Receivers, Antennas, and Signals. Professor David H. Staelin Fall 2001 Slide 1

Size: px
Start display at page:

Download "Receivers, Antennas, and Signals. Professor David H. Staelin Fall 2001 Slide 1"

Transcription

1 Receivers, Anennas, and Signals Professor David H. Saelin 6.66 Fall 00 Slide A

2 Subjec Conen A Human Processor Transducer Radio Opical, Infrared Acousic, oher Elecromagneic Environmen B C Human Processor Communicaions: A C (radio, opical) Acive Sensing: A C (radar, lidar, sonar) Transducer Passive Sensing: B C (sysems and devices: environmenal, medical, indusrial, consumer, and radio asronomy) 6.66 Fall 00 Slide A

3 Subjec Offers Physical conceps Mahemaical mehods, sysem analysis and design Applicaions examples Moivaion and inegraion of prior learning 6.66 Fall 00 Slide 3 A3

4 Subjec Ouline Review of signals and probabiliy Noise in deecors and sysems; physics of deecors Receivers and specromeers; radio, opical, infrared Radiaion, propagaion, and anennas Signal modulaion, coding, processing and deecion Communicaions, radar, radio asronomy, and remoe sensing Parameer esimaion 6.66 Fall 00 Slide 4 A4

5 Review of Signals Signal Types o be Reviewed: Pulses (finie energy) Periodic signals (finie energy per period) Random signals (finie power, infinie energy) 6.66 Fall 00 Slide 5 A5

6 Have Finie Energy : Define noaion " " for e.g. v() V (f) Pulses v() Define Fourier Transform: V (f) v () = v()e = V(f)e j N πf ω v () + jπf d df d < [ vols/hz = vol sec ] [ vols] Fourier Transform : Dimensions mus only be self consisen ; e.g. v() can be dimensionl ess, vols, meers, newons, ec Fall 00 Slide 6 B

7 S (f) V (f) Energy Specral Densiy S(f) V (f) = v()e j πf ω S(f) can have dimensions of : sec if is ime and v is dimensionless m (vols/hz) Joules/Hz E ceera if is disance and v is dimensionless if is ime and v() is vols where (v/hz) = v /sec Hz = v / sec ( ) ( ) ( ) if S(f) is dissipaed in a -ohm resisor by v() vols, where Joules = vols sec/ohm 6.66 Fall 00 Slide 7 B

8 R( τ ) S (f) S (f)? v()v Claim: R ( τ) S(f) Auocorrelaion Funcion R( τ )e ( τ ) d j π f τ = V(f) V (f) = dτ = [ ] v sec or [] Reverses V(f) Q.E.D. { } jf τ v()v ( τ ) d e dτ { j π f } { } v()e d v ( + j π f )e d = R ( τ ) R (0) = = Therefore: + j π f τ S(f)e v () d = df S(f) df J, ec. sign of d for = Parseval' s Theorem d consan 6.66 Fall 00 Slide 8 B3

9 Compac Transform Noaion v () R ( τ ) [ v ] [ v /Hz] V(f) V(f) S(f) [ ] v sec [ v / Hz ] [ Joules ] [ J/Hz] If power is dissipaed in a -ohm resisor 6.66 Fall 00 Slide 9 B4

10 Define Uni Impulse ε ε 0 ε u o () δ () where lim uo() d =, u o() = 0 for > 0 u n () u o () u Impulse 0 n () d Sep u () u () 0 0 Ramp Slope = Fall 00 Slide 0 B5

11 Define Convoluion 0 a () b() a() b( τ ) d = c( τ) a() b() a () b() = c( τ) * τ Fall 00 Slide B6

12 a ( Useful Transformaion Pairs for Pulses o ) ( f ) a () A A (f) a() e d u o A(f) e j ω o j πf u o () = δ () Have energy (f) (reaed as special pulses) ( f ) j πf a () jωa a () = A(f)e df u n n () (jω) a () u e j ω o α () e / ( f ) A f o ( jω + α ) ωo πf o ω πf 6.66 Fall 00 Slide C

13 Transforms: Even/Odd Funcions a e () where: R e a a { A( f )} e o () () [ a() + a( ) ]/ = a ( ) [ a() a( ) ]/ = a ( ) e o EVEN ODD so: a() = a e () + a o () e.g. a () a e () = + a o () () a o j { } Im A(f) 6.66 Fall 00 Slide 3 C

14 Transforms: Operaors and Gaussians a () a () A (f) A (f) a () a v() () A (f) A (f) 0 σ v () σ σ A π e e ( / σ) / Ae A ( σω) e / A ( τ / σ ) ( σω) π All Gaussians 6.66 Fall 00 Slide 4 C3

15 x() Characerized by: Linear Sysems h() y() h() = " Impulse Response, " where y() x() h() Tes : If Noe: A (B A B A (B C) x() = = B δ (), hen y() = h() + C) = (A B) + (A C) A = (A B) C x( τ)h( If h() = δ (), hen y() = x() τ )dτ " superposi ion Disribuive Commuaive Associaive inegral" 6.66 Fall 00 Slide 5 C4

16 Alhough v Periodic Signals ()d =, v() T o v ()d m = m = 0 < where Period T Infinie energy, finie power T 0 T T 3T Fourier Series: T / jm(π / T) V m v ()e d where m = 0, ±, ± T T / ω = π v() = V m m = e jm π f o o f o ( f /T) o, Fall 00 Slide 6 E

17 Auocorrelaion, Power Specrum Auocorrelaion Funcion: R ( τ ) T T / T / v ()v ( τ ) d = V m = m e jm π f o τ Power Specrum: Φ m V m = T T / T / R ( τ)e jm πf o τ d 6.66 Fall 00 Slide 7 E

18 Compac Noaion v () R ( τ ) V m V m Φ m Φ (f) Typical dimensions: [ vols ] [ vols] [ ] [ ] vols vols In -ohm resisor: [ was ] [ W] 6.66 Fall 00 Slide 8 E3

19 Transforms of Impulse Trains a v() a/t V m T 0 T 3 / T 0 / T f a / T ( ) R τ ( a / T) V m Φ (f) 6.66 Fall 00 Slide 9 T 0 T e.g. Area = v () ah τ / h τ a is impulse value a rea 3 / T = a / T 0 / T R ( τ ) = R (0) h / h 0 / h Le h so area a / T becomes impulse value a h T f τ = a h / T E4

20 Receiver Noise Processes Receivers, Anennas, and Signals Professor David H. Saelin 6.66 Fall 00 Slide 0

21 Random Signals Random signals generally have finie power, infinie energy, and are unpredicable Example: [ ] WH z Φ(f) 0 f MAX f Since we have infinie informaion for infinie ime and a finie frequency band, hen V(f) is no an analyic funcion and our approach mus be differen. New definiions are required Fall 00 Slide G

22 Expeced Value of x Finie or infinie ensemble of x i () E x { dx [ ()] x i () p x i() } x p ( x ) x i i i ε " ensemble" ( ) p x i [ ( ) ] p x i () x i () x j A random signal is drawn from some ensemble Auocorrel aion Funcion : φ v [ ] (, ) E v ( ) ( ) v 6.66 Fall 00 Slide G

23 v() is wide-sense saionary if: φ v Saionariy (, ) = φ ( +, + ) = φ( τ) where v, v() is sric-sense saionary if: E g v [ { ( ), v ( ),..., v ( )}] = E [ g { v ( + ), v ( + ),..., v ( + )}] n n v() is Ergodic if: v() is wide-sense saionary and T φv ( τ ) = lim v() v ( ) T T τ d, T i.e., ensemble average = ime average ransiions Oherwise v() is occur only Non-saionary e.g.: a clock icks (ime-origin sensiive) Fall 00 Slide 3 τ for any funcion g for all, G3

24 Transform Diagram: Random Signals v() (?) φ v (τ) Φ(f) Typical Ses of Unis [ V ] (?) [ V ] (?) [ V ] [ V /Hz ] [W] [W/Hz] Power o -ohm resisor Power specral densiy 6.66 Fall 00 Slide 4 G4

25 Power Specral Densiy T j π Φ ( f) = lim E v ()e T T T Why use E[ ] if v() is ergodic? Because lim σ ( f) 0! where σ (f) E Φ d [ (f) Φ (f ] T T T ) Specral resoluion increases wih T, becoming infinie as T e.g. Infinie informaion in finie bandwidh unless ensemble is averaged Power Specral Densiy Compuaion: For a single ergodic waveform, ake ensemble average over successive inervals of widh T. Use T adequae o yield desired or meaningful specral resoluion. f 6.66 Fall 00 Slide 5 G5

Sensors, Signals and Noise

Sensors, Signals and Noise Sensors, Signals and Noise COURSE OUTLINE Inroducion Signals and Noise: 1) Descripion Filering Sensors and associaed elecronics rv 2017/02/08 1 Noise Descripion Noise Waveforms and Samples Saisics of Noise

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x, Laplace Transforms Definiion. An ordinary differenial equaion is an equaion ha conains one or several derivaives of an unknown funcion which we call y and which we wan o deermine from he equaion. The equaion

More information

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies Communicaion Sysems, 5e Chaper 3: Signal Transmission and Filering A. Bruce Carlson Paul B. Crilly 00 The McGraw-Hill Companies Chaper 3: Signal Transmission and Filering Response of LTI sysems Signal

More information

Communication System Analysis

Communication System Analysis Communicaion Sysem Analysis Communicaion Sysems A naïve, absurd communicaion sysem 12/29/10 M. J. Robers - All Righs Reserved 2 Communicaion Sysems A beer communicaion sysem using elecromagneic waves o

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

EELE Lecture 3,4 EE445 - Outcomes. Physically Realizable Waveforms. EELE445 Montana State University. In this lecture you:

EELE Lecture 3,4 EE445 - Outcomes. Physically Realizable Waveforms. EELE445 Montana State University. In this lecture you: EELE445 Monana Sae Universiy Lecure 3,4 EE445 - Oucomes EELE445-4 Lecure 3,4 Poer, Energy, ime average operaor secion. In his lecure you: be able o use he ime average operaor [] for finie ime duraion signals

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mark Fowler Noe Se #1 C-T Sysems: Convoluion Represenaion Reading Assignmen: Secion 2.6 of Kamen and Heck 1/11 Course Flow Diagram The arrows here show concepual flow beween

More information

System Processes input signal (excitation) and produces output signal (response)

System Processes input signal (excitation) and produces output signal (response) Signal A funcion of ime Sysem Processes inpu signal (exciaion) and produces oupu signal (response) Exciaion Inpu Sysem Oupu Response 1. Types of signals 2. Going from analog o digial world 3. An example

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

Signals and Systems Linear Time-Invariant (LTI) Systems

Signals and Systems Linear Time-Invariant (LTI) Systems Signals and Sysems Linear Time-Invarian (LTI) Sysems Chang-Su Kim Discree-Time LTI Sysems Represening Signals in Terms of Impulses Sifing propery 0 x[ n] x[ k] [ n k] k x[ 2] [ n 2] x[ 1] [ n1] x[0] [

More information

Power of Random Processes 1/40

Power of Random Processes 1/40 Power of Random Processes 40 Power of a Random Process Recall : For deerminisic signals insananeous power is For a random signal, is a random variable for each ime. hus here is no single # o associae wih

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Represenaion of Signals in Terms of Frequency Componens Chaper 4 The Fourier Series and Fourier Transform Consider he CT signal defined by x () = Acos( ω + θ ), = The frequencies `presen in he signal are

More information

Lecture 2: Optics / C2: Quantum Information and Laser Science

Lecture 2: Optics / C2: Quantum Information and Laser Science Lecure : Opics / C: Quanum Informaion and Laser Science Ocober 9, 8 1 Fourier analysis This branch of analysis is exremely useful in dealing wih linear sysems (e.g. Maxwell s equaions for he mos par),

More information

Outline Chapter 2: Signals and Systems

Outline Chapter 2: Signals and Systems Ouline Chaper 2: Signals and Sysems Signals Basics abou Signal Descripion Fourier Transform Harmonic Decomposiion of Periodic Waveforms (Fourier Analysis) Definiion and Properies of Fourier Transform Imporan

More information

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier Represening a Signal Coninuous-ime ourier Mehods he convoluion mehod for finding he response of a sysem o an exciaion aes advanage of he lineariy and imeinvariance of he sysem and represens he exciaion

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se # Wha are Coninuous-Time Signals??? /6 Coninuous-Time Signal Coninuous Time (C-T) Signal: A C-T signal is defined on he coninuum of ime values. Tha is:

More information

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction /9/ Coninuous Time Linear Time Invarian (LTI) Sysems Why LTI? Inroducion Many physical sysems. Easy o solve mahemaically Available informaion abou analysis and design. We can apply superposiion LTI Sysem

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Elements of Stochastic Processes Lecture II Hamid R. Rabiee

Elements of Stochastic Processes Lecture II Hamid R. Rabiee Sochasic Processes Elemens of Sochasic Processes Lecure II Hamid R. Rabiee Overview Reading Assignmen Chaper 9 of exbook Furher Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A Firs Course

More information

5. Stochastic processes (1)

5. Stochastic processes (1) Lec05.pp S-38.45 - Inroducion o Teleraffic Theory Spring 2005 Conens Basic conceps Poisson process 2 Sochasic processes () Consider some quaniy in a eleraffic (or any) sysem I ypically evolves in ime randomly

More information

5. Response of Linear Time-Invariant Systems to Random Inputs

5. Response of Linear Time-Invariant Systems to Random Inputs Sysem: 5. Response of inear ime-invarian Sysems o Random Inpus 5.. Discree-ime linear ime-invarian (IV) sysems 5... Discree-ime IV sysem IV sysem xn ( ) yn ( ) [ xn ( )] Inpu Signal Sysem S Oupu Signal

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91 ddiional Problems 9 n inverse relaionship exiss beween he ime-domain and freuency-domain descripions of a signal. Whenever an operaion is performed on he waveform of a signal in he ime domain, a corresponding

More information

EELE Lecture 8 Example of Fourier Series for a Triangle from the Fourier Transform. Homework password is: 14445

EELE Lecture 8 Example of Fourier Series for a Triangle from the Fourier Transform. Homework password is: 14445 EELE445-4 Lecure 8 Eample o Fourier Series or a riangle rom he Fourier ransorm Homework password is: 4445 3 4 EELE445-4 Lecure 8 LI Sysems and Filers 5 LI Sysem 6 3 Linear ime-invarian Sysem Deiniion o

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE373 : Digial Communicaions Week 6-7: Deecion Error Probabiliy Signal Space Orhogonal Signal Space MAJU-Digial Comm.-Week-6-7 Deecion Mached filer reduces he received signal o a single variable zt, afer

More information

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e PHYS67 Class 3 ourier Transforms In he limi T, he ourier series becomes an inegral ( nt f in T ce f n f f e d, has been replaced by ) where i f e d is he ourier ransform of f() which is he inverse ourier

More information

Lecture 4. Goals: Be able to determine bandwidth of digital signals. Be able to convert a signal from baseband to passband and back IV-1

Lecture 4. Goals: Be able to determine bandwidth of digital signals. Be able to convert a signal from baseband to passband and back IV-1 Lecure 4 Goals: Be able o deermine bandwidh o digial signals Be able o conver a signal rom baseband o passband and back IV-1 Bandwidh o Digial Daa Signals A digial daa signal is modeled as a random process

More information

Chapter One Fourier Series and Fourier Transform

Chapter One Fourier Series and Fourier Transform Chaper One I. Fourier Series Represenaion of Periodic Signals -Trigonomeric Fourier Series: The rigonomeric Fourier series represenaion of a periodic signal x() x( + T0 ) wih fundamenal period T0 is given

More information

e 2t u(t) e 2t u(t) =?

e 2t u(t) e 2t u(t) =? EE : Signals, Sysems, and Transforms Fall 7. Skech he convoluion of he following wo signals. Tes No noes, closed book. f() Show your work. Simplify your answers. g(). Using he convoluion inegral, find

More information

6.302 Feedback Systems Recitation 4: Complex Variables and the s-plane Prof. Joel L. Dawson

6.302 Feedback Systems Recitation 4: Complex Variables and the s-plane Prof. Joel L. Dawson Number 1 quesion: Why deal wih imaginary and complex numbers a all? One answer is ha, as an analyical echnique, hey make our lives easier. Consider passing a cosine hrough an LTI filer wih impulse response

More information

9/9/99 (T.F. Weiss) Signals and systems This subject deals with mathematical methods used to describe signals and to analyze and synthesize systems.

9/9/99 (T.F. Weiss) Signals and systems This subject deals with mathematical methods used to describe signals and to analyze and synthesize systems. 9/9/99 (T.F. Weiss) Lecure #: Inroducion o signals Moivaion: To describe signals, boh man-made and naurally occurring. Ouline: Classificaion ofsignals Building-block signals complex exponenials, impulses

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Phase Noise in CMOS Differential LC Oscillators

Phase Noise in CMOS Differential LC Oscillators Phase Noise in CMOS Differenial LC Oscillaors Ali Hajimiri Thomas H. Lee Sanford Universiy, Sanford, CA 94305 Ouline Inroducion and Definiions Tank Volage Noise Sources Effec of Tail Curren Source Measuremen

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 3 Absolue and Relaive Accuracy DAC Design The Sring DAC . Review from las lecure. DFT Simulaion from Malab Quanizaion Noise DACs and ADCs generally quanize boh ampliude and ime If convering

More information

Q1) [20 points] answer for the following questions (ON THIS SHEET):

Q1) [20 points] answer for the following questions (ON THIS SHEET): Dr. Anas Al Tarabsheh The Hashemie Universiy Elecrical and Compuer Engineering Deparmen (Makeup Exam) Signals and Sysems Firs Semeser 011/01 Final Exam Dae: 1/06/01 Exam Duraion: hours Noe: means convoluion

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

Signals and Systems Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin

Signals and Systems Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE 345S Real-Time Digial Signal Processing Lab Spring 26 Signals and Sysems Prof. Brian L. Evans Dep. of Elecrical and Compuer Engineering The Universiy of Texas a Ausin Review Signals As Funcions of Time

More information

Signal processing. A. Sestieri Dipartimento di Meccanica e Aeronautica University La Sapienza, Rome

Signal processing. A. Sestieri Dipartimento di Meccanica e Aeronautica University La Sapienza, Rome Signal processing A. Sesieri Diparimeno di Meccanica e Aeronauica Universiy La Sapienza, Rome Presenaion layou - Fourier series and Fourier ransforms - Leakage - Aliasing - Analog versus digial signals

More information

Stochastic Structural Dynamics. Lecture-6

Stochastic Structural Dynamics. Lecture-6 Sochasic Srucural Dynamics Lecure-6 Random processes- Dr C S Manohar Deparmen of Civil Engineering Professor of Srucural Engineering Indian Insiue of Science Bangalore 560 0 India manohar@civil.iisc.erne.in

More information

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2 Soluions o he Exam Digial Communicaions I given on he 11h of June 2007 Quesion 1 (14p) a) (2p) If X and Y are independen Gaussian variables, hen E [ XY ]=0 always. (Answer wih RUE or FALSE) ANSWER: False.

More information

28. Narrowband Noise Representation

28. Narrowband Noise Representation Narrowband Noise Represenaion on Mac 8. Narrowband Noise Represenaion In mos communicaion sysems, we are ofen dealing wih band-pass filering of signals. Wideband noise will be shaped ino bandlimied noise.

More information

The Fourier Transform.

The Fourier Transform. The Fourier Transform. Consider an energy signal x(). Is energy is = E x( ) d 2 x() x () T Such signal is neiher finie ime nor periodic. This means ha we canno define a "specrum" for i using Fourier series.

More information

A complex discrete (or digital) signal x(n) is defined in a

A complex discrete (or digital) signal x(n) is defined in a Chaper Complex Signals A number of signal processing applicaions make use of complex signals. Some examples include he characerizaion of he Fourier ransform, blood velociy esimaions, and modulaion of signals

More information

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition EE 224 Signals and Sysems I Complex numbers sinusodal signals Complex exponenials e jω phasor addiion 1/28 Complex Numbers Recangular Polar y z r z θ x Good for addiion/subracion Good for muliplicaion/division

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

Notes 04 largely plagiarized by %khc

Notes 04 largely plagiarized by %khc Noes 04 largely plagiarized by %khc Convoluion Recap Some ricks: x() () =x() x() (, 0 )=x(, 0 ) R ț x() u() = x( )d x() () =ẋ() This hen ells us ha an inegraor has impulse response h() =u(), and ha a differeniaor

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

Answers to Exercises in Chapter 7 - Correlation Functions

Answers to Exercises in Chapter 7 - Correlation Functions M J Robers - //8 Answers o Exercises in Chaper 7 - Correlaion Funcions 7- (from Papoulis and Pillai) The random variable C is uniform in he inerval (,T ) Find R, ()= u( C), ()= C (Use R (, )= R,, < or

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

4 Sequences of measurable functions

4 Sequences of measurable functions 4 Sequences of measurable funcions 1. Le (Ω, A, µ) be a measure space (complee, afer a possible applicaion of he compleion heorem). In his chaper we invesigae relaions beween various (nonequivalen) convergences

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LTU, decision

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM Name: UNIVERSIY OF CALIFORNIA College of Engineering Deparmen of Elecrical Engineering and Compuer Sciences Professor David se EECS 121 FINAL EXAM 21 May 1997, 5:00-8:00 p.m. Please wrie answers on blank

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

Basic notions of probability theory (Part 2)

Basic notions of probability theory (Part 2) Basic noions of probabiliy heory (Par 2) Conens o Basic Definiions o Boolean Logic o Definiions of probabiliy o Probabiliy laws o Random variables o Probabiliy Disribuions Random variables Random variables

More information

Characteristics of Linear System

Characteristics of Linear System Characerisics o Linear Sysem h g h : Impulse response F G : Frequency ranser uncion Represenaion o Sysem in ime an requency. Low-pass iler g h G F he requency ranser uncion is he Fourier ransorm o he impulse

More information

Random Processes 1/24

Random Processes 1/24 Random Processes 1/24 Random Process Oher Names : Random Signal Sochasic Process A Random Process is an exension of he concep of a Random variable (RV) Simples View : A Random Process is a RV ha is a Funcion

More information

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS Andrei Tokmakoff, MIT Deparmen of Chemisry, 2/22/2007 2-17 2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS The mahemaical formulaion of he dynamics of a quanum sysem is no unique. So far we have described

More information

6.003: Signal Processing

6.003: Signal Processing 6.003: Signal Processing Coninuous-Time Fourier Transform Definiion Examples Properies Relaion o Fourier Series Sepember 5, 08 Quiz Thursday, Ocober 4, from 3pm o 5pm. No lecure on Ocober 4. The exam is

More information

From Complex Fourier Series to Fourier Transforms

From Complex Fourier Series to Fourier Transforms Topic From Complex Fourier Series o Fourier Transforms. Inroducion In he previous lecure you saw ha complex Fourier Series and is coeciens were dened by as f ( = n= C ne in! where C n = T T = T = f (e

More information

Wireless Communication Channel Overview

Wireless Communication Channel Overview EC744 Wireless Communicaion Fall 008 Mohamed Essam Khedr Deparmen of Elecronics and Communicaions Wireless Communicaion Channel Overview Syllabus Tenaively Week 1 Week Week 3 Week 4 Week 5 Week 6 Week

More information

4.2 The Fourier Transform

4.2 The Fourier Transform 4.2. THE FOURIER TRANSFORM 57 4.2 The Fourier Transform 4.2.1 Inroducion One way o look a Fourier series is ha i is a ransformaion from he ime domain o he frequency domain. Given a signal f (), finding

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LDA, logisic

More information

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data Chaper 2 Models, Censoring, and Likelihood for Failure-Time Daa William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based

More information

2 Frequency-Domain Analysis

2 Frequency-Domain Analysis requency-domain Analysis Elecrical engineers live in he wo worlds, so o speak, of ime and frequency. requency-domain analysis is an exremely valuable ool o he communicaions engineer, more so perhaps han

More information

THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE 1-D HEAT DIFFUSION EQUATION. Jian-Guo ZHANG a,b *

THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE 1-D HEAT DIFFUSION EQUATION. Jian-Guo ZHANG a,b * Zhang, J.-G., e al.: The Fourier-Yang Inegral Transform for Solving he -D... THERMAL SCIENCE: Year 07, Vol., Suppl., pp. S63-S69 S63 THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE -D HEAT DIFFUSION

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

EECE.3620 Signal and System I

EECE.3620 Signal and System I EECE.360 Signal and Sysem I Hengyong Yu, PhD Associae Professor Deparmen of Elecrical and Compuer Engineering Universiy of Massachuses owell EECE.360 Signal and Sysem I Ch.9.4. Geomeric Evaluaion of he

More information

6.003 Homework #8 Solutions

6.003 Homework #8 Solutions 6.003 Homework #8 Soluions Problems. Fourier Series Deermine he Fourier series coefficiens a k for x () shown below. x ()= x ( + 0) 0 a 0 = 0 a k = e /0 sin(/0) for k 0 a k = π x()e k d = 0 0 π e 0 k d

More information

Detecting nonlinear processes in experimental data: Applications in Psychology and Medicine

Detecting nonlinear processes in experimental data: Applications in Psychology and Medicine Deecing nonlinear processes in eperimenal daa: Applicaions in Psychology and Medicine Richard A. Heah Division of Psychology, Universiy of Sunderland, UK richard.heah@sunderland.ac.uk Menu For Today Time

More information

Analytic Model and Bilateral Approximation for Clocked Comparator

Analytic Model and Bilateral Approximation for Clocked Comparator Analyic Model and Bilaeral Approximaion for Clocked Comparaor M. Greians, E. Hermanis, G.Supols Insiue of, Riga, Lavia, e-mail: gais.supols@edi.lv Research is suppored by: 1) ESF projec Nr.1DP/1.1.1.2.0/09/APIA/VIAA/020,

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

Omega-limit sets and bounded solutions

Omega-limit sets and bounded solutions arxiv:3.369v [mah.gm] 3 May 6 Omega-limi ses and bounded soluions Dang Vu Giang Hanoi Insiue of Mahemaics Vienam Academy of Science and Technology 8 Hoang Quoc Vie, 37 Hanoi, Vienam e-mail: dangvugiang@yahoo.com

More information

The Potential Effectiveness of the Detection of Pulsed Signals in the Non-Uniform Sampling

The Potential Effectiveness of the Detection of Pulsed Signals in the Non-Uniform Sampling The Poenial Effeciveness of he Deecion of Pulsed Signals in he Non-Uniform Sampling Arhur Smirnov, Sanislav Vorobiev and Ajih Abraham 3, 4 Deparmen of Compuer Science, Universiy of Illinois a Chicago,

More information

The complex Fourier series has an important limiting form when the period approaches infinity, i.e., T 0. 0 since it is proportional to 1/L, but

The complex Fourier series has an important limiting form when the period approaches infinity, i.e., T 0. 0 since it is proportional to 1/L, but Fourier Transforms The complex Fourier series has an imporan limiing form when he period approaches infiniy, i.e., T or L. Suppose ha in his limi () k = nπ L remains large (ranging from o ) and (2) c n

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

Lecture 8. Digital Communications Part III. Digital Demodulation

Lecture 8. Digital Communications Part III. Digital Demodulation Lecure 8. Digial Communicaions Par III. Digial Demodulaion Binary Deecion M-ary Deecion Lin Dai (Ciy Universiy of Hong Kong) EE38 Principles of Communicaions Lecure 8 Analog Signal Source SOURCE A-D Conversion

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

ENERGY SEPARATION AND DEMODULATION OF CPM SIGNALS

ENERGY SEPARATION AND DEMODULATION OF CPM SIGNALS ENERGY SEPARATION AND DEMODULATION OF CPM SIGNALS Balu Sanhanam SPCOM Laboraory Deparmen of E.E.C.E. Universiy of New Meico Moivaion CPM has power/bandwidh efficiency and used in he wireless sysem infrasrucure.

More information

Demodulation of Digitally Modulated Signals

Demodulation of Digitally Modulated Signals Addiional maerial for TSKS1 Digial Communicaion and TSKS2 Telecommunicaion Demodulaion of Digially Modulaed Signals Mikael Olofsson Insiuionen för sysemeknik Linköpings universie, 581 83 Linköping November

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN Inernaional Journal of Scienific & Engineering Research, Volume 4, Issue 10, Ocober-2013 900 FUZZY MEAN RESIDUAL LIFE ORDERING OF FUZZY RANDOM VARIABLES J. EARNEST LAZARUS PIRIYAKUMAR 1, A. YAMUNA 2 1.

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

CSE 3802 / ECE Numerical Methods in Scientific Computation. Jinbo Bi. Department of Computer Science & Engineering

CSE 3802 / ECE Numerical Methods in Scientific Computation. Jinbo Bi. Department of Computer Science & Engineering CSE 3802 / ECE 3431 Numerical Mehods in Scienific Compuaion Jinbo Bi Deparmen of Compuer Science & Engineering hp://www.engr.uconn.edu/~jinbo 1 Ph.D in Mahemaics The Insrucor Previous professional experience:

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information