Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Size: px
Start display at page:

Download "Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler"

Transcription

1 MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004

2 Inroducion Time Series: Observaions ordered in ime, informaion conained in ordering: Resuls are no permuaion-invarian in general. Discree ime, equally spaced daa: x, = 1 K T; x R n Main quesions in TSA: Daa driven modelling (sysem idenificaion) Signal and feaure exracion (e.g. seasonal adusmen)

3 Theory and mehods concern: Model classes Esimaion and inference Model selecion Model evaluaion Areas of applicaion: Signal processing e.g. speech, sonar and radar signals Daa driven modelling for simulaion and conrol of echnical sysems and processes; monioring Time series economerics: Macroeconomerics, finance economerics, applicaions o markeing and firm daa Medicine and biology: Geneics, EEG daa, monioring...

4 Tuorial Lecure 1: Saionary Processes Saionary processes are an imporan model class for ime series Def: A sochasic process ( for all cons for all n x)( ), x : Ω, is called (wide sense saionary if (i) ' Exx < (ii) E x = m = (iii) n ' γ ( s) = E( x+ s m)( x m) does no depend on Shif invariance of firs and second momens γ : Z R x nxn covariance funcion of ( x ) conains all linear dependence relaions beween process variables

5 γ (0) K γ ( T + 1) Γ = T K K K γ γ ( T 1) K (0) A funcion γ : Z nxn is called nonnegaive definie if Γ T 0 T Mahemaical characerizaion of covariance funcions of saionary processes: γ is a covariance funcion if and only if γ is nonnegaive definie

6 Examples for saionary processes (1) Whie noise ε = 0 E E ε ε = δ Σ, Σ 0 no (linear) memory ' s s (2) Moving average (MA) process q x bε = = Σ ; nxm 0 b finie memory (3) Infinie moving average process x = Σ b ε large class of saionary processes =

7 (4) (Saionary) Auoregressive (AR) process Seady sae soluion of sable VDE of he form p Σ ax = ε ; = 0 nxn a de az ( ) 0 z 1, a( z) a z p =Σ = 0 (5) (Saionary) ARMA process Seady sae soluion of sable VDE of he form azx ( ) = bz ( ) ε z K backwardshif ; bz ( ) =Σ bz q

8 (6) Harmonic process h ( h 1)/2 i λ + = Σ = Σ cos ϒ + sin ϒ = 0 = 1 x e z a b where λ [ ππ, ] (angular) frequencies, ϒ = λ = 1 ( h 1)/2 /2 [ 0, T + h K + ] z : Ω C, a, b : Ω n n π : Nyquis frequency; ( x ) is a weighed sum of harmonic oscillaions wih random weighs (ampliudes and phases) Saionariy condiions: 0 for : λ 0 * * Ez z <, Ez =, Ez z 1 = 0 1 Ex for : λ = 0

9 Specral disribuion funcion for a harmonic process [ ] nxn F : π, π : F( λ) = F ; F = Ez z : λ λ * F γ has he same informaion as γ abou he process, however displayed in a differen way

10 Specral represenaion of saionary process Every saionary process is he (poinwise in ) limi of a sequence of harmonic processes: Theorem: Every saionary process ( ) iλ x e dz( λ ) where [ ] = [ ππ, ] n ( z( λ ) λ π, π ), z( λ): Ω saisfies ( ) x can be represened as z z x Ez z z z * ( π ) = 0, ( π) = 0, ( λ) λ <, lim ( λ + ε) = ( λ), ε 0 ( ( * 4) ( 3))( ( 2) ( 1)) = 0 for λ 1 < λ2 λ3 < λ4 { } E z λ z λ z λ z λ and is unique for given ( x )

11 Specral disribuion of a general saionary process * [ ] nxn = F : π, π : F( λ) Ez( λ) z ( λ) Specral densiy If γ ( ) < hen here exiss a funcion f :[ π, π ] nxn λ s.. F( λ ) = f( ω ) dw, called he specral densiy π We have iλ γ () = e f( λ ) dλ 1 iλ ( λ ) = (2 π). γ( ) = f e

12 f is characerized by f 0 λ a.e., f( λ) dλ < and f( λ ) = f( λ )' π In paricular we have γ (0) = f( λ) dλ: Variance decomposiion π The diagonal elemens of f show he conribuions of he frequency bands o he variance of he respecive componen process and he off-diagonal elemens show he frequency band specific covariances and expeced phase shifs beween componen processes.

13 Parameric Esimaion e.g. AR esimaion for given p Seminonparameric Esimaion e.g. AR esimaor where in addiion p is esimaed Nonparameric Esimaion e.g. Windowed specral esimaion The curse of dimensionaliy : E.g. for AR esimaion (wih given p) he dimension of he parameer space is np ² (for he a ) plus nn+ ( 1) 2 for Σ

14 Linear ransformaions of saionary processes 2 y = a x ; a nxm, a <, ( x ) = linear, dynamic, ime invarian, sable sysem n saionary ( x ) ( y ) Weighing funcion ( a Z ) Causaliy: a = 0 < 0

15 iλ iλ( ) iλ iλ = y( ) = x( ) = ( ) x( ) = y e dz λ a e dz λ e a e dz λ frequency-specific gain and phase shif kz ( ) = az ( a Z ) = ransfer funcion Transformaion of second momens i λ f ( λ ) = k( e ) f ( λ ) yx x iλ * iλ y λ = x λ f ( ) k( e ) f ( ) k ( e ) 0

16 Soluion of linear vecor difference equaions (VDE s) ay o nxn + ay 1 1+ K+ ay p p = bx 0 + K + bx q q ; a b nxm, or: azy ( ) = bzx ( ) where p q = 0 = 0 = = az ( ) az, bz ( ) bz z: z as well as backward-shif: zy ( ) = ( y 1 )

17 Seady sae soluion: z ransform If de az ( ) 0 z 1 hen here exiss a causal sable soluion y = k x = kz = kz ( ) = a ( zbz ) ( ) = (de az ( )) adaz ( ( )) bz ( ); z 0 where

18 Forecasing for saionary processes Problem: Approximaion of a fuure value x+ h, h > 0 from he pas x, s s Linear leas squares forecasing: * min Ex ( ax ) ( x ax ) a nxn + h + h 0 Proecion inerpreaion Predicion from a finie pas; 1 x, x,, x K r r ' ( + h ) s = 0, = 0, K, = 0 Ex ax x s r

19 leads o γ (0) K γ ( r ) ( ao, K, ar) O = ( γ( h), K, γ( h + r)) γ( r ) γ(0) xˆ, h = a x Predicor Predicion from an infinie pas; x, x 1, K A saionary process is called (linearly) singular if xˆ, h = x + h for some and hence for all h>, 0 Here x ˆ, h denoes he bes linear leas squares predicor from he infinie pas.

20 A saionary process is called (linearly) regular if lim x ˆ h, = 0 h for one and hence for all. Theorem (Wold) (i) Every saionary process ( ) x can be represened in a unique way as x = y + z where ( y ) is regular, ( z ) is singular, ' Ey z s = 0 and ( x ) (ii) Every regular process ( ) y and z are causal linear ransformaions of y = k ε ; k ² <,( ε ) = 0 y can be represened as: whie noise and where causal linear ransformaion of ( y ) ε is a

21 Consequences for forecasing: (i) ( ) (ii) for he regular process ( ) y and ( z ) can be forecased separaely predicor y y we have: = = + y+ h kε + h kε + h kε + h = 0 = h = ˆ, h h 1 predicion error Noe: Every regular process can be forecased wih arbiray accuracy by an ( AR ) MA process How do we obain he Wold represenaion: Specral facorizaion 1 * ' (2 ) ( i λ f k e ) k( e i λ = π Σ ), Σ = Eεε y

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j = 1: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME Moving Averages Recall ha a whie noise process is a series { } = having variance σ. The whie noise process has specral densiy f (λ) = of

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen Sample Auocorrelaions for Financial Time Series Models Richard A. Davis Colorado Sae Universiy Thomas Mikosch Universiy of Copenhagen Ouline Characerisics of some financial ime series IBM reurns NZ-USA

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

DYNAMIC ECONOMETRIC MODELS vol NICHOLAS COPERNICUS UNIVERSITY - TORUŃ Józef Stawicki and Joanna Górka Nicholas Copernicus University

DYNAMIC ECONOMETRIC MODELS vol NICHOLAS COPERNICUS UNIVERSITY - TORUŃ Józef Stawicki and Joanna Górka Nicholas Copernicus University DYNAMIC ECONOMETRIC MODELS vol.. - NICHOLAS COPERNICUS UNIVERSITY - TORUŃ 996 Józef Sawicki and Joanna Górka Nicholas Copernicus Universiy ARMA represenaion for a sum of auoregressive processes In he ime

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

III. Module 3. Empirical and Theoretical Techniques

III. Module 3. Empirical and Theoretical Techniques III. Module 3. Empirical and Theoreical Techniques Applied Saisical Techniques 3. Auocorrelaion Correcions Persisence affecs sandard errors. The radiional response is o rea he auocorrelaion as a echnical

More information

Modeling Economic Time Series with Stochastic Linear Difference Equations

Modeling Economic Time Series with Stochastic Linear Difference Equations A. Thiemer, SLDG.mcd, 6..6 FH-Kiel Universiy of Applied Sciences Prof. Dr. Andreas Thiemer e-mail: andreas.hiemer@fh-kiel.de Modeling Economic Time Series wih Sochasic Linear Difference Equaions Summary:

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2 Financial Economerics Kalman Filer: some applicaions o Finance Universiy of Evry - Maser 2 Eric Bouyé January 27, 2009 Conens 1 Sae-space models 2 2 The Scalar Kalman Filer 2 21 Presenaion 2 22 Summary

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

Stochastic Signals and Systems

Stochastic Signals and Systems Sochasic Signals and Sysems Conens 1. Probabiliy Theory. Sochasic Processes 3. Parameer Esimaion 4. Signal Deecion 5. Specrum Analysis 6. Opimal Filering Chaper 6 / Sochasic Signals and Sysems / Prof.

More information

Box-Jenkins Modelling of Nigerian Stock Prices Data

Box-Jenkins Modelling of Nigerian Stock Prices Data Greener Journal of Science Engineering and Technological Research ISSN: 76-7835 Vol. (), pp. 03-038, Sepember 0. Research Aricle Box-Jenkins Modelling of Nigerian Sock Prices Daa Ee Harrison Euk*, Barholomew

More information

5. Response of Linear Time-Invariant Systems to Random Inputs

5. Response of Linear Time-Invariant Systems to Random Inputs Sysem: 5. Response of inear ime-invarian Sysems o Random Inpus 5.. Discree-ime linear ime-invarian (IV) sysems 5... Discree-ime IV sysem IV sysem xn ( ) yn ( ) [ xn ( )] Inpu Signal Sysem S Oupu Signal

More information

Elements of Stochastic Processes Lecture II Hamid R. Rabiee

Elements of Stochastic Processes Lecture II Hamid R. Rabiee Sochasic Processes Elemens of Sochasic Processes Lecure II Hamid R. Rabiee Overview Reading Assignmen Chaper 9 of exbook Furher Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A Firs Course

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen Mulivariae Regular Variaion wih Applicaion o Financial Time Series Models Richard A. Davis Colorado Sae Universiy Bojan Basrak Eurandom Thomas Mikosch Universiy of Groningen Ouline + Characerisics of some

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Regular Variation and Financial Time Series Models

Regular Variation and Financial Time Series Models Regular Variaion and Financial Time Series Models Richard A. Davis Colorado Sae Universiy www.sa.colosae.edu/~rdavis Thomas Mikosch Universiy of Copenhagen Bojan Basrak Eurandom Ouline Characerisics of

More information

Model Reduction for Dynamical Systems Lecture 6

Model Reduction for Dynamical Systems Lecture 6 Oo-von-Guericke Universiä Magdeburg Faculy of Mahemaics Summer erm 07 Model Reducion for Dynamical Sysems ecure 6 v eer enner and ihong Feng Max lanck Insiue for Dynamics of Complex echnical Sysems Compuaional

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Problem Set on Differential Equations

Problem Set on Differential Equations Problem Se on Differenial Equaions 1. Solve he following differenial equaions (a) x () = e x (), x () = 3/ 4. (b) x () = e x (), x (1) =. (c) xe () = + (1 x ()) e, x () =.. (An asse marke model). Le p()

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type EMS SCM join meeing Barcelona, May 28-30, 2015 On sochasic parial differenial equaions of parabolic ype Isván Gyöngy School of Mahemaics and Maxwell Insiue Edinburgh Universiy 1 I. Filering problem II.

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Filtering Turbulent Signals Using Gaussian and non-gaussian Filters with Model Error

Filtering Turbulent Signals Using Gaussian and non-gaussian Filters with Model Error Filering Turbulen Signals Using Gaussian and non-gaussian Filers wih Model Error June 3, 3 Nan Chen Cener for Amosphere Ocean Science (CAOS) Couran Insiue of Sciences New York Universiy / I. Ouline Use

More information

Økonomisk Kandidateksamen 2005(II) Econometrics 2. Solution

Økonomisk Kandidateksamen 2005(II) Econometrics 2. Solution Økonomisk Kandidaeksamen 2005(II) Economerics 2 Soluion his is he proposed soluion for he exam in Economerics 2. For compleeness he soluion gives formal answers o mos of he quesions alhough his is no always

More information

Lecture 10 Estimating Nonlinear Regression Models

Lecture 10 Estimating Nonlinear Regression Models Lecure 0 Esimaing Nonlinear Regression Models References: Greene, Economeric Analysis, Chaper 0 Consider he following regression model: y = f(x, β) + ε =,, x is kx for each, β is an rxconsan vecor, ε is

More information

The electromagnetic interference in case of onboard navy ships computers - a new approach

The electromagnetic interference in case of onboard navy ships computers - a new approach The elecromagneic inerference in case of onboard navy ships compuers - a new approach Prof. dr. ing. Alexandru SOTIR Naval Academy Mircea cel Bărân, Fulgerului Sree, Consanţa, soiralexandru@yahoo.com Absrac.

More information

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T Smoohing Consan process Separae signal & noise Smooh he daa: Backward smooher: A an give, replace he observaion b a combinaion of observaions a & before Simple smooher : replace he curren observaion wih

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

Stationary Time Series

Stationary Time Series 3-Jul-3 Time Series Analysis Assoc. Prof. Dr. Sevap Kesel July 03 Saionary Time Series Sricly saionary process: If he oin dis. of is he same as he oin dis. of ( X,... X n) ( X h,... X nh) Weakly Saionary

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Adaptive Noise Estimation Based on Non-negative Matrix Factorization

Adaptive Noise Estimation Based on Non-negative Matrix Factorization dvanced cience and Technology Leers Vol.3 (ICC 213), pp.159-163 hp://dx.doi.org/1.14257/asl.213 dapive Noise Esimaion ased on Non-negaive Marix Facorizaion Kwang Myung Jeon and Hong Kook Kim chool of Informaion

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data Chaper 2 Models, Censoring, and Likelihood for Failure-Time Daa William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM

WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM Shinsuke KOBAYASHI, Shogo MURAMATSU, Hisakazu KIKUCHI, Masahiro IWAHASHI Dep. of Elecrical and Elecronic Eng., Niigaa Universiy, 8050 2-no-cho Igarashi,

More information

h[n] is the impulse response of the discrete-time system:

h[n] is the impulse response of the discrete-time system: Definiion Examples Properies Memory Inveribiliy Causaliy Sabiliy Time Invariance Lineariy Sysems Fundamenals Overview Definiion of a Sysem x() h() y() x[n] h[n] Sysem: a process in which inpu signals are

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND

DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND Asymmery and Leverage in Condiional Volailiy Models Michael McAleer WORKING PAPER

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004 Augmened Realiy II Kalman Filers Gudrun Klinker May 25, 2004 Ouline Moivaion Discree Kalman Filer Modeled Process Compuing Model Parameers Algorihm Exended Kalman Filer Kalman Filer for Sensor Fusion Lieraure

More information

Independent component analysis for nonminimum phase systems using H filters

Independent component analysis for nonminimum phase systems using H filters Independen componen analysis for nonminimum phase sysems using H filers Shuichi Fukunaga, Kenji Fujimoo Deparmen of Mechanical Science and Engineering, Graduae Shool of Engineering, Nagoya Universiy, Furo-cho,

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3 Macroeconomic Theory Ph.D. Qualifying Examinaion Fall 2005 Comprehensive Examinaion UCLA Dep. of Economics You have 4 hours o complee he exam. There are hree pars o he exam. Answer all pars. Each par has

More information

Stable approximations of optimal filters

Stable approximations of optimal filters Sable approximaions of opimal filers Joaquin Miguez Deparmen of Signal Theory & Communicaions, Universidad Carlos III de Madrid. E-mail: joaquin.miguez@uc3m.es Join work wih Dan Crisan (Imperial College

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Akaike Causality in State Space Part I - Instantaneous Causality Between Visual Cortex in fmri Time Series

Akaike Causality in State Space Part I - Instantaneous Causality Between Visual Cortex in fmri Time Series Akaike Causaliy in Sae Space Par I - Insananeous Causaliy Beween Visual Corex in fmri Time Series K.F. Kevin Wong, Tohru Ozaki December 21, 26 Absrac We presen a new approach of explaining parial causaliy

More information

Y, where. 1 Estimate St.error

Y, where. 1 Estimate St.error 1 HG Feb 2014 ECON 5101 Exercises III - 24 Feb 2014 Exercise 1 In lecure noes 3 (LN3 page 11) we esimaed an ARMA(1,2) for daa) for he period, 1978q2-2013q2 Le Y ln BNP ln BNP (Norwegian Model: Y Y, where

More information

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework (Sas 6, Winer 7 Due Tuesday April 8, in class Quesions are derived from problems in Sochasic Processes by S. Ross.. A sochasic process {X(, } is said o be saionary if X(,..., X( n has he same

More information

2.160 System Identification, Estimation, and Learning. Lecture Notes No. 8. March 6, 2006

2.160 System Identification, Estimation, and Learning. Lecture Notes No. 8. March 6, 2006 2.160 Sysem Idenificaion, Esimaion, and Learning Lecure Noes No. 8 March 6, 2006 4.9 Eended Kalman Filer In many pracical problems, he process dynamics are nonlinear. w Process Dynamics v y u Model (Linearized)

More information

What Ties Return Volatilities to Price Valuations and Fundamentals? On-Line Appendix

What Ties Return Volatilities to Price Valuations and Fundamentals? On-Line Appendix Wha Ties Reurn Volailiies o Price Valuaions and Fundamenals? On-Line Appendix Alexander David Haskayne School of Business, Universiy of Calgary Piero Veronesi Universiy of Chicago Booh School of Business,

More information

Wavelet Variance, Covariance and Correlation Analysis of BSE and NSE Indexes Financial Time Series

Wavelet Variance, Covariance and Correlation Analysis of BSE and NSE Indexes Financial Time Series Wavele Variance, Covariance and Correlaion Analysis of BSE and NSE Indexes Financial Time Series Anu Kumar 1*, Sangeea Pan 1, Lokesh Kumar Joshi 1 Deparmen of Mahemaics, Universiy of Peroleum & Energy

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions 8-90 Signals and Sysems Profs. Byron Yu and Pulki Grover Fall 07 Miderm Soluions Name: Andrew ID: Problem Score Max 0 8 4 6 5 0 6 0 7 8 9 0 6 Toal 00 Miderm Soluions. (0 poins) Deermine wheher he following

More information

POSITIVE AND MONOTONE SYSTEMS IN A PARTIALLY ORDERED SPACE

POSITIVE AND MONOTONE SYSTEMS IN A PARTIALLY ORDERED SPACE Urainian Mahemaical Journal, Vol. 55, No. 2, 2003 POSITIVE AND MONOTONE SYSTEMS IN A PARTIALLY ORDERED SPACE A. G. Mazo UDC 517.983.27 We invesigae properies of posiive and monoone differenial sysems wih

More information

Exponential Smoothing

Exponential Smoothing Exponenial moohing Inroducion A simple mehod for forecasing. Does no require long series. Enables o decompose he series ino a rend and seasonal effecs. Paricularly useful mehod when here is a need o forecas

More information

Stochastic Structural Dynamics. Lecture-12

Stochastic Structural Dynamics. Lecture-12 Sochasic Srucural Dynamics Lecure-1 Random vibraions of sdof sysems-4 Dr C S Manohar Deparmen of Civil Engineering Professor of Srucural Engineering Indian Insiue of Science Bangalore 56 1 India manohar@civil.iisc.erne.in

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Pade and Laguerre Approximations Applied. to the Active Queue Management Model. of Internet Protocol

Pade and Laguerre Approximations Applied. to the Active Queue Management Model. of Internet Protocol Applied Mahemaical Sciences, Vol. 7, 013, no. 16, 663-673 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/10.1988/ams.013.39499 Pade and Laguerre Approximaions Applied o he Acive Queue Managemen Model of Inerne

More information

Cointegration and Implications for Forecasting

Cointegration and Implications for Forecasting Coinegraion and Implicaions for Forecasing Two examples (A) Y Y 1 1 1 2 (B) Y 0.3 0.9 1 1 2 Example B: Coinegraion Y and coinegraed wih coinegraing vecor [1, 0.9] because Y 0.9 0.3 is a saionary process

More information

Outline Chapter 2: Signals and Systems

Outline Chapter 2: Signals and Systems Ouline Chaper 2: Signals and Sysems Signals Basics abou Signal Descripion Fourier Transform Harmonic Decomposiion of Periodic Waveforms (Fourier Analysis) Definiion and Properies of Fourier Transform Imporan

More information

2016 Possible Examination Questions. Robotics CSCE 574

2016 Possible Examination Questions. Robotics CSCE 574 206 Possible Examinaion Quesions Roboics CSCE 574 ) Wha are he differences beween Hydraulic drive and Shape Memory Alloy drive? Name one applicaion in which each one of hem is appropriae. 2) Wha are he

More information

STAD57 Time Series Analysis. Lecture 14

STAD57 Time Series Analysis. Lecture 14 STAD57 Time Series Analysis Lecure 14 1 Maximum Likelihood AR(p) Esimaion Insead of Yule-Walker (MM) for AR(p) model, can use Maximum Likelihood (ML) esimaion Likelihood is join densiy of daa {x 1,,x n

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

ST4064. Time Series Analysis. Lecture notes

ST4064. Time Series Analysis. Lecture notes ST4064 Time Series Analysis ST4064 Time Series Analysis Lecure noes ST4064 Time Series Analysis Ouline I II Inroducion o ime series analysis Saionariy and ARMA modelling. Saionariy a. Definiions b. Sric

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

CE 395 Special Topics in Machine Learning

CE 395 Special Topics in Machine Learning CE 395 Special Topics in Machine Learning Assoc. Prof. Dr. Yuriy Mishchenko Fall 2017 DIGITAL FILTERS AND FILTERING Why filers? Digial filering is he workhorse of digial signal processing Filering is a

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Discrete Markov Processes. 1. Introduction

Discrete Markov Processes. 1. Introduction Discree Markov Processes 1. Inroducion 1. Probabiliy Spaces and Random Variables Sample space. A model for evens: is a family of subses of such ha c (1) if A, hen A, (2) if A 1, A 2,..., hen A1 A 2...,

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XI Control of Stochastic Systems - P.R. Kumar

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XI Control of Stochastic Systems - P.R. Kumar CONROL OF SOCHASIC SYSEMS P.R. Kumar Deparmen of Elecrical and Compuer Engineering, and Coordinaed Science Laboraory, Universiy of Illinois, Urbana-Champaign, USA. Keywords: Markov chains, ransiion probabiliies,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 0.038/NCLIMATE893 Temporal resoluion and DICE * Supplemenal Informaion Alex L. Maren and Sephen C. Newbold Naional Cener for Environmenal Economics, US Environmenal Proecion

More information

Stochastic Structural Dynamics. Lecture-6

Stochastic Structural Dynamics. Lecture-6 Sochasic Srucural Dynamics Lecure-6 Random processes- Dr C S Manohar Deparmen of Civil Engineering Professor of Srucural Engineering Indian Insiue of Science Bangalore 560 0 India manohar@civil.iisc.erne.in

More information

DYNAMIC ECONOMETRIC MODELS Vol. 7 Nicolaus Copernicus University Toruń Piotr Fiszeder Nicolaus Copernicus University in Toruń

DYNAMIC ECONOMETRIC MODELS Vol. 7 Nicolaus Copernicus University Toruń Piotr Fiszeder Nicolaus Copernicus University in Toruń DYNAMIC ECONOMETRIC MODELS Vol. 7 Nicolaus Copernicus Universiy Toruń 006 Pior Fiszeder Nicolaus Copernicus Universiy in Toruń Consequences of Congruence for GARCH Modelling. Inroducion In 98 Granger formulaed

More information

5. Stochastic processes (1)

5. Stochastic processes (1) Lec05.pp S-38.45 - Inroducion o Teleraffic Theory Spring 2005 Conens Basic conceps Poisson process 2 Sochasic processes () Consider some quaniy in a eleraffic (or any) sysem I ypically evolves in ime randomly

More information

I. Introduction to place/transition nets. Place/Transition Nets I. Example: a vending machine. Example: a vending machine

I. Introduction to place/transition nets. Place/Transition Nets I. Example: a vending machine. Example: a vending machine Inroducory Tuorial I. Inroducion o place/ransiion nes Place/Transiion Nes I Prepared by: Jörg Desel, Caholic Universiy in Eichsä and Karsen Schmid, Humbold-Universiä zu Berlin Speaker: Wolfgang Reisig,

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Energy Storage Benchmark Problems

Energy Storage Benchmark Problems Energy Sorage Benchmark Problems Daniel F. Salas 1,3, Warren B. Powell 2,3 1 Deparmen of Chemical & Biological Engineering 2 Deparmen of Operaions Research & Financial Engineering 3 Princeon Laboraory

More information

Waves are naturally found in plasmas and have to be dealt with. This includes instabilities, fluctuations, waveinduced

Waves are naturally found in plasmas and have to be dealt with. This includes instabilities, fluctuations, waveinduced Lecure 1 Inroducion Why is i imporan o sudy waves in plasma? Waves are naurally found in plasmas and have o be deal wih. This includes insabiliies, flucuaions, waveinduced ranspor... Waves can deliver

More information