Filtering Turbulent Signals Using Gaussian and non-gaussian Filters with Model Error

Size: px
Start display at page:

Download "Filtering Turbulent Signals Using Gaussian and non-gaussian Filters with Model Error"

Transcription

1 Filering Turbulen Signals Using Gaussian and non-gaussian Filers wih Model Error June 3, 3 Nan Chen Cener for Amosphere Ocean Science (CAOS) Couran Insiue of Sciences New York Universiy /

2 I. Ouline Use es models o sudy he skills of filering he. These es models have exacly solvable saisics. They mimic he amosphere and ocean behaviors. Main feaures of Amosphere and Ocean Sciences: Inermien insabiliy. Unresolved/unobserved variable/process. 3 Model error. Goal Generae he signals from he sysem wih inermien insabiliy and unresolved process. Sudy he filering skill of using imperfec forecas models. Compare he filering skill using Gaussian and non-gaussian filers in a perfec model seing. /

3 Differen ypes of filer (w.r.. he prior/background disribuion). Assume linear observaion operaor and Gaussian observaion noise. Kalman Filer: linear and Gaussian sysem u m+ = Fu m + σ m+ wih consan F. Exended Kalman Filer: nonlinear non-gaussian sysem wih linear angenial approximaion u m+ = f (u m)+σ m+ = u m+ f (ū m m )+ f (ū m m )(u m ū m m )+σ m+. Two momens filer (or Nonlinear Exended Kalman Filer): nonlinear non-gaussian sysem wih exacly solvable mean and covariance. Noe ha model error sill exiss when using wo momens filer o filer he non-gaussian signal! Non-Gaussian filer: The informaion in he higher order momens is included in filering he signals. 3/

4 II. A. Tes Models du = r(, )u + l(, ) + σu(, )Ẇ u (), d d = F(, ) + σ (, )Ẇ (), d Resolved/unresolved variable: u is he resolved variable. is he unresolved variable. Inermien insabiliy in u: Posiive r(, ) corresponds o insabiliy. Negaive r(, ) corresponds o sabiliy. 3 Model error: A complicaed dynamics is used o generae he rue signal. Some simplified dynamics are used as he forecas model. To obain he saisics of (), here s no need o solve he -D Fokker-Planck equaion nor use he Mone Carlo simulaion. Insead, he saisics can be solved wih some cheap ways using he condiional momens. () 4/

5 & Coupled Generalized Fokker-Planck Eqns Disribuion and Momen Join disribuion: p(u, ). Marginal disribuion: π() = p(u, )du, π(u) = p(u, )d. Condiional disribuion: p(u ). Condiional Momen A one fixed : M N( ) = u N p(, u)du, As a funcion of : M N() = u N p(, u)du. Remark: M () = p(u, )du = π(). 5/

6 Tes Models Proposiion du = r(, )u + l(, ) + σu(, )Ẇ u (), d d = F(, ) + σ (, )Ẇ (), d The vecor of condiional momens M N(, ) of order N associaed wih he probabiliy densiy of () saisfies he coupled generalized Fokker-Planck equaions (CGFPE) MN(, ) =LFPMN(, ) + r(z, )NMN(, ) + Nl(, )M N (, ) + N(N )σ u(, )M N (, ), () () where M = π(, ) and we prescribe M and M and L FPM N(, ) = (F(, )MN(, )) + (σ (, )M N(, )). The momen equaion () can be solved recursively. 6/

7 Wih he condiional momens, M (, ) = p(, u, )du, M (, ) = up(, u, )du, M (, ) = u p(, u, )du, he mean and covariance of sysem () are solved via ( ) ū() = up(u,, )dud = up(u,, )du d = M (, )d, () = Var(u)() = ( = Var()() = ( = Cov(u, )() = = p(u,, )dud = ( u p(u,, )dud ū () ) u p(u,, )du p(u,, )dud () d ū () = ) p(u,, )du d () = up(u,, )dud ū ( ) up(u,, )du d ū = ) p(u,, )du d = M (, )d ū (), M (, )d, M (, )d (), M (, )d ū. 7/

8 III. Assume he rue signal is generaed from he following sysem, u du = ( u + f u)d + σ udw u, d = ( a + b c 3 + f )d + (A B)dW c + σdw, Equilibrium PDF of u True PDF Gaussian fi 4 p Equilibrium PDF of log scale u (3).5 p 5 log scale Assume linear observaions wih g = [, ], and herefore v m+ = u m+ + σ o m+. Observaion ime sep: =.5, less han he averaged decorrelaion ime τ u corr =.36 of u and decorrelaion ime τ corr = 3.64 of. Observaion noise level: R o equals.5% of he averaged energy of he rue signal. 8/

9 Measuremen of he filering skill. Le u m be he rue signal and ū m m be he filer esimae. Roo mean square (RMS) error RMSE = T (u m ū m m ) T T. m=t Paern correlaion (PC) (u m u m )(ū m m ū m m ) PC = (u m u m ) (ū m m ū m m ) PC= 3 PC= 3 9/

10 u u. The perfec forecas model, du = ( u + f u)d + σ udw u, d = ( a + b c 3 + f )d + (A B)dW c + σdw, f u =.5 Perfec model: RMSE=.643, PC= True signal Observaion Poserior mean f u =.5 sin(.5) Perfec model: RMSE=.75, PC=.9979 True signal Observaion Poserior mean Perfec in u Obs error f u =.643 (.977).864 f u =.5 sin(.5).76 (.9979).864 /

11 u u. Mean sochasic model (MSM), in which he damping in u is se o be he averaged value of and herefore no unresolved dynamics is included, du = ( M u + f u)d + σ udw u..5.5 f u = MSM: RMSE=.79, PC= f u =.5 sin(.5) MSM: RMSE=.39, PC= MSM in u Perfec in u Obs error f u =.79 (.968).643 (.977).864 f u =.5 sin(.5).39 (.995).76 (.9979).864 /

12 u u 3. The imperfec forecas model of is a linear Gaussian model, such ha he forecas model becomes he simplified SPEKF-ype model, du = ( u + f u)d + σ udw u, d = d M ( ˆ M )d + σ M dw. Remark: The evoluion of he mean and covariance of SPEKF model can be solved analyically. f u =.5.5 SPEKF: d =., σ = 3σu, RMSE=.645, PC= f u =.5 sin(.5) SPEKF: d =., σ = 3σu, RMSE=.75, PC= SPEKF in u Perfec in u Obs error f u =.645 (.974).643 (.977).864 f u =.5 sin(.5).75 (.9978).76 (.9979).864 /

13 Robusness of he parameers in SPEKF model wih f u =..8 Damping Noise RMS error SPEKF Perfec reference Obs MSM reference du = ( u + f u)d + σ udw u,.6 3 d M / d = d M ( ˆ M )d + σ M dw Paern correlaion d M /.6 σ M /σu.966 σ M /σu Figure : Robusness of he parameers in SPEKF. Top: filering skill dependence of d M wih fixed raio σ M /σu = 3. Boom: filering skill dependence of σm wih fixed raio dm / =.. 3/

14 B. Special ype of non-gaussian filer for he es model. Approximaion of he prior disribuion p (u,, ): Complee recovery of he marginal disribuion in via M (, ) = p(, u, )du. Condiional Gaussian for each fixed by making use of M (, ) = up(, u, )du, M (, ) = u p(, u, )du. 4/

15 Comparison of he full PDF and is non-gaussian and Gaussian approximaion a he equilibrium in he dynamical regime of filering. 5/

16 Comparison of wo momens filer and non-gaussian filer. Two momens filer Perfec model wo momens filer: RMSE=.643, PC= u.5 True signal Observaion Poserior sae Non-Gaussian filer Perfec model non Gaussian filer: RMSE=.64, PC=.979 u RMSE (PC) in u Obs error Two Momens.643 (.977).864 Non-Gaussian.64 (.979).864 6/

17 Filering skill as a funcion of observaion ime sep (op) and observaion noise (boom) using differen filers wih respec o he resolved variable u (unforced case: f u = ) RMS error Perfec model wo momens filer Perfec model non Gaussian filer SPEKF MSM Obs noise Obs ime sep obs Paern correlaion Obs ime sep obs.3.. RMS error Perfec model wo momens filer Perfec model non Gaussian filer SPEKF MSM Obs noise.98 Paern correlaion e.e.5e.e.5e Obs noise r o.88.5e.e.5e.e.5e Obs noise r o 7/

18 Filering skill as a funcion of observaion ime sep (op) and observaion noise (boom) using differen filers wih respec o he resolved variable u (unforced case: f u =.5 sin(.5))..4. RMS error MSM Obs noise. Paern correlaion Perfec model wo momens filer Perfec model non Gaussian filer SPEKF Obs noise Obs ime sep obs Obs ime sep obs.4. MSM Obs noise RMS error Paern correlaion Perfec model wo momens filer Perfec model non Gaussian filer SPEKF Obs noise e.e.5e.e.5e Obs noise r o.5e.e.5e.e.5e Obs noise r o 8/

19 Comparison of he unresolved variable. Equilibrium PDF of Perfec model wo momens filer.5 p Equilibrium PDF of.5 p Perfec model non Gaussian filer True Poserior Pah-wise soluion. Two momens filer Non-Gaussian filer RMS error Paern correlaion Informaion crieria. The Shannon enropy, S(U m), of he residual U m u m ū m m, U p, is given by S(U m) = p(u m) ln p(u m)du m. I expresses he uncerainy in he filer esimae ū m m abou he rue sae u m a ime m. Two momens filer Non-Gaussian filer Shannon enropy /

20 IV. In his work, we sudied Filering skill using wo momens filer wih differen predicion models. Filering skill using wo momens and non-gaussian filer in a perfec model seing. Main conclusions are summarized as follows: For he wo momens filer, SPEKF has comparable filering skill wih he perfec model filer while MSM filer has low filering skill. The special non-gaussian filer has very lile improvemen of he filering skill wih respec o he resolved variable u. 3 Filer esimaes of he unresolved variable are quie differen using wo momens filer and non-gaussian filer. /

21 Thank you /

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

Recent Developments In Evolutionary Data Assimilation And Model Uncertainty Estimation For Hydrologic Forecasting Hamid Moradkhani

Recent Developments In Evolutionary Data Assimilation And Model Uncertainty Estimation For Hydrologic Forecasting Hamid Moradkhani Feb 6-8, 208 Recen Developmens In Evoluionary Daa Assimilaion And Model Uncerainy Esimaion For Hydrologic Forecasing Hamid Moradkhani Cener for Complex Hydrosysems Research Deparmen of Civil, Consrucion

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type EMS SCM join meeing Barcelona, May 28-30, 2015 On sochasic parial differenial equaions of parabolic ype Isván Gyöngy School of Mahemaics and Maxwell Insiue Edinburgh Universiy 1 I. Filering problem II.

More information

Sensors, Signals and Noise

Sensors, Signals and Noise Sensors, Signals and Noise COURSE OUTLINE Inroducion Signals and Noise: 1) Descripion Filering Sensors and associaed elecronics rv 2017/02/08 1 Noise Descripion Noise Waveforms and Samples Saisics of Noise

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

Modeling Economic Time Series with Stochastic Linear Difference Equations

Modeling Economic Time Series with Stochastic Linear Difference Equations A. Thiemer, SLDG.mcd, 6..6 FH-Kiel Universiy of Applied Sciences Prof. Dr. Andreas Thiemer e-mail: andreas.hiemer@fh-kiel.de Modeling Economic Time Series wih Sochasic Linear Difference Equaions Summary:

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation Mos Probable Phase Porrais of Sochasic Differenial Equaions and Is Numerical Simulaion Bing Yang, Zhu Zeng and Ling Wang 3 School of Mahemaics and Saisics, Huazhong Universiy of Science and Technology,

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

Appendix to Creating Work Breaks From Available Idleness

Appendix to Creating Work Breaks From Available Idleness Appendix o Creaing Work Breaks From Available Idleness Xu Sun and Ward Whi Deparmen of Indusrial Engineering and Operaions Research, Columbia Universiy, New York, NY, 127; {xs2235,ww24}@columbia.edu Sepember

More information

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen Mulivariae Regular Variaion wih Applicaion o Financial Time Series Models Richard A. Davis Colorado Sae Universiy Bojan Basrak Eurandom Thomas Mikosch Universiy of Groningen Ouline + Characerisics of some

More information

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France ADAPTIVE SIGNAL PROCESSING USING MAXIMUM ENTROPY ON THE MEAN METHOD AND MONTE CARLO ANALYSIS Pavla Holejšovsá, Ing. *), Z. Peroua, Ing. **), J.-F. Bercher, Prof. Assis. ***) Západočesá Univerzia v Plzni,

More information

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen Sample Auocorrelaions for Financial Time Series Models Richard A. Davis Colorado Sae Universiy Thomas Mikosch Universiy of Copenhagen Ouline Characerisics of some financial ime series IBM reurns NZ-USA

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Using the Kalman filter Extended Kalman filter

Using the Kalman filter Extended Kalman filter Using he Kalman filer Eended Kalman filer Doz. G. Bleser Prof. Sricker Compuer Vision: Objec and People Tracking SA- Ouline Recap: Kalman filer algorihm Using Kalman filers Eended Kalman filer algorihm

More information

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004 Augmened Realiy II Kalman Filers Gudrun Klinker May 25, 2004 Ouline Moivaion Discree Kalman Filer Modeled Process Compuing Model Parameers Algorihm Exended Kalman Filer Kalman Filer for Sensor Fusion Lieraure

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Roboica Anno accademico 2006/2007 Davide Migliore migliore@ele.polimi.i Today Eercise session: An Off-side roblem Robo Vision Task Measuring NBA layers erformance robabilisic Roboics Inroducion The Bayesian

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Air Traffic Forecast Empirical Research Based on the MCMC Method

Air Traffic Forecast Empirical Research Based on the MCMC Method Compuer and Informaion Science; Vol. 5, No. 5; 0 ISSN 93-8989 E-ISSN 93-8997 Published by Canadian Cener of Science and Educaion Air Traffic Forecas Empirical Research Based on he MCMC Mehod Jian-bo Wang,

More information

Stochastic Structural Dynamics. Lecture-6

Stochastic Structural Dynamics. Lecture-6 Sochasic Srucural Dynamics Lecure-6 Random processes- Dr C S Manohar Deparmen of Civil Engineering Professor of Srucural Engineering Indian Insiue of Science Bangalore 560 0 India manohar@civil.iisc.erne.in

More information

Recent Developments in the Unit Root Problem for Moving Averages

Recent Developments in the Unit Root Problem for Moving Averages Recen Developmens in he Uni Roo Problem for Moving Averages Richard A. Davis Colorado Sae Universiy Mei-Ching Chen Chaoyang Insiue of echnology homas Miosch Universiy of Groningen Non-inverible MA() Model

More information

Simulating models with heterogeneous agents

Simulating models with heterogeneous agents Simulaing models wih heerogeneous agens Wouer J. Den Haan London School of Economics c by Wouer J. Den Haan Individual agen Subjec o employmen shocks (ε i, {0, 1}) Incomplee markes only way o save is hrough

More information

Data Assimilation. Alan O Neill National Centre for Earth Observation & University of Reading

Data Assimilation. Alan O Neill National Centre for Earth Observation & University of Reading Daa Assimilaion Alan O Neill Naional Cenre for Earh Observaion & Universiy of Reading Conens Moivaion Univariae scalar) daa assimilaion Mulivariae vecor) daa assimilaion Opimal Inerpoleion BLUE) 3d-Variaional

More information

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM Probabilisic Roboics SLAM The SLAM Problem SLAM is he process by which a robo builds a map of he environmen and, a he same ime, uses his map o compue is locaion Localizaion: inferring locaion given a map

More information

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite American Journal of Operaions Research, 08, 8, 8-9 hp://wwwscirporg/journal/ajor ISSN Online: 60-8849 ISSN Prin: 60-8830 The Opimal Sopping Time for Selling an Asse When I Is Uncerain Wheher he Price Process

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

The Potential Effectiveness of the Detection of Pulsed Signals in the Non-Uniform Sampling

The Potential Effectiveness of the Detection of Pulsed Signals in the Non-Uniform Sampling The Poenial Effeciveness of he Deecion of Pulsed Signals in he Non-Uniform Sampling Arhur Smirnov, Sanislav Vorobiev and Ajih Abraham 3, 4 Deparmen of Compuer Science, Universiy of Illinois a Chicago,

More information

Sliding Mode Controller for Unstable Systems

Sliding Mode Controller for Unstable Systems S. SIVARAMAKRISHNAN e al., Sliding Mode Conroller for Unsable Sysems, Chem. Biochem. Eng. Q. 22 (1) 41 47 (28) 41 Sliding Mode Conroller for Unsable Sysems S. Sivaramakrishnan, A. K. Tangirala, and M.

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

Testing the Random Walk Model. i.i.d. ( ) r

Testing the Random Walk Model. i.i.d. ( ) r he random walk heory saes: esing he Random Walk Model µ ε () np = + np + Momen Condiions where where ε ~ i.i.d he idea here is o es direcly he resricions imposed by momen condiions. lnp lnp µ ( lnp lnp

More information

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework (Sas 6, Winer 7 Due Tuesday April 8, in class Quesions are derived from problems in Sochasic Processes by S. Ross.. A sochasic process {X(, } is said o be saionary if X(,..., X( n has he same

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Forecasting optimally

Forecasting optimally I) ile: Forecas Evaluaion II) Conens: Evaluaing forecass, properies of opimal forecass, esing properies of opimal forecass, saisical comparison of forecas accuracy III) Documenaion: - Diebold, Francis

More information

What Ties Return Volatilities to Price Valuations and Fundamentals? On-Line Appendix

What Ties Return Volatilities to Price Valuations and Fundamentals? On-Line Appendix Wha Ties Reurn Volailiies o Price Valuaions and Fundamenals? On-Line Appendix Alexander David Haskayne School of Business, Universiy of Calgary Piero Veronesi Universiy of Chicago Booh School of Business,

More information

Data assimilation for local rainfall near Tokyo on 18 July 2013 using EnVAR with observation space localization

Data assimilation for local rainfall near Tokyo on 18 July 2013 using EnVAR with observation space localization Daa assimilaion for local rainfall near Tokyo on 18 July 2013 using EnVAR wih observaion space localizaion *1 Sho Yokoa, 1 Masaru Kunii, 1 Kazumasa Aonashi, 1 Seiji Origuchi, 2,1 Le Duc, 1 Takuya Kawabaa,

More information

Probabilistic Robotics

Probabilistic Robotics Probabilisic Roboics Bayes Filer Implemenaions Gaussian filers Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel Gaussians : ~ π e p N p - Univariae / / : ~ μ μ μ e p Ν p d π Mulivariae

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Elements of Stochastic Processes Lecture II Hamid R. Rabiee

Elements of Stochastic Processes Lecture II Hamid R. Rabiee Sochasic Processes Elemens of Sochasic Processes Lecure II Hamid R. Rabiee Overview Reading Assignmen Chaper 9 of exbook Furher Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A Firs Course

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM Probabilisic Roboics SLAM The SLAM Problem SLAM is he process by which a robo builds a map of he environmen and, a he same ime, uses his map o compue is locaion Localizaion: inferring locaion given a map

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information

A variational radial basis function approximation for diffusion processes.

A variational radial basis function approximation for diffusion processes. A variaional radial basis funcion approximaion for diffusion processes. Michail D. Vreas, Dan Cornford and Yuan Shen {vreasm, d.cornford, y.shen}@ason.ac.uk Ason Universiy, Birmingham, UK hp://www.ncrg.ason.ac.uk

More information

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1 Chaper 5 Heerocedasic Models Inroducion o ime series (2008) 1 Chaper 5. Conens. 5.1. The ARCH model. 5.2. The GARCH model. 5.3. The exponenial GARCH model. 5.4. The CHARMA model. 5.5. Random coefficien

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19 Sequenial Imporance Sampling (SIS) AKA Paricle Filering, Sequenial Impuaion (Kong, Liu, Wong, 994) For many problems, sampling direcly from he arge disribuion is difficul or impossible. One reason possible

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2 Soluions o he Exam Digial Communicaions I given on he 11h of June 2007 Quesion 1 (14p) a) (2p) If X and Y are independen Gaussian variables, hen E [ XY ]=0 always. (Answer wih RUE or FALSE) ANSWER: False.

More information

EKF SLAM vs. FastSLAM A Comparison

EKF SLAM vs. FastSLAM A Comparison vs. A Comparison Michael Calonder, Compuer Vision Lab Swiss Federal Insiue of Technology, Lausanne EPFL) michael.calonder@epfl.ch The wo algorihms are described wih a planar robo applicaion in mind. Generalizaion

More information

Maximum Likelihood Parameter Estimation in State-Space Models

Maximum Likelihood Parameter Estimation in State-Space Models Maximum Likelihood Parameer Esimaion in Sae-Space Models Arnaud Douce Deparmen of Saisics, Oxford Universiy Universiy College London 4 h Ocober 212 A. Douce (UCL Maserclass Oc. 212 4 h Ocober 212 1 / 32

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

Anti-Disturbance Control for Multiple Disturbances

Anti-Disturbance Control for Multiple Disturbances Workshop a 3 ACC Ani-Disurbance Conrol for Muliple Disurbances Lei Guo (lguo@buaa.edu.cn) Naional Key Laboraory on Science and Technology on Aircraf Conrol, Beihang Universiy, Beijing, 9, P.R. China. Presened

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1 Modeling and Forecasing Volailiy Auoregressive Condiional Heeroskedasiciy Models Anhony Tay Slide 1 smpl @all line(m) sii dl_sii S TII D L _ S TII 4,000. 3,000.1.0,000 -.1 1,000 -. 0 86 88 90 9 94 96 98

More information

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2 Financial Economerics Kalman Filer: some applicaions o Finance Universiy of Evry - Maser 2 Eric Bouyé January 27, 2009 Conens 1 Sae-space models 2 2 The Scalar Kalman Filer 2 21 Presenaion 2 22 Summary

More information

Non-Gaussian Test Models for Prediction and State Estimation with Model Errors

Non-Gaussian Test Models for Prediction and State Estimation with Model Errors Non-Gassian Tes Models for Predicion and Sae Esimaion wih Model Errors M. Branicki, N. Chen, and A.J. Majda Deparmen of Mahemaics and Cener for Amosphere Ocean Science, Coran Insie of Mahemaical Sciences

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Aricle from Predicive Analyics and Fuurism July 6 Issue An Inroducion o Incremenal Learning By Qiang Wu and Dave Snell Machine learning provides useful ools for predicive analyics The ypical machine learning

More information

SEIF, EnKF, EKF SLAM. Pieter Abbeel UC Berkeley EECS

SEIF, EnKF, EKF SLAM. Pieter Abbeel UC Berkeley EECS SEIF, EnKF, EKF SLAM Pieer Abbeel UC Berkeley EECS Informaion Filer From an analyical poin of view == Kalman filer Difference: keep rack of he inverse covariance raher han he covariance marix [maer of

More information

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian CS 4495 Compuer Vision A. Bobick CS 4495 Compuer Vision - KalmanGaussian Aaron Bobick School of Ineracive Compuing CS 4495 Compuer Vision A. Bobick Adminisrivia S5 will be ou his Thurs Due Sun Nov h :55pm

More information

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples EE263 Auumn 27-8 Sephen Boyd Lecure 1 Overview course mechanics ouline & opics wha is a linear dynamical sysem? why sudy linear sysems? some examples 1 1 Course mechanics all class info, lecures, homeworks,

More information

BOOTSTRAP PREDICTION INTERVALS FOR TIME SERIES MODELS WITH HETROSCEDASTIC ERRORS. Department of Statistics, Islamia College, Peshawar, KP, Pakistan 2

BOOTSTRAP PREDICTION INTERVALS FOR TIME SERIES MODELS WITH HETROSCEDASTIC ERRORS. Department of Statistics, Islamia College, Peshawar, KP, Pakistan 2 Pak. J. Sais. 017 Vol. 33(1), 1-13 BOOTSTRAP PREDICTIO ITERVAS FOR TIME SERIES MODES WITH HETROSCEDASTIC ERRORS Amjad Ali 1, Sajjad Ahmad Khan, Alamgir 3 Umair Khalil and Dos Muhammad Khan 1 Deparmen of

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Diagnostic plots for dynamical systems

Diagnostic plots for dynamical systems Diagnosic plos for dynamical sysems Richard Wilkinson, Kamonra Suphawan, Theo Kypraios School of Mahemaical Sciences Universiy of Noingham r.d.wilkinson@noingham.ac.uk UCM - July 2012 Inroducion Dynamical

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Inroducion o Mobile Roboics Bayes Filer Kalman Filer Wolfram Burgard Cyrill Sachniss Giorgio Grisei Maren Bennewiz Chrisian Plagemann Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel

More information

The complexity of climate model drifts

The complexity of climate model drifts The complexiy of climae model drifs Davide Zanchein Angelo Rubino Maeregu Arisido Carlo Gaean Universiy of Venice, Dep. of Environmeal Sc., Informaics and Saisics A conribuion o PREFACE-WP10: (Saisical

More information

Problem Set on Differential Equations

Problem Set on Differential Equations Problem Se on Differenial Equaions 1. Solve he following differenial equaions (a) x () = e x (), x () = 3/ 4. (b) x () = e x (), x (1) =. (c) xe () = + (1 x ()) e, x () =.. (An asse marke model). Le p()

More information

Backward stochastic dynamics on a filtered probability space

Backward stochastic dynamics on a filtered probability space Backward sochasic dynamics on a filered probabiliy space Gechun Liang Oxford-Man Insiue, Universiy of Oxford based on join work wih Terry Lyons and Zhongmin Qian Page 1 of 15 gliang@oxford-man.ox.ac.uk

More information

Math 106: Review for Final Exam, Part II. (x x 0 ) 2 = !

Math 106: Review for Final Exam, Part II. (x x 0 ) 2 = ! Mah 6: Review for Final Exam, Par II. Use a second-degree Taylor polynomial o esimae 8. We choose f(x) x and x 7 because 7 is he perfec cube closes o 8. f(x) x / f(7) f (x) x / f (7) x / 7 / 7 f (x) 9

More information

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data Chaper 2 Models, Censoring, and Likelihood for Failure-Time Daa William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

The consumption-based determinants of the term structure of discount rates: Corrigendum. Christian Gollier 1 Toulouse School of Economics March 2012

The consumption-based determinants of the term structure of discount rates: Corrigendum. Christian Gollier 1 Toulouse School of Economics March 2012 The consumpion-based deerminans of he erm srucure of discoun raes: Corrigendum Chrisian Gollier Toulouse School of Economics March 0 In Gollier (007), I examine he effec of serially correlaed growh raes

More information

Book Corrections for Optimal Estimation of Dynamic Systems, 2 nd Edition

Book Corrections for Optimal Estimation of Dynamic Systems, 2 nd Edition Boo Correcions for Opimal Esimaion of Dynamic Sysems, nd Ediion John L. Crassidis and John L. Junins November 17, 017 Chaper 1 This documen provides correcions for he boo: Crassidis, J.L., and Junins,

More information

Solution of Assignment #2

Solution of Assignment #2 Soluion of Assignmen #2 Insrucor: A. Simchi Quesion #1: a r 1 c i 7, and λ n c i n i 7 38.7.189 An approximae 95% confidence inerval for λ is given by ˆλ ± 1.96 ˆλ r.189 ± 1.96.189 7.47.315 Noe ha he above

More information

Tracking. Announcements

Tracking. Announcements Tracking Tuesday, Nov 24 Krisen Grauman UT Ausin Announcemens Pse 5 ou onigh, due 12/4 Shorer assignmen Auo exension il 12/8 I will no hold office hours omorrow 5 6 pm due o Thanksgiving 1 Las ime: Moion

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED 0.1 MAXIMUM LIKELIHOOD ESTIMATIO EXPLAIED Maximum likelihood esimaion is a bes-fi saisical mehod for he esimaion of he values of he parameers of a sysem, based on a se of observaions of a random variable

More information

Ecological Archives E A1. Meghan A. Duffy, Spencer R. Hall, Carla E. Cáceres, and Anthony R. Ives.

Ecological Archives E A1. Meghan A. Duffy, Spencer R. Hall, Carla E. Cáceres, and Anthony R. Ives. Ecological Archives E9-95-A1 Meghan A. Duffy, pencer R. Hall, Carla E. Cáceres, and Anhony R. ves. 29. Rapid evoluion, seasonaliy, and he erminaion of parasie epidemics. Ecology 9:1441 1448. Appendix A.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 0.038/NCLIMATE893 Temporal resoluion and DICE * Supplemenal Informaion Alex L. Maren and Sephen C. Newbold Naional Cener for Environmenal Economics, US Environmenal Proecion

More information

Stationary Time Series

Stationary Time Series 3-Jul-3 Time Series Analysis Assoc. Prof. Dr. Sevap Kesel July 03 Saionary Time Series Sricly saionary process: If he oin dis. of is he same as he oin dis. of ( X,... X n) ( X h,... X nh) Weakly Saionary

More information

Numerical Dispersion

Numerical Dispersion eview of Linear Numerical Sabiliy Numerical Dispersion n he previous lecure, we considered he linear numerical sabiliy of boh advecion and diffusion erms when approimaed wih several spaial and emporal

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model Lecure Noes 3: Quaniaive Analysis in DSGE Models: New Keynesian Model Zhiwei Xu, Email: xuzhiwei@sju.edu.cn The moneary policy plays lile role in he basic moneary model wihou price sickiness. We now urn

More information

28. Narrowband Noise Representation

28. Narrowband Noise Representation Narrowband Noise Represenaion on Mac 8. Narrowband Noise Represenaion In mos communicaion sysems, we are ofen dealing wih band-pass filering of signals. Wideband noise will be shaped ino bandlimied noise.

More information

WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM

WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM Shinsuke KOBAYASHI, Shogo MURAMATSU, Hisakazu KIKUCHI, Masahiro IWAHASHI Dep. of Elecrical and Elecronic Eng., Niigaa Universiy, 8050 2-no-cho Igarashi,

More information