Signal processing. A. Sestieri Dipartimento di Meccanica e Aeronautica University La Sapienza, Rome

Size: px
Start display at page:

Download "Signal processing. A. Sestieri Dipartimento di Meccanica e Aeronautica University La Sapienza, Rome"

Transcription

1 Signal processing A. Sesieri Diparimeno di Meccanica e Aeronauica Universiy La Sapienza, Rome Presenaion layou - Fourier series and Fourier ransforms - Leakage - Aliasing - Analog versus digial signals - Digial Fourier ransform - FFT - Concluding remarks

2 FOURIER ANALYSIS DMA Universià di Roma La Sapienza To pass from he ime o he frequency domain, a Fourier ransformaion is necessary: Fourier series for periodic signals Fourier ransform for ransien signals Power specral densiy for random signals d e f c e c f n b n a a f T jn n jn n n n n = = = + + = ) ( ) ( ; } sin cos { ) ( ω ω ω ω ω ω ω ω ω d e F f d e f F j j + + = = ) ( ) ( ) ( ) ( T F F S T T T ff ) ( ) ( lim ) ( * ω ω ω =

3 FOURIER ANALYSIS DMA Universià di Roma La Sapienza

4 SOME IMPORTANT PROPERTIES OF F.TRANSFORMS If he ime signal is he convoluion produc of wo funcions, is Fourier ransform is jus he produc of he Fourier ransforms of he wo signals If he ime signal is he produc wo funcions, is Fourier ransform is jus he convoluion produc of he wo Fourier ransforms Y ( f ) =

5 SOME IMPORTANT PROPERTIES OF F.TRANSFORMS 0 0 f 0 0 ± jω ± jω 1 e d = δ ( ω ) δ ( ) e d = 1 Thus, frequency and ime are perfec dual spaces f

6 FOURIER ANALYSIS (con d) DMA Universià di Roma La Sapienza The convergence of Fourier series and Fourier ransforms are assured by he Dirichle condiions. However, since he experimenal daa are always runcaed signals, i.e. ransiens, only he Fourier ransform is used for hem. Moreover, he inroducion of Dirac δ permis o overcome he limiaions provided by he Dirichle condiions. E.g.

7 POWER AND ENERGY SIGNALS: PARSEVAL S THEOREMS Assume x() is a periodic ension, i.e. The average power dissipaed across a uni resisance is: Assume x() is a non periodic ension, i.e. The oal energy dissipaed across a uni resisance is Thus, periodic signals are called power signals while non periodic signals are called energy signals

8 ERROR DUE TO DATA TRUNCATION: LEAKAGE Experimenal daa are known only for a shor period of ime, e.g. beween -T/2 and T/2. We can imagine hey are seen hrough a window w() such ha w()

9 LEAKAGE con d The runcaed signal is x T () = x() w(), whose FT is The window leads o a bias error and he convoluion inegral implies a disorsion on X(g), ha spreads over he whole frequency range. Such disorsion is called leakage and, due o he sidelobes of W(f), he X(g) frequency componens spread over he frequency range

10 LEAKAGE (con d) DMA Universià di Roma La Sapienza

11 ALIASING DMA Universià di Roma La Sapienza Because of he perfec dualiy beween ime and frequency domains, i is possible o depic he following relaionships.

12 ALIASING (con d) Therefore he FT of any sampled signal is periodic wih period 1/Δ, i.e. X s (f) = X(f + n/δ) Assuming X(f) = 0 for f Δ/2 Specrum of he real signal X(f) Specrum of he sampled signal 1/Δ 1/2Δ -f o f o 1/2Δ 1/Δ Thus X s (f) = X(f) only for f < Δ/2

13 ALIASING (con d) However, if X(f) 0 for f Δ/2 Specrum of he aliased signal Thus, o avoid aliasing, one mus choose 1/2Δ > f 0 (maximum frequency of he signal)

14 ALIASING (con d) Paricularly, by calling - 1/Δ = f s he sampling frequency - 1/2Δ = f f he folding or Nyquis frequency - f 0 he maximun frequency of he signal - T s = 1/f s To avoid aliasing one mus fix f s > 2 f 0 and more precisely fix he acquisiion parameers as follows τ = acquisiion period Δf = frequency resoluion N = number of samples

15 ALIASING (con d) Aliasing can be also observed in he ime domain If he sampling period is larger han he half of he signal period, T s > T/2, aliasing is observed

16 ALIASING : example A harmonic signal (100 Hz) sampled wih a sampling frequency of 120 Hz

17 ANALOG VERSUS DIGITAL SIGNALS DMA Universià di Roma La Sapienza Experimenal daa, deermined by common rasducers, are generally analog signals. For daa processing such daa are always ransformed ino digial daa by an analog o digial converer (A/D) (sampling) x(nδ) n = 0,1, N - 1

18 ANALOG TO DIGITAL CONVERTER DMA Universià di Roma La Sapienza Available levels = 2 n where n = number of bis Depending on he number of bis of he A/D converer, one always have a a larger or smaller sampling error

19 EFFECT OF SAMPLING ON LEAKAGE DMA Universià di Roma La Sapienza Acually, because he signal is sampled boh in he ime and frequency domain, we never see he sidelobes ypical of he leakage error, bu raher a se of sampled lines.

20 LEAKAGE (con d) I can be shown also ha, if he acquisiion ime corresponds exacly o he period of he periodic signal, no leakage is observed (he sampled lines exacly correspond o he zeros of he sidelobes)

21 LEAKAGE (con d) If T is he period Δf = 1/T

22 LEAKAGE (con d) Δf = 0.1

23 LEAKAGE (con d) Δf = 0.1

24 DIGITAL FOURIER TRANSFORM DMA Universià di Roma La Sapienza For sampled signals i is no possible o carry ou any inegral operaion I is possible however o compue a Discree Fourier Transform ha is defined as: N is oally arbirary. However, for he applicaion of he Fas Fourier Transform (FFT), a very fas algorihm of DFT, N should be chosen appropriaely, i.e. N=2 M where M is an ineger number

25 CONCLUDING REMARKS In summary here are several errors arising in signal processing. - Leakage is an error due o daa runcaion: i can be avoided or diminished by acquiring as large period of daa as possible, or by using appropriae windows, e.g. Hanning for random daa. - Sampling errors depend on he A/C conversion and can be reduced by increasing number of bis of he A/C converer. - Aliasing is an error due o he sampling mechanism: i can be avoided by choosing appropriaely he acquisiion parameers.

26 ALIASING (con d) Therefore he FT of any sampled signal is periodic wih period 1/Δ, i.e. X s (f) = X(f + n/δ) Assuming X(f) = 0 for f Δ/2 Specrum of he real signal Specrum of he sampled signal Thus X s (f) = X(f) only for f < Δ/2

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

From Complex Fourier Series to Fourier Transforms

From Complex Fourier Series to Fourier Transforms Topic From Complex Fourier Series o Fourier Transforms. Inroducion In he previous lecure you saw ha complex Fourier Series and is coeciens were dened by as f ( = n= C ne in! where C n = T T = T = f (e

More information

4.2 The Fourier Transform

4.2 The Fourier Transform 4.2. THE FOURIER TRANSFORM 57 4.2 The Fourier Transform 4.2.1 Inroducion One way o look a Fourier series is ha i is a ransformaion from he ime domain o he frequency domain. Given a signal f (), finding

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Represenaion of Signals in Terms of Frequency Componens Chaper 4 The Fourier Series and Fourier Transform Consider he CT signal defined by x () = Acos( ω + θ ), = The frequencies `presen in he signal are

More information

Spectral Analysis. Joseph Fourier The two representations of a signal are connected via the Fourier transform. Z x(t)exp( j2πft)dt

Spectral Analysis. Joseph Fourier The two representations of a signal are connected via the Fourier transform. Z x(t)exp( j2πft)dt Specral Analysis Asignalx may be represened as a funcion of ime as x() or as a funcion of frequency X(f). This is due o relaionships developed by a French mahemaician, physicis, and Egypologis, Joseph

More information

6.003 Homework #13 Solutions

6.003 Homework #13 Solutions 6.003 Homework #3 Soluions Problems. Transformaion Consider he following ransformaion from x() o y(): x() w () w () w 3 () + y() p() cos() where p() = δ( k). Deermine an expression for y() when x() = sin(/)/().

More information

Lecture 2: Optics / C2: Quantum Information and Laser Science

Lecture 2: Optics / C2: Quantum Information and Laser Science Lecure : Opics / C: Quanum Informaion and Laser Science Ocober 9, 8 1 Fourier analysis This branch of analysis is exremely useful in dealing wih linear sysems (e.g. Maxwell s equaions for he mos par),

More information

THE DISCRETE WAVELET TRANSFORM

THE DISCRETE WAVELET TRANSFORM . 4 THE DISCRETE WAVELET TRANSFORM 4 1 Chaper 4: THE DISCRETE WAVELET TRANSFORM 4 2 4.1 INTRODUCTION TO DISCRETE WAVELET THEORY The bes way o inroduce waveles is hrough heir comparison o Fourier ransforms,

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91 ddiional Problems 9 n inverse relaionship exiss beween he ime-domain and freuency-domain descripions of a signal. Whenever an operaion is performed on he waveform of a signal in he ime domain, a corresponding

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

5. Response of Linear Time-Invariant Systems to Random Inputs

5. Response of Linear Time-Invariant Systems to Random Inputs Sysem: 5. Response of inear ime-invarian Sysems o Random Inpus 5.. Discree-ime linear ime-invarian (IV) sysems 5... Discree-ime IV sysem IV sysem xn ( ) yn ( ) [ xn ( )] Inpu Signal Sysem S Oupu Signal

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 Tuorial Shee #2 discree vs. coninuous uncions, periodiciy, sampling We will encouner wo classes o signals in his class, coninuous-signals and discree-signals. The disinc mahemaical properies o each,

More information

CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang

CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS Professor Dae Ryook Yang Fall 200 Dep. of Chemical and Biological Engineering Korea Universiy CHE302 Process Dynamics and Conrol Korea Universiy

More information

Chapter One Fourier Series and Fourier Transform

Chapter One Fourier Series and Fourier Transform Chaper One I. Fourier Series Represenaion of Periodic Signals -Trigonomeric Fourier Series: The rigonomeric Fourier series represenaion of a periodic signal x() x( + T0 ) wih fundamenal period T0 is given

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions 8-90 Signals and Sysems Profs. Byron Yu and Pulki Grover Fall 07 Miderm Soluions Name: Andrew ID: Problem Score Max 0 8 4 6 5 0 6 0 7 8 9 0 6 Toal 00 Miderm Soluions. (0 poins) Deermine wheher he following

More information

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier Represening a Signal Coninuous-ime ourier Mehods he convoluion mehod for finding he response of a sysem o an exciaion aes advanage of he lineariy and imeinvariance of he sysem and represens he exciaion

More information

Q1) [20 points] answer for the following questions (ON THIS SHEET):

Q1) [20 points] answer for the following questions (ON THIS SHEET): Dr. Anas Al Tarabsheh The Hashemie Universiy Elecrical and Compuer Engineering Deparmen (Makeup Exam) Signals and Sysems Firs Semeser 011/01 Final Exam Dae: 1/06/01 Exam Duraion: hours Noe: means convoluion

More information

Accurate RMS Calculations for Periodic Signals by. Trapezoidal Rule with the Least Data Amount

Accurate RMS Calculations for Periodic Signals by. Trapezoidal Rule with the Least Data Amount Adv. Sudies Theor. Phys., Vol. 7, 3, no., 3-33 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/.988/asp.3.3999 Accurae RS Calculaions for Periodic Signals by Trapezoidal Rule wih he Leas Daa Amoun Sompop Poomjan,

More information

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol 3, No.3, 2013

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol 3, No.3, 2013 Mahemaical Theory and Modeling ISSN -580 (Paper) ISSN 5-05 (Online) Vol, No., 0 www.iise.org The ffec of Inverse Transformaion on he Uni Mean and Consan Variance Assumpions of a Muliplicaive rror Model

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

Outline Chapter 2: Signals and Systems

Outline Chapter 2: Signals and Systems Ouline Chaper 2: Signals and Sysems Signals Basics abou Signal Descripion Fourier Transform Harmonic Decomposiion of Periodic Waveforms (Fourier Analysis) Definiion and Properies of Fourier Transform Imporan

More information

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition EE 224 Signals and Sysems I Complex numbers sinusodal signals Complex exponenials e jω phasor addiion 1/28 Complex Numbers Recangular Polar y z r z θ x Good for addiion/subracion Good for muliplicaion/division

More information

CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang

CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS Professor Dae Ryook Yang Spring 208 Dep. of Chemical and Biological Engineering CHBE320 Process Dynamics and Conrol 4- Road Map of he Lecure

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Module 4: Time Response of discrete time systems Lecture Note 2

Module 4: Time Response of discrete time systems Lecture Note 2 Module 4: Time Response of discree ime sysems Lecure Noe 2 1 Prooype second order sysem The sudy of a second order sysem is imporan because many higher order sysem can be approimaed by a second order model

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

8.022 (E&M) Lecture 16

8.022 (E&M) Lecture 16 8. (E&M) ecure 16 Topics: Inducors in circuis circuis circuis circuis as ime Our second lecure on elecromagneic inducance 3 ways of creaing emf using Faraday s law: hange area of circui S() hange angle

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mar Fowler Noe Se #1 C-T Signals: Circuis wih Periodic Sources 1/1 Solving Circuis wih Periodic Sources FS maes i easy o find he response of an RLC circui o a periodic source!

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

A complex discrete (or digital) signal x(n) is defined in a

A complex discrete (or digital) signal x(n) is defined in a Chaper Complex Signals A number of signal processing applicaions make use of complex signals. Some examples include he characerizaion of he Fourier ransform, blood velociy esimaions, and modulaion of signals

More information

V The Fourier Transform

V The Fourier Transform V he Fourier ransform Lecure noes by Assaf al 1. Moivaion Imagine playing hree noes on he piano, recording hem (soring hem as a.wav or.mp3 file), and hen ploing he resuling waveform on he compuer: 100Hz

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

III-A. Fourier Series Expansion

III-A. Fourier Series Expansion Summer 28 Signals & Sysems S.F. Hsieh III-A. Fourier Series Expansion Inroducion. Divide and conquer Signals can be decomposed as linear combinaions of: (a) shifed impulses: (sifing propery) Why? x() x()δ(

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies Communicaion Sysems, 5e Chaper 3: Signal Transmission and Filering A. Bruce Carlson Paul B. Crilly 00 The McGraw-Hill Companies Chaper 3: Signal Transmission and Filering Response of LTI sysems Signal

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE373 : Digial Communicaions Week 6-7: Deecion Error Probabiliy Signal Space Orhogonal Signal Space MAJU-Digial Comm.-Week-6-7 Deecion Mached filer reduces he received signal o a single variable zt, afer

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

EE 301 Lab 2 Convolution

EE 301 Lab 2 Convolution EE 301 Lab 2 Convoluion 1 Inroducion In his lab we will gain some more experience wih he convoluion inegral and creae a scrip ha shows he graphical mehod of convoluion. 2 Wha you will learn This lab will

More information

Linear Circuit Elements

Linear Circuit Elements 1/25/2011 inear ircui Elemens.doc 1/6 inear ircui Elemens Mos microwave devices can be described or modeled in erms of he hree sandard circui elemens: 1. ESISTANE () 2. INDUTANE () 3. APAITANE () For he

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts)

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts) HW6: MRI Imaging Pulse Sequences (7 Problems for 100 ps) GOAL The overall goal of HW6 is o beer undersand pulse sequences for MRI image reconsrucion. OBJECTIVES 1) Design a spin echo pulse sequence o image

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

Visualising the spectral analysis of time series

Visualising the spectral analysis of time series Visualising he specral analysis of ime series Adam M. Sykulski Marie Curie Research Fellow NorhWes Research Associaes (NWRA), Seale, USA & Universiy College London (UCL), UK Slides available online a:

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : 0. ND_NW_EE_Signal & Sysems_4068 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkaa Pana Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTRICAL ENGINEERING

More information

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e PHYS67 Class 3 ourier Transforms In he limi T, he ourier series becomes an inegral ( nt f in T ce f n f f e d, has been replaced by ) where i f e d is he ourier ransform of f() which is he inverse ourier

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

k The function Ψ(x) is called wavelet function and shows band-pass behavior. The wavelet coefficients d a,b

k The function Ψ(x) is called wavelet function and shows band-pass behavior. The wavelet coefficients d a,b Wavele Transform Wavele Transform The wavele ransform corresponds o he decomposiion of a quadraic inegrable funcion sx ε L 2 R in a family of scaled and ranslaed funcions Ψ,l, ψ, l 1/2 = ψ l The funcion

More information

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors Applicaion Noe Swiching losses for Phase Conrol and Bi- Direcionally Conrolled Thyrisors V AK () I T () Causing W on I TRM V AK( full area) () 1 Axial urn-on Plasma spread 2 Swiching losses for Phase Conrol

More information

Sampling in k-space. Aliasing. Aliasing. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2010 MRI Lecture 3. Slower B z (x)=g x x

Sampling in k-space. Aliasing. Aliasing. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2010 MRI Lecture 3. Slower B z (x)=g x x Sampling in k-space Bioengineering 80A Principles of Biomedical Imaging Fall Quarer 00 MRI Lecure 3 Thomas Liu, BE80A, UCSD, Fall 008 Aliasing Aliasing Slower B z (G Faser Inuiive view of Aliasing FOV

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

f t te e = possesses a Laplace transform. Exercises for Module-III (Transform Calculus)

f t te e = possesses a Laplace transform. Exercises for Module-III (Transform Calculus) Exercises for Module-III (Transform Calculus) ) Discuss he piecewise coninuiy of he following funcions: =,, +, > c) e,, = d) sin,, = ) Show ha he funcion ( ) sin ( ) f e e = possesses a Laplace ransform.

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Application of Speed Transform to the diagnosis of a roller bearing in variable speed

Application of Speed Transform to the diagnosis of a roller bearing in variable speed Applicaion of Speed Transform o he diagnosis of a roller bearing in variable speed Julien Roussel 1, Michel Hariopoulos 1, Edgard Sekko 1, Cécile Capdessus 1 and Jérôme Anoni 1 PRISME laboraory 1 rue de

More information

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015 Explaining Toal Facor Produciviy Ulrich Kohli Universiy of Geneva December 2015 Needed: A Theory of Toal Facor Produciviy Edward C. Presco (1998) 2 1. Inroducion Toal Facor Produciviy (TFP) has become

More information

1/8 1/31/2011 ( ) ( ) Amplifiers lecture. out. Jim Stiles. Dept. of o EECS

1/8 1/31/2011 ( ) ( ) Amplifiers lecture. out. Jim Stiles. Dept. of o EECS 1/31/2011 Amplifiers lecure 1/8 Amplifiers An ideal amplifier is a wo-por circui ha akes an pu signal v and reproduces i exacly a is oupu, only wih a larger magniude! ( ) i ( ) v + ( ) A I v + ou ( ) (

More information

System-On-Chip. Embedding A/D Converters in SoC Applications. Overview. Nyquist Rate Converters. ADC Fundamentals Operations

System-On-Chip. Embedding A/D Converters in SoC Applications. Overview. Nyquist Rate Converters. ADC Fundamentals Operations Overview Embedding A/D Conversion in SoC applicaions Marin Anderson Dep. of Elecrical and Informaion Technology Lund Universiy, Sweden Fundamenal limiaions: Sampling and Quanizaion Pracical limiaions:

More information

EELE Lecture 3,4 EE445 - Outcomes. Physically Realizable Waveforms. EELE445 Montana State University. In this lecture you:

EELE Lecture 3,4 EE445 - Outcomes. Physically Realizable Waveforms. EELE445 Montana State University. In this lecture you: EELE445 Monana Sae Universiy Lecure 3,4 EE445 - Oucomes EELE445-4 Lecure 3,4 Poer, Energy, ime average operaor secion. In his lecure you: be able o use he ime average operaor [] for finie ime duraion signals

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

I. Define the Situation

I. Define the Situation I. efine he Siuaion This exam explores he relaionship beween he applied volage o a permanen magne C moond he linear velociy (speed) of he elecric vehicle (EV) he moor drives. The moor oupu is fed ino a

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Discree Transforms (Finie) EE3 Digial Signal Processing Lecure 9 DFT is only one ou of a LARGE class of ransforms Used for: Analysis Comression Denoising Deecion Recogniion Aroximaion (Sarse) Sarse reresenaion

More information

Zhihan Xu, Matt Proctor, Ilia Voloh

Zhihan Xu, Matt Proctor, Ilia Voloh Zhihan Xu, Ma rocor, lia Voloh - GE Digial Energy Mike Lara - SNC-Lavalin resened by: Terrence Smih GE Digial Energy CT fundamenals Circui model, exciaion curve, simulaion model CT sauraion AC sauraion,

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

Notes 04 largely plagiarized by %khc

Notes 04 largely plagiarized by %khc Noes 04 largely plagiarized by %khc Convoluion Recap Some ricks: x() () =x() x() (, 0 )=x(, 0 ) R ț x() u() = x( )d x() () =ẋ() This hen ells us ha an inegraor has impulse response h() =u(), and ha a differeniaor

More information

Receivers, Antennas, and Signals. Professor David H. Staelin Fall 2001 Slide 1

Receivers, Antennas, and Signals. Professor David H. Staelin Fall 2001 Slide 1 Receivers, Anennas, and Signals Professor David H. Saelin 6.66 Fall 00 Slide A Subjec Conen A Human Processor Transducer Radio Opical, Infrared Acousic, oher Elecromagneic Environmen B C Human Processor

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.003 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 3 0 a 0 5 a k a k 0 πk j3 e 0 e j πk 0 jπk πk e 0

More information

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB EECS 6 Winer 7 Laboraory 3 Fourier series, Fourier ransform and Bode Plos in MATLAB Inroducion: The objecives of his lab are o use MATLAB:. To plo periodic signals wih Fourier series represenaion. To obain

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

3. Alternating Current

3. Alternating Current 3. Alernaing Curren TOPCS Definiion and nroducion AC Generaor Componens of AC Circuis Series LRC Circuis Power in AC Circuis Transformers & AC Transmission nroducion o AC The elecric power ou of a home

More information

Content-Based Shape Retrieval Using Different Shape Descriptors: A Comparative Study Dengsheng Zhang and Guojun Lu

Content-Based Shape Retrieval Using Different Shape Descriptors: A Comparative Study Dengsheng Zhang and Guojun Lu Conen-Based Shape Rerieval Using Differen Shape Descripors: A Comparaive Sudy Dengsheng Zhang and Guojun Lu Gippsland School of Compuing and Informaion Technology Monash Universiy Churchill, Vicoria 3842

More information

( ) = Q 0. ( ) R = R dq. ( t) = I t

( ) = Q 0. ( ) R = R dq. ( t) = I t ircuis onceps The addiion of a simple capacior o a circui of resisors allows wo relaed phenomena o occur The observaion ha he ime-dependence of a complex waveform is alered by he circui is referred o as

More information

Lecture #6: Continuous-Time Signals

Lecture #6: Continuous-Time Signals EEL5: Discree-Time Signals and Sysems Lecure #6: Coninuous-Time Signals Lecure #6: Coninuous-Time Signals. Inroducion In his lecure, we discussed he ollowing opics:. Mahemaical represenaion and ransormaions

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

Chapter Q1. We need to understand Classical wave first. 3/28/2004 H133 Spring

Chapter Q1. We need to understand Classical wave first. 3/28/2004 H133 Spring Chaper Q1 Inroducion o Quanum Mechanics End of 19 h Cenury only a few loose ends o wrap up. Led o Relaiviy which you learned abou las quarer Led o Quanum Mechanics (1920 s-30 s and beyond) Behavior of

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

Embedded Systems and Software. A Simple Introduction to Embedded Control Systems (PID Control)

Embedded Systems and Software. A Simple Introduction to Embedded Control Systems (PID Control) Embedded Sysems and Sofware A Simple Inroducion o Embedded Conrol Sysems (PID Conrol) Embedded Sysems and Sofware, ECE:3360. The Universiy of Iowa, 2016 Slide 1 Acknowledgemens The maerial in his lecure

More information

28. Narrowband Noise Representation

28. Narrowband Noise Representation Narrowband Noise Represenaion on Mac 8. Narrowband Noise Represenaion In mos communicaion sysems, we are ofen dealing wih band-pass filering of signals. Wideband noise will be shaped ino bandlimied noise.

More information

2 Frequency-Domain Analysis

2 Frequency-Domain Analysis requency-domain Analysis Elecrical engineers live in he wo worlds, so o speak, of ime and frequency. requency-domain analysis is an exremely valuable ool o he communicaions engineer, more so perhaps han

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

Experimental Buck Converter

Experimental Buck Converter Experimenal Buck Converer Inpu Filer Cap MOSFET Schoky Diode Inducor Conroller Block Proecion Conroller ASIC Experimenal Synchronous Buck Converer SoC Buck Converer Basic Sysem S 1 u D 1 r r C C R R X

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

ROLE OF NO TOPOGRAPHY SPACE IN STOKES-HELMERT SCHEME FOR GEOID DETERMINATION

ROLE OF NO TOPOGRAPHY SPACE IN STOKES-HELMERT SCHEME FOR GEOID DETERMINATION LE F N TPGAPY SPACE IN STKES-ELMET SCEME F GEID DETEMINATIN Per Vaníek, ober Tenzer and Jianliang uang Annual meeing of CGU 1 We have been formalizing he Sokes soluion of he geodeic boundary value problem

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

6.003: Signals and Systems. Relations among Fourier Representations

6.003: Signals and Systems. Relations among Fourier Representations 6.003: Signals and Sysems Relaions among Fourier Represenaions April 22, 200 Mid-erm Examinaion #3 W ednesday, April 28, 7:30-9:30pm. No reciaions on he day of he exam. Coverage: Lecures 20 Reciaions 20

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.00 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 0 a 0 5 a k sin πk 5 sin πk 5 πk for k 0 a k 0 πk j

More information

Sensors, Signals and Noise

Sensors, Signals and Noise Sensors, Signals and Noise COURSE OUTLINE Inroducion Signals and Noise: 1) Descripion Filering Sensors and associaed elecronics rv 2017/02/08 1 Noise Descripion Noise Waveforms and Samples Saisics of Noise

More information

Linear Time-invariant systems, Convolution, and Cross-correlation

Linear Time-invariant systems, Convolution, and Cross-correlation Linear Time-invarian sysems, Convoluion, and Cross-correlaion (1) Linear Time-invarian (LTI) sysem A sysem akes in an inpu funcion and reurns an oupu funcion. x() T y() Inpu Sysem Oupu y() = T[x()] An

More information