phases

Chap 5. Dynamics in Condensed Phases PG/KA/Chap 5-1 Chap 5. Dynamcs n Condensed Phases Generalzed Langevn Equaton Phenomenologcal ntroducton m v = m Γ(t τ)v(τ)dτ + R(t) Γ(t) : frcton kernel frcton depends on the past ( = memory effect : delayed

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0 Quantum Mechancs, Advanced Course FMFN/FYSN7 Solutons Sheet Soluton. Lets denote the two operators by  and ˆB, the set of egenstates by { u }, and the egenvalues as  u = a u and ˆB u = b u. Snce the

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields EJTP 6, No. 0 009) 43 56 Electronc Journal of Theoretcal Physcs Non-nteractng Spn-1/ Partcles n Non-commutng External Magnetc Felds Kunle Adegoke Physcs Department, Obafem Awolowo Unversty, Ile-Ife, Ngera

More information

Lecture 20: Noether s Theorem

Lecture 20: Noether s Theorem Lecture 20: Noether s Theorem In our revew of Newtonan Mechancs, we were remnded that some quanttes (energy, lnear momentum, and angular momentum) are conserved That s, they are constant f no external

More information

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed (2) 4 48 Irregular vbratons n mult-mass dscrete-contnuous systems torsonally deformed Abstract In the paper rregular vbratons of dscrete-contnuous systems consstng of an arbtrary number rgd bodes connected

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Now that we have laws or better postulates we should explore what they imply

Now that we have laws or better postulates we should explore what they imply I-1 Theorems from Postulates: Now that we have laws or better postulates we should explore what they mply about workng q.m. problems -- Theorems (Levne 7.2, 7.4) Thm 1 -- egen values of Hermtan operators

More information

Time-Varying Systems and Computations Lecture 6

Time-Varying Systems and Computations Lecture 6 Tme-Varyng Systems and Computatons Lecture 6 Klaus Depold 14. Januar 2014 The Kalman Flter The Kalman estmaton flter attempts to estmate the actual state of an unknown dscrete dynamcal system, gven nosy

More information

The Dirac Equation for a One-electron atom. In this section we will derive the Dirac equation for a one-electron atom.

The Dirac Equation for a One-electron atom. In this section we will derive the Dirac equation for a one-electron atom. The Drac Equaton for a One-electron atom In ths secton we wll derve the Drac equaton for a one-electron atom. Accordng to Ensten the energy of a artcle wth rest mass m movng wth a velocty V s gven by E

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Dynamical Systems and Information Theory

Dynamical Systems and Information Theory Dynamcal Systems and Informaton Theory Informaton Theory Lecture 4 Let s consder systems that evolve wth tme x F ( x, x, x,... That s, systems that can be descrbed as the evoluton of a set of state varables

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Lagrangian Field Theory

Lagrangian Field Theory Lagrangan Feld Theory Adam Lott PHY 391 Aprl 6, 017 1 Introducton Ths paper s a summary of Chapter of Mandl and Shaw s Quantum Feld Theory [1]. The frst thng to do s to fx the notaton. For the most part,

More information

Lecture Notes 7: The Unruh Effect

Lecture Notes 7: The Unruh Effect Quantum Feld Theory for Leg Spnners 17/1/11 Lecture Notes 7: The Unruh Effect Lecturer: Prakash Panangaden Scrbe: Shane Mansfeld 1 Defnng the Vacuum Recall from the last lecture that choosng a complex

More information

Errors in Nobel Prize for Physics (7) Improper Schrodinger Equation and Dirac Equation

Errors in Nobel Prize for Physics (7) Improper Schrodinger Equation and Dirac Equation Errors n Nobel Prze for Physcs (7) Improper Schrodnger Equaton and Drac Equaton u Yuhua (CNOOC Research Insttute, E-mal:fuyh945@sna.com) Abstract: One of the reasons for 933 Nobel Prze for physcs s for

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., 4() (03), pp. 5-30 Internatonal Journal of Pure and Appled Scences and Technology ISSN 9-607 Avalable onlne at www.jopaasat.n Research Paper Schrödnger State Space Matrx

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

1 Rabi oscillations. Physical Chemistry V Solution II 8 March 2013

1 Rabi oscillations. Physical Chemistry V Solution II 8 March 2013 Physcal Chemstry V Soluton II 8 March 013 1 Rab oscllatons a The key to ths part of the exercse s correctly substtutng c = b e ωt. You wll need the followng equatons: b = c e ωt 1 db dc = dt dt ωc e ωt.

More information

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11) Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

More information

An Inequality for the trace of matrix products, using absolute values

An Inequality for the trace of matrix products, using absolute values arxv:1106.6189v2 [math-ph] 1 Sep 2011 An Inequalty for the trace of matrx products, usng absolute values Bernhard Baumgartner 1 Fakultät für Physk, Unverstät Wen Boltzmanngasse 5, A-1090 Venna, Austra

More information

THE THEORY OF MEASUREMENT IN WAVE MECHANICS

THE THEORY OF MEASUREMENT IN WAVE MECHANICS THE GREAT PROBLEMS OF SCIENCE WORKS COLLECTED BY MME. P. FÉVRIER VII THE THEORY OF MEASUREMENT IN WAVE MECHANICS (USUAL INTERPRETATION AND CAUSAL INTERPRETATION) BY Lous de BROGLIE of the French Academy

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 22 Canoncal Transformatons (Chater 9) What We Dd Last Tme Drect Condtons Q j Q j = = j P, Q, P j, P Q, P Necessary and suffcent P j P j for Canoncal Transf. = = j Q, Q, P j

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

Solutions to Chapter 1 exercises

Solutions to Chapter 1 exercises Appendx S Solutons to Chapter exercses Soluton to Exercse.. Usng the result of Ex. A.5, we wrte don t forget the complex conjugaton where approprate! ψ ψ N alve ψ dead ψ N 4alve alve + alve dead dead alve

More information

1 Vectors over the complex numbers

1 Vectors over the complex numbers Vectors for quantum mechancs 1 D. E. Soper 2 Unversty of Oregon 5 October 2011 I offer here some background for Chapter 1 of J. J. Sakura, Modern Quantum Mechancs. 1 Vectors over the complex numbers What

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Analytical classical dynamics

Analytical classical dynamics Analytcal classcal ynamcs by Youun Hu Insttute of plasma physcs, Chnese Acaemy of Scences Emal: yhu@pp.cas.cn Abstract These notes were ntally wrtten when I rea tzpatrck s book[] an were later revse to

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Solution Thermodynamics

Solution Thermodynamics Soluton hermodynamcs usng Wagner Notaton by Stanley. Howard Department of aterals and etallurgcal Engneerng South Dakota School of nes and echnology Rapd Cty, SD 57701 January 7, 001 Soluton hermodynamcs

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

Bayesian predictive Configural Frequency Analysis

Bayesian predictive Configural Frequency Analysis Psychologcal Test and Assessment Modelng, Volume 54, 2012 (3), 285-292 Bayesan predctve Confgural Frequency Analyss Eduardo Gutérrez-Peña 1 Abstract Confgural Frequency Analyss s a method for cell-wse

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods Appled Mathematcal Scences, Vol. 11, 2017, no. 52, 2579-2586 HIKARI Ltd, www.m-hkar.com https://do.org/10.12988/ams.2017.79280 A Soluton of the Harry-Dym Equaton Usng Lattce-Boltzmannn and a Soltary Wave

More information

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0 Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy Comparatve Studes of Law of Conservaton of Energy and Law Clusters of Conservaton of Generalzed Energy No.3 of Comparatve Physcs Seres Papers Fu Yuhua (CNOOC Research Insttute, E-mal:fuyh1945@sna.com)

More information

Quantum Particle Motion in Physical Space

Quantum Particle Motion in Physical Space Adv. Studes Theor. Phys., Vol. 8, 014, no. 1, 7-34 HIKARI Ltd, www.-hkar.co http://dx.do.org/10.1988/astp.014.311136 Quantu Partcle Moton n Physcal Space A. Yu. Saarn Dept. of Physcs, Saara State Techncal

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

Quantum Statistical Mechanics

Quantum Statistical Mechanics Chapter 8 Quantum Statstcal Mechancs 8.1 Mcrostates For a collecton of N partcles the classcal mcrostate of the system s unquely specfed by a vector (q, p) (q 1...q N, p 1...p 3N )(q 1...q 3N,p 1...p 3N

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION do: 0.08/nature09 I. Resonant absorpton of XUV pulses n Kr + usng the reduced densty matrx approach The quantum beats nvestgated n ths paper are the result of nterference between two exctaton paths of

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

The internal structure of natural numbers and one method for the definition of large prime numbers

The internal structure of natural numbers and one method for the definition of large prime numbers The nternal structure of natural numbers and one method for the defnton of large prme numbers Emmanul Manousos APM Insttute for the Advancement of Physcs and Mathematcs 3 Poulou str. 53 Athens Greece Abstract

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

On a direct solver for linear least squares problems

On a direct solver for linear least squares problems ISSN 2066-6594 Ann. Acad. Rom. Sc. Ser. Math. Appl. Vol. 8, No. 2/2016 On a drect solver for lnear least squares problems Constantn Popa Abstract The Null Space (NS) algorthm s a drect solver for lnear

More information

Lecture Note 3. Eshelby s Inclusion II

Lecture Note 3. Eshelby s Inclusion II ME340B Elastcty of Mcroscopc Structures Stanford Unversty Wnter 004 Lecture Note 3. Eshelby s Incluson II Chrs Wenberger and We Ca c All rghts reserved January 6, 004 Contents 1 Incluson energy n an nfnte

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Devce Applcatons Class 9 Group Theory For Crystals Dee Dagram Radatve Transton Probablty Wgner-Ecart Theorem Selecton Rule Dee Dagram Expermentally determned energy

More information

A Pursuit Problem Described by Infinite System of Differential Equations with Coordinate-Wise Integral Constraints on Control Functions

A Pursuit Problem Described by Infinite System of Differential Equations with Coordinate-Wise Integral Constraints on Control Functions Malaysan Journal of Mathematcal Scences 9(1): 67-76 (15) MALAYSIAN JOURNAL OF MAHEMAICAL SCIENCES Journal homepage: http://enspem.upm.edu.my/journal A Pursut Problem Descrbed by Infnte System of Dfferental

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Chapter 4 The Wave Equation

Chapter 4 The Wave Equation Chapter 4 The Wave Equaton Another classcal example of a hyperbolc PDE s a wave equaton. The wave equaton s a second-order lnear hyperbolc PDE that descrbes the propagaton of a varety of waves, such as

More information

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0 Bezer curves Mchael S. Floater August 25, 211 These notes provde an ntroducton to Bezer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of the

More information

Explicit constructions of all separable two-qubits density matrices and related problems for three-qubits systems

Explicit constructions of all separable two-qubits density matrices and related problems for three-qubits systems Explct constructons of all separable two-qubts densty matrces and related problems for three-qubts systems Y. en-ryeh and. Mann Physcs Department, Technon-Israel Insttute of Technology, Hafa 2000, Israel

More information

A Local Variational Problem of Second Order for a Class of Optimal Control Problems with Nonsmooth Objective Function

A Local Variational Problem of Second Order for a Class of Optimal Control Problems with Nonsmooth Objective Function A Local Varatonal Problem of Second Order for a Class of Optmal Control Problems wth Nonsmooth Objectve Functon Alexander P. Afanasev Insttute for Informaton Transmsson Problems, Russan Academy of Scences,

More information

On the symmetric character of the thermal conductivity tensor

On the symmetric character of the thermal conductivity tensor On the symmetrc character of the thermal conductvty tensor Al R. Hadjesfandar Department of Mechancal and Aerospace Engneerng Unversty at Buffalo, State Unversty of New York Buffalo, NY 146 USA ah@buffalo.edu

More information

Yukawa Potential and the Propagator Term

Yukawa Potential and the Propagator Term PHY304 Partcle Physcs 4 Dr C N Booth Yukawa Potental an the Propagator Term Conser the electrostatc potental about a charge pont partcle Ths s gven by φ = 0, e whch has the soluton φ = Ths escrbes the

More information

STATISTICAL MECHANICAL ENSEMBLES 1 MICROSCOPIC AND MACROSCOPIC VARIABLES PHASE SPACE ENSEMBLES. CHE 524 A. Panagiotopoulos 1

STATISTICAL MECHANICAL ENSEMBLES 1 MICROSCOPIC AND MACROSCOPIC VARIABLES PHASE SPACE ENSEMBLES. CHE 524 A. Panagiotopoulos 1 CHE 54 A. Panagotopoulos STATSTCAL MECHACAL ESEMBLES MCROSCOPC AD MACROSCOPC ARABLES The central queston n Statstcal Mechancs can be phrased as follows: f partcles (atoms, molecules, electrons, nucle,

More information

Entropic Dynamics: an Inference Approach to Time and Quantum Theory

Entropic Dynamics: an Inference Approach to Time and Quantum Theory Entropc Dynamcs: an Inference Approach to Tme and Quantum Theory Arel Catcha Department of hyscs Unversty at Albany - SUNY EmQM-13 Venna, 10/013 Queston: Do the laws of hyscs reflect Laws of Nature? Or...

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information