Analysis of Algorithms - Elementary graphs algorithms -

Size: px
Start display at page:

Download "Analysis of Algorithms - Elementary graphs algorithms -"

Transcription

1 Analysis of Algorithms - Elmntary graphs algorithms - Anras Ermahl MRTC (Mälaralns Ral-Tim Rsarch Cntr) anras.rmahl@mh.s Autumn 004 Graphs Graphs ar important mathmatical ntitis in computr scinc an nginring Oftn us to rprsnt iffrnt kins of rlational information Dpnncis btwn ntitis Distanc btwn ntitis Graphs In many applications it is intrsting to sarch or travrs th graph Th last numbr of subway stations to gt from Hässlby to Norsborg? How o I visit all subway stations in an fficint mannr? This an following lcturs will al with algorithms for this, an som applications Rprsnting graphs Thr ar many ways of rprsnting graphs A graph G = (V, E) consists of vrtics (nos) V an gs E V = {1,,,4,5} E = {(1,),(1,5),(,),(,5),(,4),(4,5)} Th rprsntations iffr in fficincy pning on th algorithm, whthr th graph is ns or spars, an othr factors W will consir two rprsntations: Ajacncy-list rprsntation Ajacncy-matrix rprsntation Rprsnting graphs Rprsnting graphs Unirct graph Dirct graph Ajacncy-list rprsntation Ajacncy-matrix rprsntation Ajacncy-list rprsntation Ajacncy-matrix rprsntation

2 Ajacncy-list Ajacncy-list G = (V,E) rprsnt by an array Aj of V lists, on pr vrtx Aj[u] contains pointrs to (ID s of) all vrtics ajacnt to u Not ajacnt is iffrnt whn th graph is irct or unirct Dirct: sum of lngth of all ajacncy lists is E Unirct: sum of lngth of all ajacncy lists is E Mmory rquir: Θ(V + E) 1 4 Oftn fficint rprsntation if G is spars E not too big compar with V Easily aapt to wight graphs Stor wight w on g in ajacncy list Ajacncy-list rprsntation Ajacncy-matrix Ajacncy-matrix rprsntation: G = (V,E) rprsnt by a boolan matrix A, whr: Siz O( V ) (inpnnt of E ), fficint whn E = Θ( V ) (an graph siz is small) Ajacncy matrix symmtric whn graph is unirct, thn suffics to stor on half (still siz O( V ), though) Unwight graph can b stor using on bit pr ntry Easily aapt to wight graphs Ajacncy-matrix Stor wight w for g (u,v) rprsntation at ntry in row u an column v Travrsing graphs Most basic algorithms on graphs will b applications of graph travrsal Printing or valiating ach g/vrtx Copying a graph or convrting btwn rprsntations Counting th numbr of gs/vrtics Intifying connct componnts Fining paths btwn two vrtics, or cycls W will invstigat som classical graph travrsal algorithms in tail Travrsing graphs Important: Efficincy an corrctnss Efficincy: Don t loop or visit vrtics rpatly Corrctnss: Don t miss any vrtx W mark vrtics as w travrs th graph 1 1. Uniscovr (whit), th initial stat, bfor w v sn it. Discovr (gry), w v sn th vrtx but not all of its incint gs. Finish (black), all incint gs hav bn visit. Orr of xploration Th orr in which w xplor vrtics pns on th containr us for storing iscovr but not finish vrtics Two typ of containrs frquntly us: Quu: las to so call brath-first sarch Stack: las to so call pth-first sarch W will invstigat ths two graph travrsal algorithms in mor tail Brath-first sarch Simpl algorithm for sarching a graph Input: A irct/unirct graph with sourc s Output: Th shortst istanc from s [u] = shortst istanc of no u to s p[u] = prcssor of no u in shortst path to s Rprsnt by a brath-first tr Only visits vrtics rachabl from s Running tim: Θ(V+E) Linar tim with rspct to ajacncy list

3 Brath-first sarch Givn graph G an sourc vrtx s, fin all vrtics rachabl from s by a brath-first sarch from s (whr s is sn as th root in a tr spanning G) Brath-first mans all vrtics at pth k from s ar visit bfor thos at pth k + 1 ar Th algorithm yils th following rsults: Th istanc (lngth of shortst path) from s to any othr rachabl vrtx u ([u]) A s-root brath-first tr that consists of th shortst paths from s to all othr vrtics Works on both irct an unirct graphs Th BFS algorithm s is put in quu Q Each vrtx is st to hav color WHITE, istanc an no prcssor Starting no s is st to hav color GREY, istanc 0 an no prcssor As long as Q not mpty w quu on no u Procss no u is st to BLACK Invstigat all non-visit ajacnt nos to u W st ach such no as GREY, u as its prcssor, an its istanc to 1+u s istanc Exampl: Brath-first sarch Aftr start no s has bn a to Q 0 Q s 0 Exampl: Brath-first sarch Aftr s has bn procss an its nighbours r an w hav bn a 1 0 Q w r Exampl: Brath-first sarch Aftr no w has bn procss an its nighbours t an x hav bn a 1 0 Q r t x 1 1 Exampl: Brath-first sarch Aftr no r has bn procss an its nighbour v has bn a 1 0 Q t x 1 v

4 Exampl: Brath-first sarch Aftr no t has bn procss an its nighbour u has bn a 1 0 Q x v u 1 Exampl: Brath-first sarch Aftr no x has bn procss an its nighbour y has bn a 1 0 Q v u y 1 Exampl: Brath-first sarch Aftr no v has bn procss r s t u 1 0 Q u y 1 v w x y Exampl: Brath-first sarch Aftr no u has bn procss r s t u 1 0 Q y 1 v w x y Exampl: Brath-first sarch Aftr no y has bn procss r s t u 1 0 Q «1 v w x y Analysis of BFS Taks O( 1 ) tim What about th outr whil-loop? First loop taks O( V ) tim What about th innr for-loop?

5 Analysis of BFS Outr loop (whil): Can w boun th tim until Q bcoms mpty? Only whit vrtics ar nquu, an thy ar always gray whn nquu ï A vrtx can b nquu at most onc On vrtx quu for vry lap ï Outr whil loop xcut O( V ) tims Innr loop (for): Analysis of BFS Th ajacncy list of a vrtx is scann at most onc, an ach lmnt in th list is accss only onc Thus, th total tim in innr loop is proportional to sum of lngths of all ajacncy lists fl O( E ) Whol loop nst fl O( V ) + O( E ) = O( V + E ) Analysis of BFS Analysis of BFS Stp 5..9 runs in O(1) tim Whol loop nst (stp ) runs in O( V + E ) tim First loop (stp 1..4) runs in O( V ) tim Total running tim for BFS is: O( V ) + O(1) + O( V + E ) = O( V + E ) tim Dpth-first sarch Simpl algorithm which sarchs pr in th graph whnvr possibl Input: A irct/unirct graph. Output: Dp-first forst (compos of pth-first trs) Each vrtx u is tim-stamp: iscovr [u] an finish f[u]. Egs { tr, back, forwar or cross g }. Visits all vrtics Running tim: Θ(V+E) Linar tim with rspct to ajacncy list. Dpth-first sarch Sarchs graph by rcursivly xploring th vrtics in th ajacncy list All vrtics rachabl from a vrtx in th ajacncy list ar rcursivly sarch bfor nxt vrtx in th list is xplor DFS constructs a pth- first forst that contains all vrtics in th graph BFS only buils a tr of vrtics rachabl from som givn root vrtx Th DFS algorithm [u] is timstamp whn vrtx u first iscovr f[u] is timstamp whn sarch of u s ajacncy list is complt No u gts tim whn first iscovr No u gts tim whn visiting finish All vrtics ar visit onc All vrtics rachabl an from u an not yt visit gts visit by rcursiv call

6 Dpth-first sarch: vrtx classification Tim-stamp vrtics whn thy ar iscovr/finish: [u]: whn iscovr Th vrtx colors ar quivalnt to th following cass: Whit: th initial stat, bfor w v sn th vrtx Gray: w v sn th vrtx but not all of its incint gs f[u]: whn finish Black: all incint gs hav bn visit Dpth-first sarch: g classification Egs (u,v) ar classifi accoring to th following four cass: Tr-g (T) Eg to whit vrtx Back-g (B) Eg to gry vrtx Forwar-g (F) Eg to black vrtx [u] < [v] Cross-g (C): Eg to black vrtx [u] > [v] Forwar-gs (F) ar non-tr gs (u,v) conncting a vrtx u to a scnant v in a pth-first tr F T T B T C Tr-gs (T) ar gs in th pth-first forst Back-gs (B) ar non-tr gs conncting a vrtx u to an ancstor v in a pth-first tr Cross-gs (C) ar all othr non-tr gs Dpth-first sarch xampl Dpth-first sarch xampl S: { } S: {a} Dpth-first sarch xampl Dpth-first sarch xampl S: {a, } S: {a,, f}

7 Dpth-first sarch xampl Dpth-first sarch xampl S: {a, } S: {a,, g} Dpth-first sarch xampl Dpth-first sarch xampl S: {a, } S: {a} Dpth-first sarch xampl Dpth-first sarch xampl S: {a, b} S: {a, b, }

8 Dpth-first sarch xampl Dpth-first sarch xampl S: {a, b} S: {a} Dpth-first sarch xampl Dpth-first sarch xampl S: { } S: {c} Dpth-first sarch xampl Dpth-first sarch xampl S: {c, h} S: {c}

9 Dpth-first sarch xampl 1 16 First loop taks O( V ) tim How many tims will DFS-VISIT b call? How many tims will this loop run? Rcursiv call S: { } Rsult of DFS run is a forst! Prcnc graph for how to gt rss unrwar watch socks Analysis of DFS Running tim of DFS: First loop in DFS taks Θ( V ) tim (ach vrtx visit xactly onc) In scon loop with th rcursiv calls, w obsrv that DFS visit will b call xactly onc on ach vrtx For ach vrtx v whr DFS-VISIT(v) is call, th loop in DFS-VISIT is call Aj[v] tims Sinc vv Aj[v] = Θ( E ) th total cost of scon loop in DFS will b Θ( E ) fl Running tim of DFS is Θ( V + E ) What is an actual schul for gtting rss? Topological sort A linar orr of all nos in th jackt graph G such that if G contains an g (u,v) thn u appars bfor v in th orring Topological sort is only possibl if th graph is acyclic Exampl application: Dirct Acyclic Graph (DAG) rprsnts prcnc rlations btwn tasks or vnts Eg btwn tasks if first task must b prform bfor scon task Thn a topological sort givs a possibl schul of th tasks on a singl rsourc On prcnc graph might hav svral possibl schuls pants blt shirt ti shos Topological sort: algorithm W can us DFS to gt a topological sort Informal scription: Call DFS(G) to comput finishing tims f[u] for all vrtics u Put nos into list so thy ar stor in crasing orr w.r.t. finishing tim A irct way is to first us DFS(G) an thn sort w.r.t. finishing tim f[u] This yils tim Θ( V + E )+ O( V lg V ) = O( V lg V + E ) But asy to moify DFS to comput th sort list on th fly : Just insrt ach vrtx into list immiatly whn finish As no asymptotic complxity to DFS: still Θ( V + E ) 11/16 1/15 6/7 Exampl: Topological sort unrwar pants blt shirt ti jackt 1/8 /5 /4 socks 17/18 shos 1/14 watch Prcnc graph for how to gt rss socks shos watch unrwar pants blt shirt ti jackt 17/18 11/16 1/15 1/14 9/10 1/8 6/7 /5 /4 9/10 DFS algorithm givs th shown [u] an f[u] Evnts sort accoring to thir finishing tim = topological sort

10 Strongly connct componnts A strongly- connct componnt (SCC) of irct graph G = (V,E) is a maximal subst of vrtics C Œ V such that for vry pair of vrtics u an v in C both vrtics ar rachabl from ach othr E A C B Dirct graph D Strongly connct componnts: {A,B,C,E} an {D} Graph Transpos Th transpos of a irct graph G=(V,E) is th graph G T = (V,E T ) such that G T ={(v,u) V x V : (u,v) E } Thus, G T is G with all gs rvrs Both graphs contains th sam nos Both graphs has th sam SCCs G T can b crat in O(V + E) tim Original graph G Transpos graph G T 6 Fining SCCs W can us algorithms for DFS an graph transposal for fining SCCs of graph G Stps: 1. Call DFS(G) to comput finishing tims f[u] for ach vrtx u in G. Comput transpos graph G T. Call DFS(G T ), but in th main loop, consir th vrtics in crasing f[u] (as comput in lin 1) 4. Each pth-first tr foun in G T forms a SCC in G Original graph G Fining SCCs Fining SCCs 1. Call DFS(G) to comput finishing tim f[u] for ach vrtx u 1/14 11/16 1/15 /4 1/10 8/9 Sort nos on thir finishing tim: ï b,,a,c,,g,f,h /7 5/6 Fining SCCs. Comput G T from original graph

11 Fining SCCs. Call DFS(G T ), but in th main loop, consir th vrtics in crasing f[u] (as comput in lin 1 ï b,,a,c,,g,f,h) Dp- first- trs foun: {b,a,}, {c,}, {g,f}, {h} Fining SCCs 4. Each pth- first tr foun in G T forms a SCC in G: {b,a,}, {c,}, {g,f}, {h} 5. Collaps all SCC to on singl no. Th rsult is th acyclic G SCC graph Each vrtx is on SCC ab fg c h Th visits of nos in th scon DFS corrspons to visiting th vrtics in G SCC in topological sort orr Analysis of SCC algorithm 1. Call DFS(G) to comput finishing tims f[u] for ach vrtx u in G ï Θ(V + E). Comput transpos graph G T ï Θ(V + E). Call DFS(G T ), but in th main loop, consir th vrtics in crasing f[u] (as comput in lin 1) ï Θ(V + E) 4. Collaps ach pth-first tr foun in G T to a SCC ï Θ(V + E) Ovrall total tim: Θ(V + E) Th En!

Analysis of Algorithms - Elementary graphs algorithms -

Analysis of Algorithms - Elementary graphs algorithms - Analysis of Algorithms - Elmntary graphs algorithms - Anras Ermahl MRTC (Mälaralns Ral-Tim Rsach Cntr) anras.rmahl@mh.s Autumn 00 Graphs Graphs ar important mathmatical ntitis in computr scinc an nginring

More information

Strongly Connected Components

Strongly Connected Components Strongly Connctd Componnts Lt G = (V, E) b a dirctd graph Writ if thr is a path from to in G Writ if and is an quivalnc rlation: implis and implis s quivalnc classs ar calld th strongly connctd componnts

More information

Examples and applications on SSSP and MST

Examples and applications on SSSP and MST Exampls an applications on SSSP an MST Dan (Doris) H & Junhao Gan ITEE Univrsity of Qunslan COMP3506/7505, Uni of Qunslan Exampls an applications on SSSP an MST Dijkstra s Algorithm Th algorithm solvs

More information

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list.

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list. 3 3 4 8 6 3 3 4 8 6 3 3 4 8 6 () (d) 3 Sarching Linkd Lists Sarching Linkd Lists Sarching Linkd Lists ssum th list is sortd, but is stord in a linkd list. an w us binary sarch? omparisons? Work? What if

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem.

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem. Outlins: Graps Part-4 Applications o DFS Elmntary Grap Aloritms Topoloical Sort o Dirctd Acyclic Grap Stronly Connctd Componnts PART-4 1 2 Applications o Dpt-First Sarc Topoloical Sort: Usin dpt-irst sarc

More information

The second condition says that a node α of the tree has exactly n children if the arity of its label is n.

The second condition says that a node α of the tree has exactly n children if the arity of its label is n. CS 6110 S14 Hanout 2 Proof of Conflunc 27 January 2014 In this supplmntary lctur w prov that th λ-calculus is conflunt. This is rsult is u to lonzo Church (1903 1995) an J. arkly Rossr (1907 1989) an is

More information

10. EXTENDING TRACTABILITY

10. EXTENDING TRACTABILITY Coping with NP-compltnss 0. EXTENDING TRACTABILITY ining small vrtx covrs solving NP-har problms on trs circular arc covrings vrtx covr in bipartit graphs Q. Suppos I n to solv an NP-complt problm. What

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

Chapter Finding Small Vertex Covers. Extending the Limits of Tractability. Coping With NP-Completeness. Vertex Cover

Chapter Finding Small Vertex Covers. Extending the Limits of Tractability. Coping With NP-Completeness. Vertex Cover Coping With NP-Compltnss Chaptr 0 Extning th Limits o Tractability Q. Suppos I n to solv an NP-complt problm. What shoul I o? A. Thory says you'r unlikly to in poly-tim algorithm. Must sacriic on o thr

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

First order differential equation Linear equation; Method of integrating factors

First order differential equation Linear equation; Method of integrating factors First orr iffrntial quation Linar quation; Mtho of intgrating factors Exampl 1: Rwrit th lft han si as th rivativ of th prouct of y an som function by prouct rul irctly. Solving th first orr iffrntial

More information

Y 0. Standing Wave Interference between the incident & reflected waves Standing wave. A string with one end fixed on a wall

Y 0. Standing Wave Interference between the incident & reflected waves Standing wave. A string with one end fixed on a wall Staning Wav Intrfrnc btwn th incint & rflct wavs Staning wav A string with on n fix on a wall Incint: y, t) Y cos( t ) 1( Y 1 ( ) Y (St th incint wav s phas to b, i.., Y + ral & positiv.) Rflct: y, t)

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

CS 491 G Combinatorial Optimization

CS 491 G Combinatorial Optimization CS 49 G Cobinatorial Optiization Lctur Nots Junhui Jia. Maiu Flow Probls Now lt us iscuss or tails on aiu low probls. Thor. A asibl low is aiu i an only i thr is no -augnting path. Proo: Lt P = A asibl

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

Roadmap. XML Indexing. DataGuide example. DataGuides. Strong DataGuides. Multiple DataGuides for same data. CPS Topics in Database Systems

Roadmap. XML Indexing. DataGuide example. DataGuides. Strong DataGuides. Multiple DataGuides for same data. CPS Topics in Database Systems Roadmap XML Indxing CPS 296.1 Topics in Databas Systms Indx fabric Coopr t al. A Fast Indx for Smistructurd Data. VLDB, 2001 DataGuid Goldman and Widom. DataGuids: Enabling Qury Formulation and Optimization

More information

Graphs and Graph Searches

Graphs and Graph Searches Graphs an Graph Sarhs CS 320, Fall 2017 Dr. Gri Gorg, Instrutor gorg@olostat.u 320 Graphs&GraphSarhs 1 Stuy Ais Gnral graph nots: Col s Basi Graph Nots.pf (Progrss pag) Dpth first gui: Dpth First Sarh

More information

Homework #3. 1 x. dx. It therefore follows that a sum of the

Homework #3. 1 x. dx. It therefore follows that a sum of the Danil Cannon CS 62 / Luan March 5, 2009 Homwork # 1. Th natural logarithm is dfind by ln n = n 1 dx. It thrfor follows that a sum of th 1 x sam addnd ovr th sam intrval should b both asymptotically uppr-

More information

Association (Part II)

Association (Part II) Association (Part II) nanopoulos@ismll.d Outlin Improving Apriori (FP Growth, ECLAT) Qustioning confidnc masur Qustioning support masur 2 1 FP growth Algorithm Us a comprssd rprsntation of th dtb databas

More information

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming CPSC 665 : An Algorithmist s Toolkit Lctur 4 : 21 Jan 2015 Lcturr: Sushant Sachdva Linar Programming Scrib: Rasmus Kyng 1. Introduction An optimization problm rquirs us to find th minimum or maximum) of

More information

Multiple Short Term Infusion Homework # 5 PHA 5127

Multiple Short Term Infusion Homework # 5 PHA 5127 Multipl Short rm Infusion Homwork # 5 PHA 527 A rug is aministr as a short trm infusion. h avrag pharmacokintic paramtrs for this rug ar: k 0.40 hr - V 28 L his rug follows a on-compartmnt boy mol. A 300

More information

CS 361 Meeting 12 10/3/18

CS 361 Meeting 12 10/3/18 CS 36 Mting 2 /3/8 Announcmnts. Homwork 4 is du Friday. If Friday is Mountain Day, homwork should b turnd in at my offic or th dpartmnt offic bfor 4. 2. Homwork 5 will b availabl ovr th wknd. 3. Our midtrm

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

SPH4U Electric Charges and Electric Fields Mr. LoRusso

SPH4U Electric Charges and Electric Fields Mr. LoRusso SPH4U lctric Chargs an lctric Fils Mr. LoRusso lctricity is th flow of lctric charg. Th Grks first obsrv lctrical forcs whn arly scintists rubb ambr with fur. Th notic thy coul attract small bits of straw

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

PROBLEM SET Problem 1.

PROBLEM SET Problem 1. PROLEM SET 1 PROFESSOR PETER JOHNSTONE 1. Problm 1. 1.1. Th catgory Mat L. OK, I m not amiliar with th trminology o partially orr sts, so lt s go ovr that irst. Dinition 1.1. partial orr is a binary rlation

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 301 Signals & Systms Prof. Mark Fowlr ot St #21 D-T Signals: Rlation btwn DFT, DTFT, & CTFT 1/16 W can us th DFT to implmnt numrical FT procssing This nabls us to numrically analyz a signal to find

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Mathematics 1110H Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018 Solutions to the Actual Final Examination

Mathematics 1110H Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018 Solutions to the Actual Final Examination Mathmatics H Calculus I: Limits, rivativs, an Intgrals Trnt Univrsity, Summr 8 Solutions to th Actual Final Eamination Tim-spac: 9:-: in FPHL 7. Brought to you by Stfan B lan k. Instructions: Do parts

More information

a 1and x is any real number.

a 1and x is any real number. Calcls Nots Eponnts an Logarithms Eponntial Fnction: Has th form y a, whr a 0, a an is any ral nmbr. Graph y, Graph y ln y y Th Natral Bas (Elr s nmbr): An irrational nmbr, symboliz by th lttr, appars

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

CS553 Lecture Register Allocation I 3

CS553 Lecture Register Allocation I 3 Low-Lvl Issus Last ltur Intrproural analysis Toay Start low-lvl issus Rgistr alloation Latr Mor rgistr alloation Instrution shuling CS553 Ltur Rgistr Alloation I 2 Rgistr Alloation Prolm Assign an unoun

More information

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk S 445 Shortst Paths n Graphs lon frat Sls courtsy of rk man an arola Wnk Paths n raphs onsr a raph G = (V, ) wth -wht functon w : R. Th wht of path p = v v v k s fn to xampl: k = w ( p) = w( v, v + ).

More information

The pn junction: 2 Current vs Voltage (IV) characteristics

The pn junction: 2 Current vs Voltage (IV) characteristics Th pn junction: Currnt vs Voltag (V) charactristics Considr a pn junction in quilibrium with no applid xtrnal voltag: o th V E F E F V p-typ Dpltion rgion n-typ Elctron movmnt across th junction: 1. n

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scinc March 15, 005 Srini Dvadas and Eric Lhman Problm St 6 Solutions Du: Monday, March 8 at 9 PM in Room 3-044 Problm 1. Sammy th Shark is a financial srvic providr

More information

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d Aitional Math (07) Prpar b Mr Ang, Nov 07 Fin th valu of th constant k for which is a solution of th quation k. [7] Givn that, Givn that k, Thrfor, k Topic : Papr (00 marks) Tim : hours 0 mins Nam : Aitional

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS Slid DIGITAL SIGAL PROCESSIG UIT I DISCRETE TIME SIGALS AD SYSTEM Slid Rviw of discrt-tim signals & systms Signal:- A signal is dfind as any physical quantity that varis with tim, spac or any othr indpndnt

More information

Thickness and Colorability of Geometric Graphs

Thickness and Colorability of Geometric Graphs Thicknss an Colorability o Gomtric Graphs Stphan Durochr 1 Dpartmnt o Computr Scinc, Univrsity o Manitoba, Winnipg, Canaa Elln Gthnr Dpartmnt o Computr Scinc, Univrsity o Colorao Dnvr, Colorao, USA Dbajyoti

More information

Kernels. ffl A kernel K is a function of two objects, for example, two sentence/tree pairs (x1; y1) and (x2; y2)

Kernels. ffl A kernel K is a function of two objects, for example, two sentence/tree pairs (x1; y1) and (x2; y2) Krnls krnl K is a function of two ojcts, for xampl, two sntnc/tr pairs (x1; y1) an (x2; y2) K((x1; y1); (x2; y2)) Intuition: K((x1; y1); (x2; y2)) is a masur of th similarity (x1; y1) twn (x2; y2) an ormally:

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr ot St #18 Introduction to DFT (via th DTFT) Rading Assignmnt: Sct. 7.1 of Proakis & Manolakis 1/24 Discrt Fourir Transform (DFT) W v sn that th DTFT is

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

From Elimination to Belief Propagation

From Elimination to Belief Propagation School of omputr Scinc Th lif Propagation (Sum-Product lgorithm Probabilistic Graphical Modls (10-708 Lctur 5, Sp 31, 2007 Rcptor Kinas Rcptor Kinas Kinas X 5 ric Xing Gn G T X 6 X 7 Gn H X 8 Rading: J-hap

More information

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018 Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

More information

Final Exam Solutions

Final Exam Solutions CS 2 Advancd Data Structurs and Algorithms Final Exam Solutions Jonathan Turnr /8/20. (0 points) Suppos that r is a root of som tr in a Fionacci hap. Assum that just for a dltmin opration, r has no childrn

More information

On spanning trees and cycles of multicolored point sets with few intersections

On spanning trees and cycles of multicolored point sets with few intersections On spanning trs and cycls of multicolord point sts with fw intrsctions M. Kano, C. Mrino, and J. Urrutia April, 00 Abstract Lt P 1,..., P k b a collction of disjoint point sts in R in gnral position. W

More information

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms /3/0 Prvw Grph Grph Rprsntton Grph Srch Algorthms Brdth Frst Srch Corrctnss of BFS Dpth Frst Srch Mnmum Spnnng Tr Kruskl s lgorthm Grph Drctd grph (or dgrph) G = (V, E) V: St of vrt (nod) E: St of dgs

More information

A RELATIVISTIC LAGRANGIAN FOR MULTIPLE CHARGED POINT-MASSES

A RELATIVISTIC LAGRANGIAN FOR MULTIPLE CHARGED POINT-MASSES A RELATIVISTIC LAGRANGIAN FOR MULTIPLE CHARGED POINT-MASSES ADRIAAN DANIËL FOKKER (1887-197) A translation of: Ein invariantr Variationssatz für i Bwgung mhrrr lctrischr Massntilshn Z. Phys. 58, 386-393

More information

64. A Conic Section from Five Elements.

64. A Conic Section from Five Elements. . onic Sction from Fiv Elmnts. To raw a conic sction of which fiv lmnts - points an tangnts - ar known. W consir th thr cass:. Fiv points ar known.. Four points an a tangnt lin ar known.. Thr points an

More information

CS 6353 Compiler Construction, Homework #1. 1. Write regular expressions for the following informally described languages:

CS 6353 Compiler Construction, Homework #1. 1. Write regular expressions for the following informally described languages: CS 6353 Compilr Construction, Homwork #1 1. Writ rgular xprssions for th following informally dscribd languags: a. All strings of 0 s and 1 s with th substring 01*1. Answr: (0 1)*01*1(0 1)* b. All strings

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

Chapter 6 Folding. Folding

Chapter 6 Folding. Folding Chaptr 6 Folding Wintr 1 Mokhtar Abolaz Folding Th folding transformation is usd to systmatically dtrmin th control circuits in DSP architctur whr multipl algorithm oprations ar tim-multiplxd to a singl

More information

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016 Ronald I. Frank 06 Adjoint https://n.wikipdia.org/wiki/adjoint In gnral thr is an oprator and a procss that dfin its adjoint *. It is thn slf-adjoint if *. Innr product spac https://n.wikipdia.org/wiki/innr_product_spac

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Alpha and beta decay equation practice

Alpha and beta decay equation practice Alpha and bta dcay quation practic Introduction Alpha and bta particls may b rprsntd in quations in svral diffrnt ways. Diffrnt xam boards hav thir own prfrnc. For xampl: Alpha Bta α β alpha bta Dspit

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Unit C Algbra Trigonomtr Gomtr Calculus Vctor gomtr Pag Algbra Molus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv

More information

Computing and Communications -- Network Coding

Computing and Communications -- Network Coding 89 90 98 00 Computing and Communications -- Ntwork Coding Dr. Zhiyong Chn Institut of Wirlss Communications Tchnology Shanghai Jiao Tong Univrsity China Lctur 5- Nov. 05 0 Classical Information Thory Sourc

More information

Superposition. Thinning

Superposition. Thinning Suprposition STAT253/317 Wintr 213 Lctur 11 Yibi Huang Fbruary 1, 213 5.3 Th Poisson Procsss 5.4 Gnralizations of th Poisson Procsss Th sum of two indpndnt Poisson procsss with rspctiv rats λ 1 and λ 2,

More information

CPS 616 W2017 MIDTERM SOLUTIONS 1

CPS 616 W2017 MIDTERM SOLUTIONS 1 CPS 616 W2017 MIDTERM SOLUTIONS 1 PART 1 20 MARKS - MULTIPLE CHOICE Instructions Plas ntr your answrs on t bubbl st wit your nam unlss you ar writin tis xam at t Tst Cntr, in wic cas you sould just circl

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

PHYS ,Fall 05, Term Exam #1, Oct., 12, 2005

PHYS ,Fall 05, Term Exam #1, Oct., 12, 2005 PHYS1444-,Fall 5, Trm Exam #1, Oct., 1, 5 Nam: Kys 1. circular ring of charg of raius an a total charg Q lis in th x-y plan with its cntr at th origin. small positiv tst charg q is plac at th origin. What

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

ME311 Machine Design

ME311 Machine Design ME311 Machin Dsign Lctur 4: Strss Concntrations; Static Failur W Dornfld 8Sp017 Fairfild Univrsit School of Enginring Strss Concntration W saw that in a curvd bam, th strss was distortd from th uniform

More information

GEOMETRICAL PHENOMENA IN THE PHYSICS OF SUBATOMIC PARTICLES. Eduard N. Klenov* Rostov-on-Don, Russia

GEOMETRICAL PHENOMENA IN THE PHYSICS OF SUBATOMIC PARTICLES. Eduard N. Klenov* Rostov-on-Don, Russia GEOMETRICAL PHENOMENA IN THE PHYSICS OF SUBATOMIC PARTICLES Eduard N. Klnov* Rostov-on-Don, Russia Th articl considrs phnomnal gomtry figurs bing th carrirs of valu spctra for th pairs of th rmaining additiv

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

Chapter 8: Electron Configurations and Periodicity

Chapter 8: Electron Configurations and Periodicity Elctron Spin & th Pauli Exclusion Principl Chaptr 8: Elctron Configurations and Priodicity 3 quantum numbrs (n, l, ml) dfin th nrgy, siz, shap, and spatial orintation of ach atomic orbital. To xplain how

More information

Pipe flow friction, small vs. big pipes

Pipe flow friction, small vs. big pipes Friction actor (t/0 t o pip) Friction small vs larg pips J. Chaurtt May 016 It is an intrsting act that riction is highr in small pips than largr pips or th sam vlocity o low and th sam lngth. Friction

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd

5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd 1. First you chck th domain of g x. For this function, x cannot qual zro. Thn w find th D domain of f g x D 3; D 3 0; x Q x x 1 3, x 0 2. Any cosin graph is going to b symmtric with th y-axis as long as

More information

The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function

The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function A gnraliation of th frquncy rsons function Th convolution sum scrition of an LTI iscrt-tim systm with an imuls rsons h[n] is givn by h y [ n] [ ] x[ n ] Taing th -transforms of both sis w gt n n h n n

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

MCB137: Physical Biology of the Cell Spring 2017 Homework 6: Ligand binding and the MWC model of allostery (Due 3/23/17)

MCB137: Physical Biology of the Cell Spring 2017 Homework 6: Ligand binding and the MWC model of allostery (Due 3/23/17) MCB37: Physical Biology of th Cll Spring 207 Homwork 6: Ligand binding and th MWC modl of allostry (Du 3/23/7) Hrnan G. Garcia March 2, 207 Simpl rprssion In class, w drivd a mathmatical modl of how simpl

More information

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park Kangwon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 147 153 ON RIGHT(LEFT) DUO PO-SEMIGROUPS S. K. L and K. Y. Park Abstract. W invstigat som proprtis on right(rsp. lft) duo po-smigroups. 1. Introduction

More information

Sundials and Linear Algebra

Sundials and Linear Algebra Sundials and Linar Algbra M. Scot Swan July 2, 25 Most txts on crating sundials ar dirctd towards thos who ar solly intrstd in making and using sundials and usually assums minimal mathmatical background.

More information

SIGNIFICANCE OF SMITH CHART IN ANTENNA TECHNOLOGY

SIGNIFICANCE OF SMITH CHART IN ANTENNA TECHNOLOGY SIGNIFICANCE OF SMITH CHART IN ANTENNA TECHNOLOGY P. Poornima¹, Santosh Kumar Jha² 1 Associat Profssor, 2 Profssor, ECE Dpt., Sphoorthy Enginring Collg Tlangana, Hyraba (Inia) ABSTRACT This papr prsnts

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

DIFFERENTIAL EQUATION

DIFFERENTIAL EQUATION MD DIFFERENTIAL EQUATION Sllabus : Ordinar diffrntial quations, thir ordr and dgr. Formation of diffrntial quations. Solution of diffrntial quations b th mthod of sparation of variabls, solution of homognous

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark. . (a) Eithr y = or ( 0, ) (b) Whn =, y = ( 0 + ) = 0 = 0 ( + ) = 0 ( )( ) = 0 Eithr = (for possibly abov) or = A 3. Not If th candidat blivs that = 0 solvs to = 0 or givs an tra solution of = 0, thn withhold

More information

Random Access Techniques: ALOHA (cont.)

Random Access Techniques: ALOHA (cont.) Random Accss Tchniqus: ALOHA (cont.) 1 Exampl [ Aloha avoiding collision ] A pur ALOHA ntwork transmits a 200-bit fram on a shard channl Of 200 kbps at tim. What is th rquirmnt to mak this fram collision

More information

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c. MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

More information

Indexed Search Tree (Trie)

Indexed Search Tree (Trie) Indxd Sarch Tr (Tri) Fawzi Emad Chau-Wn Tsng Dpartmnt of Computr Scinc Univrsity of Maryand, Cog Park Indxd Sarch Tr (Tri) Spcia cas of tr Appicab whn Ky C can b dcomposd into a squnc of subkys C 1, C

More information

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK Data Assimilation 1 Alan O Nill National Cntr for Earth Obsrvation UK Plan Motivation & basic idas Univariat (scalar) data assimilation Multivariat (vctor) data assimilation 3d-Variational Mthod (& optimal

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Cor rvision gui Pag Algbra Moulus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv blow th ais in th ais. f () f () f

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

Applied Statistics II - Categorical Data Analysis Data analysis using Genstat - Exercise 2 Logistic regression

Applied Statistics II - Categorical Data Analysis Data analysis using Genstat - Exercise 2 Logistic regression Applid Statistics II - Catgorical Data Analysis Data analysis using Gnstat - Exrcis 2 Logistic rgrssion Analysis 2. Logistic rgrssion for a 2 x k tabl. Th tabl blow shows th numbr of aphids aliv and dad

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information