Spanning Tree. Preview. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree 10/17/2017.

Size: px
Start display at page:

Download "Spanning Tree. Preview. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree 10/17/2017."

Transcription

1 0//0 Prvw Spnnng Tr Spnnng Tr Mnmum Spnnng Tr Kruskl s Algorthm Prm s Algorthm Corrctnss of Kruskl s Algorthm A spnnng tr T of connctd, undrctd grph G s tr composd of ll th vrtcs nd som (or prhps ll) of th dgs of G. Informlly, spnnng tr of G s slcton of dgs of G tht form tr spnnng vry vrtx. Evry vrtx ls n th tr, but no cycls (or loops) r formd. COSC 0 - Sprng 0 COSC 0 - Sprng 0 Mnmum Spnnng Tr A spnnng tr tht hs mnmum totl wght s clld mnmum spnnng tr for th grph. Tchnclly t s mnmum-wght spnnng tr. If ll dgs hv th sm wght, brdth-frst srch or dpth-frst srch wll yld mnmum spnnng trs. For th rst of ths dscusson, w ssum th dgs hv wghts ssoctd wth thm. Mnmum Spnnng Tr Mnmum-cost spnnng trs hv mny pplctons. Buldng cbl ntworks tht jon n loctons wth mnmum cost. Buldng rod ntwork tht jons n cts wth mnmum cost. Obtnng n ndpndnt st of crcut qutons for n lctrcl ntwork. In pttrn rcognton mnml spnnng trs cn b usd to fnd nosy pxls. COSC 0 - Sprng 0 COSC 0 - Sprng 0 Mnmum Spnnng Tr Consdr ths grph. It hs 0 spnnng trs. Som r: Thr r two mnmumcost spnnng trs, ch wth cost of : COSC 0 - Sprng 0 Mnmum Spnnng Tr Brut Forc opton:. For ll possbl spnnng trs. Clcult th sum of th dg wghts. Kp trck of th tr wth th mnmum wght. Stp () rqurs N- tm, snc ch tr wll hv xctly N- dgs. If thr r M spnnng trs, thn th totl cost wll O(MN). Consdr complt grph wth N(N-) dgs. How bg cn M b? COSC 0 - Sprng 0

2 0//0 Brut Forc MST For complt grph, t hs bn shown tht thr r N N- possbl spnnng trs! Altrntvly, gvn N tms, you cn buld N N- dstnct trs to connct ths tms. Input: connctd undrctd grph G = (V, E) whr for ch dg (u, v) E, w hv wght w(u, v) Output: Fnd n cyclc subst T E tht conncts ll of th vrtcs nd whos totl wght s mnmzd. COSC 0 - Sprng 0 COSC 0 - Sprng 0 Th Mnmum Spnnng Tr lgorthms w wll look t r grdy lgorthms. Grdy lgorthms lwys mk chocs tht look bst t th momnt. Thy mk loclly optml chocs n th hop tht ths chocs wll ld to globlly optml soluton. It s mportnt to not tht grdy lgorthms do not lwys yld optml solutons. COSC 0 - Sprng 0 Kruskl s Algorthm Kruskl s lgorthm Kruskl s lgorthm s grdy lgorthm, bcus t ch stp t dds to th forst n dg of lst possbl wght. Spcfclly, th lgorthm chooss th lowst wght dg tht jons two dsconnctd trs nto sngl tr. COSC 0 - Sprng 0 0 Kruskl s Algorthm Kruskl (G, w) { A = Strt wth forst whr thr r V trs Sort th dgs of E by non-dcrsng wght w. for ch dg (u, v) E, n ordr by ncrsng wght { If u nd v do not blong to th sm tr { A = A {(u, v)} Mk two trs connct wth dg (u, v). } } } Kruskl s Algorthm 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0

3 0//0 Kruskl s Algorthm Kruskl s Algorthm 0 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0 Kruskl s Algorthm Kruskl s Algorthm 0 0 COSC 0 - Sprng 0 5 COSC 0 - Sprng 0 Kruskl s Algorthm Kruskl s Algorthm 0 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0

4 0//0 Kruskl s Algorthm Kruskl s Algorthm 0 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0 0 Kruskl s Algorthm Kruskl s Algorthm 0 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0 Kruskl s Algorthm Kruskl s Algorthm 0 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0

5 0//0 Kruskl s Algorthm Kruskl s Algorthm 0 0 COSC 0 - Sprng 0 5 COSC 0 - Sprng 0 Kruskl s Algorthm Kruskl s Algorthm 0 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0 Kruskl s Algorthm Kruskl s Algorthm 0 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0 0 5

6 0//0 Kruskl s Algorthm Kruskl s Algorthm 0 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0 Kruskl s Algorthm Kruskl s Algorthm 0 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0 Kruskl s Algorthm Kruskl s Algorthm 0 0 COSC 0 - Sprng 0 5 COSC 0 - Sprng 0

7 0//0 Kruskl s Algorthm Kruskl s Algorthm 0 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0 Kruskl s Algorthm (Prm s Algorthm) 0 Prm s lgorthm hs th proprty tht th dgs n th st E lwys form sngl tr. It strts wth ny nod nd xpnds untl th tr spns ll th vrtcs n V. At ch stp, lght dg connctng vrtx n A to vrtx n V-A s ddd to th tr. Ths strtgy s grdy snc n dg wth mnmum mount possbl to th tr s wght s chosn to buld tr. Th ky to mplmntng Prm s lgorthm s to mk t sy to slct nw dg to b ddd to th tr formd by th dgs n A. COSC 0 - Sprng 0 COSC 0 - Sprng 0 0 (Prm s Algorthm) Implmntton of Prm s Algorthm Ech nod u V hs two lmnts: u.ky nd u.prnt. u.ky s usd to fnd out th mnmum possbl conncton to th nod (usng prorty quu, Q) u.prnt s usd for buldng tr. (Prm s Algorthm) Prm(V, E) { Intlz: V nw = {r}, whr r s n rbtrry nod r V, E nw = {} Rpt untl V nw = V { Choos n dg {u, v} wth mnml wght such tht u V nw nd v V - V nw // If thr r multpl dgs wth th sm wght, // ny of thm my b pckd Add v to V nw, nd {(u, v)} to E nw } rturn V nw nd E nw dscrb mnml spnnng tr } COSC 0 - Sprng 0 COSC 0 - Sprng 0

8 0//0 (Prm s Algorthm) (Prm s Algorthm) 0 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0 (Prm s Algorthm) (Prm s Algorthm) 0 0 COSC 0 - Sprng 0 5 COSC 0 - Sprng 0 (Prm s Algorthm) (Prm s Algorthm) 0 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0

9 0//0 (Prm s Algorthm) (Prm s Algorthm) 0 0 COSC 0 - Sprng 0 COSC 0 - Sprng 0 50 (Prm s Algorthm) (Prm s Algorthm) 0 0 COSC 0 - Sprng 0 5 COSC 0 - Sprng 0 5 (Prm s Algorthm) (Prm s Algorthm) 0 0 COSC 0 - Sprng 0 5 COSC 0 - Sprng 0 5

10 0//0 (Prm s Algorthm) (Prm s Algorthm) 0 0 COSC 0 - Sprng 0 55 COSC 0 - Sprng 0 5 (Prm s Algorthm) (Prm s Algorthm) 0 0 COSC 0 - Sprng 0 5 COSC 0 - Sprng 0 5 (Prm s Algorthm) (Prm s Algorthm) Runnng tm of Prm s Algorthm 0 Intlzton nd buldng Hp: O(V) Extrct Mn s O(log V), nd thr r V tms for xtrct mn: O(V log V) Th for loop xcuts O(E) tms, nvstgtng whthr or not n Q tk constnt tm by kp bt mtrx for Q: O(E) Dcrsng ky v.ky = w(u, v) tks O(log V) for djustng prorty quu: O(E log V) COSC 0 - Sprng 0 5 COSC 0 - Sprng 0 0 0

11 0//0 Prm s lgorthm wth n Adjcncy Mtrx A cbl compny wnt to connct fv vllgs to thr ntwork whch currntly xtnds to th mrkt town of Avnford. Wht s th mnmum lngth of cbl ndd? Avnford Brnlgh 5 Fngly 5 Cornwll Donstr Prm s lgorthm wth n Adjcncy Mtrx Not, ths xmpl hs outgong dgs on th columns nd ncomng on th rows, so t s th trnspos of djcncy mtrx mntond n clss. Actully, t s n undrctd, so A T = A. A B C D E F 5 - Edn COSC 0 - Sprng 0 COSC 0 - Sprng 0 Strt t vrtx A. Lbl column A. Dlt row A Slct th smllst ntry n column A (AB, lngth ) Lbl column B Dlt row B Slct th smllst uncovrd ntry n thr column A or column B (AE, lngth ) Avnford Brnlgh A B C D E F 5 - Brnlgh Avnford Edn A B C D E F 5 - COSC 0 - Sprng 0 COSC 0 - Sprng 0 Lbl column E Dlt row E Slct th smllst uncovrd ntry n thr column A, B or E (ED, lngth ) Lbl column D Dlt row D Slct th smllst uncovrd ntry n thr column A, B, D or E (DC, lngth ) Brnlgh Avnford Edn Donstr A B C D E F 5 - Brnlgh Avnford Edn Cornwll Donstr A B C D E F 5 - COSC 0 - Sprng 0 5 COSC 0 - Sprng 0

12 0//0 Lbl column C 5 Dlt row C Slct th smllst uncovrd ntry n thr column A, B, D, E or C (EF, lngth 5) Avnford Brnlgh Fngly 5 Cornwll Donstr 5 A B C D E F 5 - FINALLY Lbl column F Dlt row F Brnlgh Avnford Cornwll Fngly Donstr 5 5 A B C D E F 5 - Edn Edn COSC 0 - Sprng 0 COSC 0 - Sprng 0 FINALLY Avnford Lbl column F Dlt row F Brnlgh Edn Fngly 5 Cornwll Donstr 5 A B C D E F 5 - Th spnnng tr s shown n th dgrm Lngth = Km COSC 0 - Sprng 0 Prctc G B. Fnd th brdth-frst spnnng tr nd dpth-frst spnnng tr of th grph G A shown bov.. For th grph G B shown bov, trc th xcuton of Prm's lgorthm s t fnds th mnmum-cost spnnng tr of th grph strtng from vrtx. COSC 0 - Sprng 0 0 Corrctnss of Mnmum Spnnng tr Corrctnss of MST Algorthm Lt G = (V, E) s undrctd wghtd grph. Kruskul s lgorthm strts wth V forsts nd ultmtly crts mnmum spnnng tr T whch ncluds ll vrtcs n V. Prm s lgorthm strts wth tr wth sngl nod nd vntully bulds mnmum spnnng tr. Both lgorthms us grdy mthods to fnd n dg (u, v) whch s loclly optml. Corrctnss of Mnmum Spnnng tr Algorthm mngs st of dgs A whch s subst of mnmum spnnng tr. For ch trton lgorthm pck n dg (u, v) such tht A { (u, v)} s lso subst of mnmum spnnng tr. W cll such n dg sf dg for A. A cut (S, V S) of undrctd grph G = (V, E) s prtton of V. COSC 0 - Sprng 0 COSC 0 - Sprng 0

13 0//0 Corrctnss of Mnmum Spnnng tr Corrctnss of Mnmum Spnnng tr W sy n dg (u, v) E crosss th cut (S, V S) f on vrtx blongs to S nd othr blongs to V S. W sy cut rspcts st A of dgs f no dgs n A cross th cut. An dg (u, v) s lght dg crossng cut f ts wght w (u, v) s th mnmum of ny dg crossng th cut 0 Lght dg = (c, d) COSC 0 - Sprng 0 COSC 0 - Sprng 0 Corrctnss of Mnmum Spnnng tr Corrctnss of Mnmum Spnnng tr Thorm) Lt G = (V, E) b connctd undrctd grph wth wght w(u, v) for ch (u, v) E. Lt A E whch s prt of mnmum spnnng tr for G. Lt (S, V S) s ny cut of G rspct A. Lt (u, v) b lght dg crossng (S, V S). Thn dg (u, v) s sf for A. Prov) By Contrdcton Lt T b mnmum spnnng tr ncludng A but not lght dg (u, v). Lt s try to buld nothr mnmum spnnng tr T whch ncluds A (u, v) by modfyng T. Snc T s mnmum spnnng tr, thr should b pth from u to v. COSC 0 - Sprng 0 5 COSC 0 - Sprng 0 Corrctnss of Mnmum Spnnng tr Corrctnss of Mnmum Spnnng tr x x u u y v y v Snc u nd v r on oppost sd of cut (S, V S), Thr must t ls on dg (x, y) n T on th pth clos th cut. And lso (x, y) s not n A snc th cut rspct A. If w rmov dg (x, y) from th T. thr r two componnts Addng (u, v) crt nw tr T Snc (u, v) s lght wght dg, w(u, v) w (x, y) Totl wght of nw tr T s w(t ) = w(t) w(x,y) + w(u, v) w(t) If (u, v) s unqu lght wght dg, W(T ) < W(T) contrdcton W cn conclud wth tht dg (u, v) s sf for A. COSC 0 - Sprng 0 COSC 0 - Sprng 0

14 0//0 Corrctnss of Mnmum Spnnng tr Thorm) Prov Mnmum spnnng tr lgorthm crts mnmum spnnng tr. Prov) Kruskul s nd Prm s lgorthms choos n dg (u, v) tht s sf for A for ch trton. And wth lmm MST lgorthm must crt MST. COSC 0 - Sprng 0

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms /3/0 Prvw Grph Grph Rprsntton Grph Srch Algorthms Brdth Frst Srch Corrctnss of BFS Dpth Frst Srch Mnmum Spnnng Tr Kruskl s lgorthm Grph Drctd grph (or dgrph) G = (V, E) V: St of vrt (nod) E: St of dgs

More information

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1)

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1) Conrgnc Thors for Two Itrt Mthods A sttonry trt thod for solng th lnr syst: Ax = b (.) ploys n trton trx B nd constnt ctor c so tht for gn strtng stt x of x for = 2... x Bx c + = +. (.2) For such n trton

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

Lecture II: Minimium Spanning Tree Algorithms

Lecture II: Minimium Spanning Tree Algorithms Ltur II: Mnmum Spnnn Tr Alortms Dr Krn T. Hrly Dprtmnt o Computr Sn Unvrsty Coll Cork Aprl 0 KH (/0/) Ltur II: Mnmum Spnnn Tr Alortms Aprl 0 / 5 Mnmum Spnnn Trs Mnmum Spnnn Trs Spnnn Tr tr orm rom rp s

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list.

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list. 3 3 4 8 6 3 3 4 8 6 3 3 4 8 6 () (d) 3 Sarching Linkd Lists Sarching Linkd Lists Sarching Linkd Lists ssum th list is sortd, but is stord in a linkd list. an w us binary sarch? omparisons? Work? What if

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Rll t nton o spnnn tr: Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Any unrt, onnt rp s spnnn tr. Atully, rp

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk S 445 Shortst Paths n Graphs lon frat Sls courtsy of rk man an arola Wnk Paths n raphs onsr a raph G = (V, ) wth -wht functon w : R. Th wht of path p = v v v k s fn to xampl: k = w ( p) = w( v, v + ).

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Chptr. Intrvl Shulng Gry Algorthms Sls y Kvn Wyn. Copyrght 005 Prson-Ason Wsly. All rghts rsrv. Intrvl Shulng Intrvl Shulng: Gry Algorthms Intrvl shulng. Jo strts t s n fnshs t f. Two os omptl f thy on't

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

8. Linear Contracts under Risk Neutrality

8. Linear Contracts under Risk Neutrality 8. Lnr Contrcts undr Rsk Nutrlty Lnr contrcts r th smplst form of contrcts nd thy r vry populr n pplctons. Thy offr smpl ncntv mchnsm. Exmpls of lnr contrcts r mny: contrctul jont vnturs, quty jont vnturs,

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

(A) the function is an eigenfunction with eigenvalue Physical Chemistry (I) First Quiz

(A) the function is an eigenfunction with eigenvalue Physical Chemistry (I) First Quiz 96- Physcl Chmstry (I) Frst Quz lctron rst mss m 9.9 - klogrm, Plnck constnt h 6.66-4 oul scon Sp of lght c. 8 m/s, lctron volt V.6-9 oul. Th functon F() C[cos()+sn()] s n gnfuncton of /. Th gnvlu s (A)

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

DFA (Deterministic Finite Automata) q a

DFA (Deterministic Finite Automata) q a Big pictur All lngugs Dcidl Turing mchins NP P Contxt-fr Contxt-fr grmmrs, push-down utomt Rgulr Automt, non-dtrministic utomt, rgulr xprssions DFA (Dtrministic Finit Automt) 0 q 0 0 0 0 q DFA (Dtrministic

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Fundamentals of Continuum Mechanics. Seoul National University Graphics & Media Lab

Fundamentals of Continuum Mechanics. Seoul National University Graphics & Media Lab Fndmntls of Contnm Mchncs Sol Ntonl Unvrsty Grphcs & Md Lb Th Rodmp of Contnm Mchncs Strss Trnsformton Strn Trnsformton Strss Tnsor Strn T + T ++ T Strss-Strn Rltonshp Strn Enrgy FEM Formlton Lt s Stdy

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

1.9 Cartesian Tensors

1.9 Cartesian Tensors Scton.9.9 Crtsn nsors s th th ctor, hghr ordr) tnsor s mthmtc obct hch rprsnts mny physc phnomn nd hch xsts ndpndnty of ny coordnt systm. In ht foos, Crtsn coordnt systm s sd to dscrb tnsors..9. Crtsn

More information

Single Source Shortest Paths (with Positive Weights)

Single Source Shortest Paths (with Positive Weights) Snl Sour Sortst Pts (wt Postv Wts) Yuf To ITEE Unvrsty of Qunslnd In ts ltur, w wll rvst t snl sour sortst pt (SSSP) problm. Rll tt w v lrdy lrnd tt t BFS lortm solvs t problm ffntly wn ll t ds v t sm

More information

Filter Design Techniques

Filter Design Techniques Fltr Dsgn chnqus Fltr Fltr s systm tht psss crtn frquncy componnts n totlly rcts ll othrs Stgs of th sgn fltr Spcfcton of th sr proprts of th systm ppromton of th spcfcton usng cusl scrt-tm systm Rlzton

More information

Weighted Matching and Linear Programming

Weighted Matching and Linear Programming Wightd Mtching nd Linr Progrmming Jonthn Turnr Mrch 19, 01 W v sn tht mximum siz mtchings cn b found in gnrl grphs using ugmnting pths. In principl, this sm pproch cn b pplid to mximum wight mtchings.

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Strongly Connected Components

Strongly Connected Components Strongly Connctd Componnts Lt G = (V, E) b a dirctd graph Writ if thr is a path from to in G Writ if and is an quivalnc rlation: implis and implis s quivalnc classs ar calld th strongly connctd componnts

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Clm: Any unrt, onnt rp s spnnn tr (n nrl rp my v mny spnnn trs).

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

13. Binary tree, height 4, eight terminal vertices 14. Full binary tree, seven vertices v 7 v13. v 19

13. Binary tree, height 4, eight terminal vertices 14. Full binary tree, seven vertices v 7 v13. v 19 0. Spnning Trs n Shortst Pths 0. Consir th tr shown blow with root v 0.. Wht is th lvl of v 8? b. Wht is th lvl of v 0? c. Wht is th hight of this root tr?. Wht r th chilrn of v 0?. Wht is th prnt of v

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

CSE 417, Winter Greedy Algorithms 1/27/2012. Chapter 4. Ben Birnbaum Widad Machmouchi. 4.1 Interval Scheduling.

CSE 417, Winter Greedy Algorithms 1/27/2012. Chapter 4. Ben Birnbaum Widad Machmouchi. 4.1 Interval Scheduling. //0 CSE, Wntr 0 Grdy Algorthms Chaptr Grdy Algorthms Bn Brnbaum Wdad Machmouch Slds by Kvn Wayn. Copyrght 00 Parson-Addson Wsly. All rghts rsrvd. Slds adaptd rom Larry Ruzzo, Stv Tanmoto, and Kvn Wayn

More information

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example This Wk Computr Grphics Vctors nd Oprtions Vctor Arithmtic Gomtric Concpts Points, Lins nd Plns Eploiting Dot Products CSC 470 Computr Grphics 1 CSC 470 Computr Grphics 2 Introduction Introduction Wh do

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Analysis of Algorithms - Elementary graphs algorithms -

Analysis of Algorithms - Elementary graphs algorithms - Analysis of Algorithms - Elmntary graphs algorithms - Anras Ermahl MRTC (Mälaralns Ral-Tim Rsarch Cntr) anras.rmahl@mh.s Autumn 004 Graphs Graphs ar important mathmatical ntitis in computr scinc an nginring

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

4.5 Minimum Spanning Tree. Chapter 4. Greedy Algorithms. Minimum Spanning Tree. Motivating application

4.5 Minimum Spanning Tree. Chapter 4. Greedy Algorithms. Minimum Spanning Tree. Motivating application 1 Chaptr. Minimum panning Tr lids by Kvin Wayn. Copyright 200 Parson-Addison Wsly. All rights rsrvd. *Adjustd by Gang Tan for C33: Algorithms at Boston Collg, Fall 0 Motivating application Minimum panning

More information

10. EXTENDING TRACTABILITY

10. EXTENDING TRACTABILITY Coping with NP-compltnss 0. EXTENDING TRACTABILITY ining small vrtx covrs solving NP-har problms on trs circular arc covrings vrtx covr in bipartit graphs Q. Suppos I n to solv an NP-complt problm. What

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

CSI35 Chapter 11 Review

CSI35 Chapter 11 Review 1. Which of th grphs r trs? c f c g f c x y f z p q r 1 1. Which of th grphs r trs? c f c g f c x y f z p q r . Answr th qustions out th following tr 1) Which vrtx is th root of c th tr? ) wht is th hight

More information

Analysis of Algorithms - Elementary graphs algorithms -

Analysis of Algorithms - Elementary graphs algorithms - Analysis of Algorithms - Elmntary graphs algorithms - Anras Ermahl MRTC (Mälaralns Ral-Tim Rsach Cntr) anras.rmahl@mh.s Autumn 00 Graphs Graphs ar important mathmatical ntitis in computr scinc an nginring

More information

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V,  = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =? xmpl : An 8-gug oppr wr hs nomnl mtr o. mm. Ths wr rrs onstnt urrnt o.67 A to W lmp. Th nsty o r ltrons s 8.5 x 8 ltrons pr u mtr. Fn th mgntu o. th urrnt nsty. th rt vloty xmpl D. mm,.67 A, n N 8.5" 8

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information