A Bayesian Approach to Spectral Analysis

Size: px
Start display at page:

Download "A Bayesian Approach to Spectral Analysis"

Transcription

1 Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2 + θ). Examples: plasma wave diagnosic signals Signals propagaed hrough dispersive media (seismic cases, plasmas) Graviaional waves from inspiraling binary sars Doppler-shifed signals over fracions of an orbi (e.g. acceleraion of pulsar in is orbi) Jaynes Approach o Specral Analysis: cf. Jaynes Bayesian Specrum and Chirp Analysis in Maximum Enropy and Bayesian Specral Analysis and Esimaion Problems Cied by Brehors in Bayesian Specrum Analysis and Parameer Esimaion, (1987) Briefly by Gregory in Chaper 13 of Bayesian Logical Daa Analysis for he Physical Sciences Resul: Opimal processing is a nonlinear operaion on he daa wihou recourse o smoohing. However, he DFT-based specrum (he periodogram ) plays a key role in he esimaion. 1

2 Sar wih Bayes heorem p(h/di) }{{} poserior prob. = p(h/i) }{{} prior prob. new daa {}}{ p(d/hi) p(d/i) In his conex, probabiliies represen a simple mapping of degrees of belief ono real numbers. Recall p(d/hi) vs.d for fixed H = sampling disribuion p(d/hi) vs.h for fixed D = likelihood funcion Read H as a saemen ha a parameer vecor lies in a region of parameer space. 2

3 Daa model: y() = f() + e() f() = A cos(ω + α 2 + θ) wih ω = ω 0 and α = α 0 for he daa e() = whie gaussian noise, e = 0, e 2 = σ 2 Daa Se: D = {y(), T }, N = 2T + 1 daa poins. 3

4 Daa Probabiliy: The probabiliy of obaining a daa se of N samples is P (D HI) = P [y()] = T = T (2πσ 2 ) 1/2 e 1 2σ2[y() f()]2, (1) which we can rewrie as a likelihood funcion once we acquire a daa se and evaluae he probabiliy for a specific H. Wriing ou he parameers explicily, he likelihood funcion is L(A, ω, α, θ) e 1 2σ 2 T = T [y() A cos(ω + α 2 + θ)] 2 For simpliciy, assume ha ωt 1 so ha many cycles of oscillaion are summed over. Then cos 2 (ω + α 2 + θ) = 1 2 [1 + cos 2(ω + α2 + θ)] 2T N 2 4

5 Expand he argumen of he exponenial in he likelihood funcion, we have [ y() A cos(ω + α 2 + θ) ] 2 = y 2 () + A 2 cos 2 (ω + α 2 + θ) 2Ay() cos(ω + α 2 + θ) We care only abou erms ha are funcions of he parameers, so we drop he y 2 () erm o ge 1 2σ 2 T = T [y() A cos(ω + α 2 + θ)] 2 1 [A 2 cos 2 (ω + α 2 + θ) 2Ay() cos(ω + α 2 + 2σ 2 The likelihood funcion becomes L(A, ω, α, θ) e A σ 2 A σ 2 y() cos(ω + α 2 + θ) NA2 4σ 2 y() cos(ω + α 2 + θ) NA2 4σ 2 Inegraing ou he phase: In calculaing a power specrum [in his case, a chirped power specrum ( chirpogram )], we do no care abou he phase of any sinusoid in he daa. In Bayesian esimaion, such a parameer is called a nuisance parameer. Since we do no know anyhing abou θ, we inegrae over is prior disribuion, a pdf ha is 5

6 uniform over [0, 2π]: f θ (θ) = 1 2π 0 θ 2π 0 oherwise. The marginalized likelihood funcion becomes Using he ideniy we have L(A, ω, α) 1 2π dθ L(A, ω, α, θ) 2π 0 = 1 2π A dθ exp 2π 0 σ 2 = exp NA2 4σ 2 1 2π 2π 0 y() cos(ω + α 2 + θ) NA2 4σ 2 dθ exp A σ y() cos(ω + α 2 + θ) cos(ω + α 2 + θ) = cos(ω + α 2 ) cos θ sin(ω + α 2 ) sin θ y() cos(ω + α 2 + θ) = cos θ y() cos(ω + α 2 ) } {{ } P y() sin(ω + α 2 ) }{{} Q P cos θ Q sin θ = P 2 + Q 2 cos[θ + an 1 (Q/P )]. 6

7 This resul may be used o evaluae he inegral over θ in he marginalized likelihood funcion: 1 2π 2π 0 dθ exp A σ y() cos(ω + α 2 + θ) To evaluae he inegral we use he ideniy, This yields 1 2π 2π 0 I 0 (x) 1 2π dθ exp A σ 2π 0 = 1 2π 2π 0 dθ e A σ 2 dθ e x cos θ = modified Bessel funcion y() cos(ω + α 2 + θ) P 2 + Q 2 cos[θ + an 1 (Q/P )] }{{} irrelevan phase shif = I A 0 P σ Q 2 We now simplify P 2 + Q 2 : P 2 + Q 2 = [ y() cos(ω + α 2 ) ] 2 + [ y sin(ω + α 2 ) ] 2 P 2 + Q 2 = = y()y( ) [cos(ω + α 2 ) cos(ω + α 2 ) + sin(ω + α 2 ) sin(ω + α 2 )] }{{} cos[ω( ) + α( 2 2 )] y()y( ) cos[ω( ) + α( 2 2 )]. 7

8 Define C(ω, α) N 1 (P 2 +Q 2 ) = N 1 y()y( ) cos[ω( )+α( 2 2 )], Then he inegral over θ gives 2π 0 dθ L(A, ω, α, θ) I 0 A NC(ω, α) σ 2 and he marginalized likelihood is L(A, ω, α) = e NA2 4σ 2 I 0 A NC(ω, α) σ 2. 8

9 Noes: (1) The daa appear only in C(ω, α). (2) C is a sufficien saisic, meaning ha i conains all informaion from he daa ha are relevan o inference using he likelihood funcion. (3) How do we read L(A, ω, α)? As he probabiliy disribuion of he parameers A, ω, α in erms of he daa dependen quaniy C(ω, α). (Noe ha L is no normalized as a PDF). As such, L is a quie differen quaniy from he Fourier-based power specrum. (4) Wha is he quaniy C(ω, α) N 1 y()y( ) cos[ω( ) + α( 2 2 )]? For a given daa se, ω, α are variables. If we plo C(ω, α), we expec o ge a large value when ω = ω signal, α = α signal. (5) For a non-chirped bu oscillaory signal (ω 0, α = 0), he quaniy C(ω, α) is nohing oher han he periodogram (he squared magniude of he Fourier ransform of he daa). We hen see ha, for his case, he likelihood funcion is a nonlinear funcion of he Fourier esimae for he power specrum. 9

10 Inerpreaion of he Bayesian and Fourier Approaches We found he marginalized likelihood for he frequency and chirp rae o be L(A, ω, α) = e NA2 4σ 2 I 0 A NC(ω, α) and he limiing form for he Bessel funcion s argumen x 1 is I 0 (x) ex 2πx. σ 2. In his case he marginalized likelihood is L(A, ω, α) e NA2 4σ 2 I 0 A N C(ω, α) σ 2 e ( 2πA N C(ω, α)/σ 2 ) 1/2. e NA2 4σ 2 A N C(ω, α) σ 2 Since C(ω, α) is large when ω and α mach hose of any rue signal, we see ha i is exponeniaed as compared o appearing linearly in he periodogram. 10

11 Now le s consider he case wih no chirp rae, α = 0. Examples in he lieraure show ha he widh of he Bayesian PDF is much narrower han he periodogram, C(ω, 0). Does his mean ha he uncerainy principle has been avoided? The answer is no! Uncerainy Principle in he Periodogram: For a daa se of lengh T, he frequency resoluion implied by he specral window funcion is Widh of he Bayesian PDF: δω 2πδf 2π T. When he argumen of he Bessel funcion is large he exponeniaion causes he PDF o be much narrower han he specral window for he periodogram. 11

12 Inerpreaion: The periodogram is he disribuion of power (or variance) wih frequency for he paricular realizaion of daa used o form he periodogram. The specral window also depics he disribuion of variance for a pure sinusoid in he daa (wih infinie signal o noise raio). The Bayesian poserior is he PDF for he frequency of a sinusoid and herefore represens a very differen quaniy han he periodogram and are hus no direcly comparable. 12

13 1. The Bayesian mehod addresses he quesion, wha is he PDF for he frequency of he sinusoid ha is in he daa.? 2. The periodogram is he disribuion of variance in frequency. 3. If we use he periodogram o esimae he sinusoid s frequency, we ge a resul ha is more comparable: (a) Firs noe ha he widh of he poserior PDF involves he signal o noise raio (in he square roo of he periodogram) NA/σ while he widh of he periodogram s specral window is independen of he SNR. (b) General resul: if a specral line has widh ω, is cenroid can be deermined o an accuracy δω ω SNR. This resul follows from mached filering, which we will discuss laer on. (c) Quaniaively, he periodogram yields he same informaion abou he locaion of he specral line as does he poserior PDF. 4. Problem: derive an esimae for he widh of he poserior PDF ha can be compared wih he esimae for he periodogram. 13

14 Comparison of Specral Line Localizaion Properies Claim: While he periodogram gives a specral line ha is much broader han he widh of he poserior PDF for frequency, he abiliy o localize he specral line in frequency is he same for boh approaches. Periodogram: The signal-o-noise raio (S/N) of he line is NA/σ (as in DFT of complex exponenial). The specral resoluion is δω res 2π/(2T + 1) (since our ime inerval is [ T, T ]. The widh of he line (e.g. FWHM) is of order he specral resoluion. Assume S/N is large. Poserior PDF: The PDF for ω is dominaed by he exponenial facor E(ω) = exp{a NC(ω, 0)/σ 2 } From he expression for C we have C max = C(ω = ω 0 ) = NA 2 /4 so E max = e A NC max /σ 2 = e (N/2)(A/σ)2 For offse frequencies ω = ω 0 + δω we can expand various hings o show ha E(ω 0 + δω) E max e (N/2)(A/σ)2 [δω(2t +1)/ 12] 2 This funcion has a widh when he exponenial = 1/2 or δω = 12 In erms of resoluion unis his is δω = ( ) σ 12 δω res NA = σ N(2T +1) NA 1 S/N of line in periodogram 14

15 Figure 1: Lef: Time series of sinusoid + whie noise wih A/σ = 1 sampled N = 500 imes over an inerval of lengh T = 500. Righ: Plo of he periodogram (red) and Bayesian PDF of he ime series. 15

16 Figure 2: Lef: Time series of sinusoid + whie noise wih A/σ = 1/4 sampled N = 500 imes over an inerval of lengh T = 500. Righ: Plo of he periodogram (red) and Bayesian PDF of he ime series. 16

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2013

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2013 A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2013 Lecture 16 More on spectral analysis Reading: Chaper 13: Bayesian Revolution in Spectral Analysis (already assigned)

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.00 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 0 a 0 5 a k sin πk 5 sin πk 5 πk for k 0 a k 0 πk j

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

From Complex Fourier Series to Fourier Transforms

From Complex Fourier Series to Fourier Transforms Topic From Complex Fourier Series o Fourier Transforms. Inroducion In he previous lecure you saw ha complex Fourier Series and is coeciens were dened by as f ( = n= C ne in! where C n = T T = T = f (e

More information

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn MIT Deparmen of Chemisry 5.74, Spring 4: Inroducory Quanum Mechanics II p. 33 Insrucor: Prof. Andrei Tokmakoff PERTURBATION THEORY Given a Hamilonian H ( ) = H + V ( ) where we know he eigenkes for H H

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Represenaion of Signals in Terms of Frequency Componens Chaper 4 The Fourier Series and Fourier Transform Consider he CT signal defined by x () = Acos( ω + θ ), = The frequencies `presen in he signal are

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.003 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 3 0 a 0 5 a k a k 0 πk j3 e 0 e j πk 0 jπk πk e 0

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Object tracking: Using HMMs to estimate the geographical location of fish

Object tracking: Using HMMs to estimate the geographical location of fish Objec racking: Using HMMs o esimae he geographical locaion of fish 02433 - Hidden Markov Models Marin Wæver Pedersen, Henrik Madsen Course week 13 MWP, compiled June 8, 2011 Objecive: Locae fish from agging

More information

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se # Wha are Coninuous-Time Signals??? /6 Coninuous-Time Signal Coninuous Time (C-T) Signal: A C-T signal is defined on he coninuum of ime values. Tha is:

More information

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow KEY Mah 334 Miderm III Winer 008 secion 00 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

( ) = b n ( t) n " (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2.

( ) = b n ( t) n  (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2. Andrei Tokmakoff, MIT Deparmen of Chemisry, 3/14/007-6.4 PERTURBATION THEORY Given a Hamilonian H = H 0 + V where we know he eigenkes for H 0 : H 0 n = E n n, we can calculae he evoluion of he wavefuncion

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data Chaper 2 Models, Censoring, and Likelihood for Failure-Time Daa William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Power of Random Processes 1/40

Power of Random Processes 1/40 Power of Random Processes 40 Power of a Random Process Recall : For deerminisic signals insananeous power is For a random signal, is a random variable for each ime. hus here is no single # o associae wih

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis Speaker Adapaion Techniques For Coninuous Speech Using Medium and Small Adapaion Daa Ses Consaninos Boulis Ouline of he Presenaion Inroducion o he speaker adapaion problem Maximum Likelihood Sochasic Transformaions

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

The complex Fourier series has an important limiting form when the period approaches infinity, i.e., T 0. 0 since it is proportional to 1/L, but

The complex Fourier series has an important limiting form when the period approaches infinity, i.e., T 0. 0 since it is proportional to 1/L, but Fourier Transforms The complex Fourier series has an imporan limiing form when he period approaches infiniy, i.e., T or L. Suppose ha in his limi () k = nπ L remains large (ranging from o ) and (2) c n

More information

5.2. The Natural Logarithm. Solution

5.2. The Natural Logarithm. Solution 5.2 The Naural Logarihm The number e is an irraional number, similar in naure o π. Is non-erminaing, non-repeaing value is e 2.718 281 828 59. Like π, e also occurs frequenly in naural phenomena. In fac,

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

ES.1803 Topic 22 Notes Jeremy Orloff

ES.1803 Topic 22 Notes Jeremy Orloff ES.83 Topic Noes Jeremy Orloff Fourier series inroducion: coninued. Goals. Be able o compue he Fourier coefficiens of even or odd periodic funcion using he simplified formulas.. Be able o wrie and graph

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Lecture 2 April 04, 2018

Lecture 2 April 04, 2018 Sas 300C: Theory of Saisics Spring 208 Lecure 2 April 04, 208 Prof. Emmanuel Candes Scribe: Paulo Orensein; edied by Sephen Baes, XY Han Ouline Agenda: Global esing. Needle in a Haysack Problem 2. Threshold

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

Sensors, Signals and Noise

Sensors, Signals and Noise Sensors, Signals and Noise COURSE OUTLINE Inroducion Signals and Noise: 1) Descripion Filering Sensors and associaed elecronics rv 2017/02/08 1 Noise Descripion Noise Waveforms and Samples Saisics of Noise

More information

Wavelet Methods for Time Series Analysis. What is a Wavelet? Part I: Introduction to Wavelets and Wavelet Transforms. sines & cosines are big waves

Wavelet Methods for Time Series Analysis. What is a Wavelet? Part I: Introduction to Wavelets and Wavelet Transforms. sines & cosines are big waves Wavele Mehods for Time Series Analysis Par I: Inroducion o Waveles and Wavele Transforms waveles are analysis ools for ime series and images as a subjec, waveles are relaively new (983 o presen) a synhesis

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2 Soluions o he Exam Digial Communicaions I given on he 11h of June 2007 Quesion 1 (14p) a) (2p) If X and Y are independen Gaussian variables, hen E [ XY ]=0 always. (Answer wih RUE or FALSE) ANSWER: False.

More information

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e PHYS67 Class 3 ourier Transforms In he limi T, he ourier series becomes an inegral ( nt f in T ce f n f f e d, has been replaced by ) where i f e d is he ourier ransform of f() which is he inverse ourier

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LDA, logisic

More information

Homework sheet Exercises done during the lecture of March 12, 2014

Homework sheet Exercises done during the lecture of March 12, 2014 EXERCISE SESSION 2A FOR THE COURSE GÉOMÉTRIE EUCLIDIENNE, NON EUCLIDIENNE ET PROJECTIVE MATTEO TOMMASINI Homework shee 3-4 - Exercises done during he lecure of March 2, 204 Exercise 2 Is i rue ha he parameerized

More information

Spring Ammar Abu-Hudrouss Islamic University Gaza

Spring Ammar Abu-Hudrouss Islamic University Gaza Chaper 7 Reed-Solomon Code Spring 9 Ammar Abu-Hudrouss Islamic Universiy Gaza ١ Inroducion A Reed Solomon code is a special case of a BCH code in which he lengh of he code is one less han he size of he

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

KEY. Math 334 Midterm III Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Fall 2008 sections 001 and 003 Instructor: Scott Glasgow KEY Mah 334 Miderm III Fall 28 secions and 3 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

SINUSOIDAL WAVEFORMS

SINUSOIDAL WAVEFORMS SINUSOIDAL WAVEFORMS The sinusoidal waveform is he only waveform whose shape is no affeced by he response characerisics of R, L, and C elemens. Enzo Paerno CIRCUIT ELEMENTS R [ Ω ] Resisance: Ω: Ohms Georg

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

Laplace Transform and its Relation to Fourier Transform

Laplace Transform and its Relation to Fourier Transform Chaper 6 Laplace Transform and is Relaion o Fourier Transform (A Brief Summary) Gis of he Maer 2 Domains of Represenaion Represenaion of signals and sysems Time Domain Coninuous Discree Time Time () [n]

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Understanding the asymptotic behaviour of empirical Bayes methods

Understanding the asymptotic behaviour of empirical Bayes methods Undersanding he asympoic behaviour of empirical Bayes mehods Boond Szabo, Aad van der Vaar and Harry van Zanen EURANDOM, 11.10.2011. Conens 2/20 Moivaion Nonparameric Bayesian saisics Signal in Whie noise

More information

Content-Based Shape Retrieval Using Different Shape Descriptors: A Comparative Study Dengsheng Zhang and Guojun Lu

Content-Based Shape Retrieval Using Different Shape Descriptors: A Comparative Study Dengsheng Zhang and Guojun Lu Conen-Based Shape Rerieval Using Differen Shape Descripors: A Comparaive Sudy Dengsheng Zhang and Guojun Lu Gippsland School of Compuing and Informaion Technology Monash Universiy Churchill, Vicoria 3842

More information

6.003 Homework #8 Solutions

6.003 Homework #8 Solutions 6.003 Homework #8 Soluions Problems. Fourier Series Deermine he Fourier series coefficiens a k for x () shown below. x ()= x ( + 0) 0 a 0 = 0 a k = e /0 sin(/0) for k 0 a k = π x()e k d = 0 0 π e 0 k d

More information

Homework 4 (Stats 620, Winter 2017) Due Tuesday Feb 14, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 4 (Stats 620, Winter 2017) Due Tuesday Feb 14, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework 4 (Sas 62, Winer 217) Due Tuesday Feb 14, in class Quesions are derived from problems in Sochasic Processes by S. Ross. 1. Le A() and Y () denoe respecively he age and excess a. Find: (a) P{Y

More information

Stationary Time Series

Stationary Time Series 3-Jul-3 Time Series Analysis Assoc. Prof. Dr. Sevap Kesel July 03 Saionary Time Series Sricly saionary process: If he oin dis. of is he same as he oin dis. of ( X,... X n) ( X h,... X nh) Weakly Saionary

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE373 : Digial Communicaions Week 6-7: Deecion Error Probabiliy Signal Space Orhogonal Signal Space MAJU-Digial Comm.-Week-6-7 Deecion Mached filer reduces he received signal o a single variable zt, afer

More information

δ (τ )dτ denotes the unit step function, and

δ (τ )dτ denotes the unit step function, and ECE-202 Homework Problems (Se 1) Spring 18 TO THE STUDENT: ALWAYS CHECK THE ERRATA on he web. ANCIENT ASIAN/AFRICAN/NATIVE AMERICAN/SOUTH AMERICAN ETC. PROVERB: If you give someone a fish, you give hem

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing.

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing. MECHANICS APPLICATIONS OF SECOND-ORDER ODES 7 Mechanics applicaions of second-order ODEs Second-order linear ODEs wih consan coefficiens arise in many physical applicaions. One physical sysems whose behaviour

More information

Errata (1 st Edition)

Errata (1 st Edition) P Sandborn, os Analysis of Elecronic Sysems, s Ediion, orld Scienific, Singapore, 03 Erraa ( s Ediion) S K 05D Page 8 Equaion (7) should be, E 05D E Nu e S K he L appearing in he equaion in he book does

More information

THE SINE INTEGRAL. x dt t

THE SINE INTEGRAL. x dt t THE SINE INTEGRAL As one learns in elemenary calculus, he limi of sin(/ as vanishes is uniy. Furhermore he funcion is even and has an infinie number of zeros locaed a ±n for n1,,3 Is plo looks like his-

More information

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif Chaper Kalman Filers. Inroducion We describe Bayesian Learning for sequenial esimaion of parameers (eg. means, AR coeciens). The updae procedures are known as Kalman Filers. We show how Dynamic Linear

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

4.1 - Logarithms and Their Properties

4.1 - Logarithms and Their Properties Chaper 4 Logarihmic Funcions 4.1 - Logarihms and Their Properies Wha is a Logarihm? We define he common logarihm funcion, simply he log funcion, wrien log 10 x log x, as follows: If x is a posiive number,

More information

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91 ddiional Problems 9 n inverse relaionship exiss beween he ime-domain and freuency-domain descripions of a signal. Whenever an operaion is performed on he waveform of a signal in he ime domain, a corresponding

More information

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 3 Absolue and Relaive Accuracy DAC Design The Sring DAC . Review from las lecure. DFT Simulaion from Malab Quanizaion Noise DACs and ADCs generally quanize boh ampliude and ime If convering

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LTU, decision

More information

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j = 1: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME Moving Averages Recall ha a whie noise process is a series { } = having variance σ. The whie noise process has specral densiy f (λ) = of

More information

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T Smoohing Consan process Separae signal & noise Smooh he daa: Backward smooher: A an give, replace he observaion b a combinaion of observaions a & before Simple smooher : replace he curren observaion wih

More information

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI THE 2-BODY PROBLEM ROBERT J. VANDERBEI ABSTRACT. In his shor noe, we show ha a pair of ellipses wih a common focus is a soluion o he 2-body problem. INTRODUCTION. Solving he 2-body problem from scrach

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : 0. ND_NW_EE_Signal & Sysems_4068 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkaa Pana Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTRICAL ENGINEERING

More information

Econ Autocorrelation. Sanjaya DeSilva

Econ Autocorrelation. Sanjaya DeSilva Econ 39 - Auocorrelaion Sanjaya DeSilva Ocober 3, 008 1 Definiion Auocorrelaion (or serial correlaion) occurs when he error erm of one observaion is correlaed wih he error erm of any oher observaion. This

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Roboica Anno accademico 2006/2007 Davide Migliore migliore@ele.polimi.i Today Eercise session: An Off-side roblem Robo Vision Task Measuring NBA layers erformance robabilisic Roboics Inroducion The Bayesian

More information

Graphical Event Models and Causal Event Models. Chris Meek Microsoft Research

Graphical Event Models and Causal Event Models. Chris Meek Microsoft Research Graphical Even Models and Causal Even Models Chris Meek Microsof Research Graphical Models Defines a join disribuion P X over a se of variables X = X 1,, X n A graphical model M =< G, Θ > G =< X, E > is

More information

STA 114: Statistics. Notes 2. Statistical Models and the Likelihood Function

STA 114: Statistics. Notes 2. Statistical Models and the Likelihood Function STA 114: Saisics Noes 2. Saisical Models and he Likelihood Funcion Describing Daa & Saisical Models A physicis has a heory ha makes a precise predicion of wha s o be observed in daa. If he daa doesn mach

More information

Sequential Importance Resampling (SIR) Particle Filter

Sequential Importance Resampling (SIR) Particle Filter Paricle Filers++ Pieer Abbeel UC Berkeley EECS Many slides adaped from Thrun, Burgard and Fox, Probabilisic Roboics 1. Algorihm paricle_filer( S -1, u, z ): 2. Sequenial Imporance Resampling (SIR) Paricle

More information

Reliability of Technical Systems

Reliability of Technical Systems eliabiliy of Technical Sysems Main Topics Inroducion, Key erms, framing he problem eliabiliy parameers: Failure ae, Failure Probabiliy, Availabiliy, ec. Some imporan reliabiliy disribuions Componen reliabiliy

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

NCSS Statistical Software. , contains a periodic (cyclic) component. A natural model of the periodic component would be

NCSS Statistical Software. , contains a periodic (cyclic) component. A natural model of the periodic component would be NCSS Saisical Sofware Chaper 468 Specral Analysis Inroducion This program calculaes and displays he periodogram and specrum of a ime series. This is someimes nown as harmonic analysis or he frequency approach

More information