ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91

Size: px
Start display at page:

Download "ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91"

Transcription

1 ddiional Problems 9 n inverse relaionship exiss beween he ime-domain and freuency-domain descripions of a signal. Whenever an operaion is performed on he waveform of a signal in he ime domain, a corresponding modificaion is applied o he specrum of he signal in he freuency domain. n imporan conseuence of his inverse relaionship is he fac ha he ime-bandwidh produc of an energy signal is a consan; he definiions of signal duraion and bandwidh merely affec he value of he consan. n imporan signal processing operaion freuenly encounered in communicaion sysems is ha of linear filering. his operaion involves he convoluion of he inpu signal wih he impulse response of he filer or, euivalenly, he muliplicaion of he Fourier ransform of he inpu signal by he ransfer funcion (i.e., Fourier ransform of he impulse response) of he filer. Noe, however, ha he maerial presened in he chaper on linear filering assumes ha he filer is ime-invarian (i.e., he shape of he impulse response of he filer is invarian wih respec o when he uni impulse or dela funcion is applied o he filer). noher imporan signal processing operaion encounered in communicaion sysems is ha of correlaion. his operaion may provide a measure of similariy beween a signal and a delayed version of iself, in which case we speak of he auocorrelaion funcion. When he measure of similariy involves a pair of differen signals, however, we speak of he cross-correlaion funcion. he Fourier ransform of he auocorrelaion funcion is called he specral densiy. he Fourier ransform of he cross-correlaion funcion is called he cross-specral densiy. Discussions of correlaion and specral densiy presened in he chaper were confined o energy signals and power signals exemplified by pulse-like signals and periodic signals respecively; he reamen of noise (anoher realizaion of power signal) is deferred o Chaper 8. he final par of he chaper was concerned wih he discree Fourier ransform and is numerical compuaion. Basically, he discree Fourier ransform is obained from he sandard Fourier ransform by uniformly sampling boh he inpu signal and he oupu specrum. he fas Fourier ransform algorihm provides a pracical means for he efficien implemenaion of he discree Fourier ransform on a digial compuer. his makes he fas Fourier ransform algorihm a powerful compuaional ool for specral analysis and linear filering. DDIION PROBEMS.9 Find he Fourier ransform of he half-cosine pulse shown in Fig..4. g() g() g() g() (d) FIGURE.4 Problem.9

2 9 CHPER FOURIER REPRESENION OF SIGNS ND SYSEMS pply he ime-shifing propery o he resul obained in par o evaluae he specrum of he half-sine pulse shown in Fig..4. Wha is he specrum of a half-sine pulse having a duraion eual o a? (d) Wha is he specrum of he negaive half-sine pulse shown in Fig..4? (e) Find he specrum of he single sine pulse shown in Fig..4(d).. ny funcion g can be spli umambiguously ino an even par and an odd par, as shown by he even par is defined by and he odd par is defined by g o 3g g 4 Evaluae he even and odd pars of a recangular pulse defined by Wha are he Fourier ransforms of hese wo pars of he pulse?. he following expression may be viewed as an approximae represenaion of a pulse wih finie rise ime: where i is assumed ha W. Deermine he Fourier ransform of g. Wha happens o his ransform when we allow o become zero?. he Fourier ransform of a signal g is denoed by Gf. Prove he following properies of he Fourier ransform: If a real signal g is an even funcion of ime, he Fourier ransform Gf is purely real. If he real signal g is an odd funcion of ime, he Fourier ransform Gf is purely imaginary. n g a j n where G n f is he nh derivaive of Gf wih respec o f. p b G n f, (d).3 he Fourier ransform Gf of a signal g is bounded by he following hree ineualiies: ƒgfƒ ƒgƒ d n g d a j p b n G n g g d G fg f df ƒjpfgfƒ ƒjpf Gfƒ dg ` ` d d g d g ` ` d d g g e g o g e 3g g 4 g reca b exp pu du I is assumed ha he firs and second derivaives of g exis.

3 ddiional Problems 93 g() FIGURE.4 Problem.3 Consruc hese hree bounds for he riangular pulse shown in Fig..4 and compare your resuls wih he acual ampliude specrum of he pulse..4 Consider he convoluion of wo signals g and g. Show ha d d 3g g 4 c d d g d g 3g g 4 d c g d d g.5 signal x of finie energy is applied o a suare-law device whose oupu y is defined by he specrum of x is limied o he freuency inerval W f W. Hence, show ha he specrum of y is limied o W f W. Hin: Express y as x muliplied by iself..6 Evaluae he Fourier ransform of he dela funcion by considering i as he limiing form of recangular pulse of uni area, and sinc pulse of uni area..7 he Fourier ransform Gf of a signal g is defined by Deermine he signal g..8 Consider a pulselike funcion g ha consiss of a small number of sraigh-line segmens. Suppose ha his funcion is differeniaed wih respec o ime wice so as o generae a seuence of weighed dela funcions, as shown by d g d ai k i d i where he k i are relaed o he slopes of he sraigh-line segmens. Given he values of he and i, show ha he Fourier ransform of g is given by k i y x Gf d Gf 4p f a i, f, f, f k i exp jpf i Using his procedure, show ha he Fourier ransform of he rapezoidal pulse shown in Fig..4 is given by Gf p f b a sin3pf b a 4 sin3pf b a 4 g() b a a b FIGURE.4 Problem.8

4 94 CHPER FOURIER REPRESENION OF SIGNS ND SYSEMS.9 recangular pulse of ampliude and duraion a may be viewed as he limiing case of he rapezoidal pulse shown in Fig..4 as approaches a. Saring wih he resul given in par of Problem.8, show ha as b approaches a, his resul approaches a sinc funcion. Reconcile he resul derived in par wih he Fourier-ransform pair of E. (.)..3 e x and y be he inpu and oupu signals of a linear ime-invarian filer. Using Rayleigh s energy heorem, show ha if he filer is sable and he inpu signal x has finie energy, hen he oupu signal y also has finie energy. ha is, if hen ƒyƒ d.3 Deermine he overall ampliude response of he cascade connecion shown in Fig..43 consising of N idenical sages, each wih a ime consan RC eual o. Show ha as N approaches infiniy, he ampliude response of he cascade connecion approaches he Gaussian funcion expa where for each value of N, he ime f b, consan is seleced so ha he condiion is saisfied. b ƒxƒ d 4p N R R R C Buffer amplifier C Buffer amplifier C Buffer amplifier FIGURE.43 Problem.3.3 Suppose ha, for a given signal x, he inegraed value of he signal over an inerval is reuired, as shown by y x d Show ha y can be obained by ransmiing he signal x hrough a filer wih is ransfer funcion given by Hf sincf exp jpf n adeuae approximaion o his ransfer funcion is obained by using a low-pass filer wih a bandwidh eual o >, passband ampliude response, and delay >. ssuming his low-pass filer o be ideal, deermine he filer oupu a ime due o a uni sep funcion applied o he filer a, and compare he resul wih he corresponding oupu of he ideal inegraor. Noe ha Sip.85 and Si p>..33 Show ha he wo differen pulses defined in pars and of Fig..44 have he same energy specral densiy: g f 4 cos pf p 4 f

5 ddiional Problems 95 g() g() FIGURE.44 Problem Deermine and skech he auocorrelaion funcions of he following exponenial pulses: g exp au g exp aƒƒ g exp au expau where u() is he uni sep funcion, and u is is ime-reversed version..35 Deermine and skech he auocorrelaion funcion of a Gaussian pulse defined by.36 he Fourier ransform of a signal is defined by sincf. Show ha he auocorrelaion funcion of his signal is riangular in form..37 Specify wo differen pulse signals ha have exacly he same auocorrelaion funcion..38 Consider a sinusoidal signal g defined by g exp p g cospf u cospf u Deermine he auocorrelaion funcion R g of his signal. Wha is he value of R g? Has any informaion abou g been los in obaining he auocorrelaion funcion? Explain..39 Deermine he auocorrelaion funcion of he riple pulse shown in Fig..45. g() 3 3 FIGURE.45 Problem.39.4 e Gf denoe he Fourier ransform of a real-valued energy signal g, and R g denoe is auocorrelaion funcion. Show ha B dr g d R d 4p.4 Deermine he cross-correlaion funcion R of he recangular pulse g and riple pulse g shown in Fig..46, and skech i. Wha is R? re hese wo signals orhogonal o each oher? Why? f ƒgfƒ 4 df

6 96 CHPER FOURIER REPRESENION OF SIGNS ND SYSEMS g () g () FIGURE.46 Problem.4.4 Consider wo energy signals g and g. hese wo signals are delayed by amouns eual o and seconds, respecively. Show ha he ime delays are addiive in convolving he pair of delayed signals, whereas hey are subracive in cross-correlaing hem..43 n energy signal x, is Fourier ransform Xf, auocorrelaion funcion R x, and energy specral densiy x f are all relaed, direcly or indirecly. Consruc a flow-graph ha porrays all he possible direc relaionships beween hem. If you are given he freuency-domain descripion Xf, he auocorrelaion funcion R x can be calculaed from Xf. Ouline wo ways in which his calculaion can be performed..44 Find he auocorrelaion funcion of a power signal g whose power specral densiy is depiced in Fig..47. Wha is he value of his auocorrelaion funcion a he origin? S g (f ) f FIGURE.47 Problem Consider he suare wave g shown in Fig..48. Find he power specral densiy, average power, and auocorrelaion funcion of his suare wave. Does he wave have dc power? Explain your answer. g() (seconds) FIGURE.48 Problem Consider wo periodic signals g p and g p ha have he following complex Fourier series represenaions: g p a c,n exp jpn

7 ddiional Problems 97 and g p he wo signals have a common period eual o. Using he following definiion of cross-correlaion for a pair of periodic signals, R a > > c,n exp jpn g p g p d show ha he prescribed pair of periodic signals saisfies he Fourier-ransform pair.47 periodic signal g p of period is represened by he complex Fourier series where he c n are he complex Fourier coefficiens. he auocorrelaion funcion of g p is defined by Consider he sinusoidal wave Deermine he auocorrelaion funcion R gp and plo is waveform. Show ha R gp >. R g p a c n expjpn> R gp > g p g p d > g p cospf c u.48 Repea pars and of Problem.47 for he suare wave: a c, n c, n d f n g p c, 4 4, for he remainder of period.49 Deermine he power specral densiy of he sinusoidal wave of Problem.47, and he suare wave of Problem Following a procedure similar o ha described in Secion. ha led o he flow graph of Fig..36 for he 8-poin FF algorihm based on decimaion-in-freuency, do he following: Develop he corresponding flow graph for he 8-poin FF algorihm based on decimaionin-ime. Compare he flow graph obained in par wih ha described in Fig..36, sressing he similariies and differences beween hese wo basic mehods for deriving he FF algorihm.

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.00 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 0 a 0 5 a k sin πk 5 sin πk 5 πk for k 0 a k 0 πk j

More information

Chapter One Fourier Series and Fourier Transform

Chapter One Fourier Series and Fourier Transform Chaper One I. Fourier Series Represenaion of Periodic Signals -Trigonomeric Fourier Series: The rigonomeric Fourier series represenaion of a periodic signal x() x( + T0 ) wih fundamenal period T0 is given

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.003 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 3 0 a 0 5 a k a k 0 πk j3 e 0 e j πk 0 jπk πk e 0

More information

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information

Outline Chapter 2: Signals and Systems

Outline Chapter 2: Signals and Systems Ouline Chaper 2: Signals and Sysems Signals Basics abou Signal Descripion Fourier Transform Harmonic Decomposiion of Periodic Waveforms (Fourier Analysis) Definiion and Properies of Fourier Transform Imporan

More information

5. Response of Linear Time-Invariant Systems to Random Inputs

5. Response of Linear Time-Invariant Systems to Random Inputs Sysem: 5. Response of inear ime-invarian Sysems o Random Inpus 5.. Discree-ime linear ime-invarian (IV) sysems 5... Discree-ime IV sysem IV sysem xn ( ) yn ( ) [ xn ( )] Inpu Signal Sysem S Oupu Signal

More information

Notes 04 largely plagiarized by %khc

Notes 04 largely plagiarized by %khc Noes 04 largely plagiarized by %khc Convoluion Recap Some ricks: x() () =x() x() (, 0 )=x(, 0 ) R ț x() u() = x( )d x() () =ẋ() This hen ells us ha an inegraor has impulse response h() =u(), and ha a differeniaor

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies Communicaion Sysems, 5e Chaper 3: Signal Transmission and Filering A. Bruce Carlson Paul B. Crilly 00 The McGraw-Hill Companies Chaper 3: Signal Transmission and Filering Response of LTI sysems Signal

More information

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier Represening a Signal Coninuous-ime ourier Mehods he convoluion mehod for finding he response of a sysem o an exciaion aes advanage of he lineariy and imeinvariance of he sysem and represens he exciaion

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

A complex discrete (or digital) signal x(n) is defined in a

A complex discrete (or digital) signal x(n) is defined in a Chaper Complex Signals A number of signal processing applicaions make use of complex signals. Some examples include he characerizaion of he Fourier ransform, blood velociy esimaions, and modulaion of signals

More information

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e PHYS67 Class 3 ourier Transforms In he limi T, he ourier series becomes an inegral ( nt f in T ce f n f f e d, has been replaced by ) where i f e d is he ourier ransform of f() which is he inverse ourier

More information

Spectral Analysis. Joseph Fourier The two representations of a signal are connected via the Fourier transform. Z x(t)exp( j2πft)dt

Spectral Analysis. Joseph Fourier The two representations of a signal are connected via the Fourier transform. Z x(t)exp( j2πft)dt Specral Analysis Asignalx may be represened as a funcion of ime as x() or as a funcion of frequency X(f). This is due o relaionships developed by a French mahemaician, physicis, and Egypologis, Joseph

More information

Signals and Systems Linear Time-Invariant (LTI) Systems

Signals and Systems Linear Time-Invariant (LTI) Systems Signals and Sysems Linear Time-Invarian (LTI) Sysems Chang-Su Kim Discree-Time LTI Sysems Represening Signals in Terms of Impulses Sifing propery 0 x[ n] x[ k] [ n k] k x[ 2] [ n 2] x[ 1] [ n1] x[0] [

More information

The Fourier Transform.

The Fourier Transform. The Fourier Transform. Consider an energy signal x(). Is energy is = E x( ) d 2 x() x () T Such signal is neiher finie ime nor periodic. This means ha we canno define a "specrum" for i using Fourier series.

More information

Linear Time-invariant systems, Convolution, and Cross-correlation

Linear Time-invariant systems, Convolution, and Cross-correlation Linear Time-invarian sysems, Convoluion, and Cross-correlaion (1) Linear Time-invarian (LTI) sysem A sysem akes in an inpu funcion and reurns an oupu funcion. x() T y() Inpu Sysem Oupu y() = T[x()] An

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

System Processes input signal (excitation) and produces output signal (response)

System Processes input signal (excitation) and produces output signal (response) Signal A funcion of ime Sysem Processes inpu signal (exciaion) and produces oupu signal (response) Exciaion Inpu Sysem Oupu Response 1. Types of signals 2. Going from analog o digial world 3. An example

More information

6.003 Homework #8 Solutions

6.003 Homework #8 Solutions 6.003 Homework #8 Soluions Problems. Fourier Series Deermine he Fourier series coefficiens a k for x () shown below. x ()= x ( + 0) 0 a 0 = 0 a k = e /0 sin(/0) for k 0 a k = π x()e k d = 0 0 π e 0 k d

More information

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction /9/ Coninuous Time Linear Time Invarian (LTI) Sysems Why LTI? Inroducion Many physical sysems. Easy o solve mahemaically Available informaion abou analysis and design. We can apply superposiion LTI Sysem

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

6.003 Homework #13 Solutions

6.003 Homework #13 Solutions 6.003 Homework #3 Soluions Problems. Transformaion Consider he following ransformaion from x() o y(): x() w () w () w 3 () + y() p() cos() where p() = δ( k). Deermine an expression for y() when x() = sin(/)/().

More information

EE 301 Lab 2 Convolution

EE 301 Lab 2 Convolution EE 301 Lab 2 Convoluion 1 Inroducion In his lab we will gain some more experience wih he convoluion inegral and creae a scrip ha shows he graphical mehod of convoluion. 2 Wha you will learn This lab will

More information

28. Narrowband Noise Representation

28. Narrowband Noise Representation Narrowband Noise Represenaion on Mac 8. Narrowband Noise Represenaion In mos communicaion sysems, we are ofen dealing wih band-pass filering of signals. Wideband noise will be shaped ino bandlimied noise.

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

Signal and System (Chapter 3. Continuous-Time Systems)

Signal and System (Chapter 3. Continuous-Time Systems) Signal and Sysem (Chaper 3. Coninuous-Time Sysems) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 0-760-453 Fax:0-760-4435 1 Dep. Elecronics and Informaion Eng. 1 Nodes, Branches, Loops A nework wih b

More information

Laplace Transform and its Relation to Fourier Transform

Laplace Transform and its Relation to Fourier Transform Chaper 6 Laplace Transform and is Relaion o Fourier Transform (A Brief Summary) Gis of he Maer 2 Domains of Represenaion Represenaion of signals and sysems Time Domain Coninuous Discree Time Time () [n]

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Represenaion of Signals in Terms of Frequency Componens Chaper 4 The Fourier Series and Fourier Transform Consider he CT signal defined by x () = Acos( ω + θ ), = The frequencies `presen in he signal are

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j = 1: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME Moving Averages Recall ha a whie noise process is a series { } = having variance σ. The whie noise process has specral densiy f (λ) = of

More information

Lecture 2: Optics / C2: Quantum Information and Laser Science

Lecture 2: Optics / C2: Quantum Information and Laser Science Lecure : Opics / C: Quanum Informaion and Laser Science Ocober 9, 8 1 Fourier analysis This branch of analysis is exremely useful in dealing wih linear sysems (e.g. Maxwell s equaions for he mos par),

More information

A First Course in Digital Communications

A First Course in Digital Communications A Firs Course in Digial Communicaions Ha H. Nguyen and E. Shwedyk February 9 A Firs Course in Digial Communicaions /58 Block Diagram of Binary Communicaion Sysems m { b k } bk = s b = s k m ˆ { bˆ } k

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

9/9/99 (T.F. Weiss) Signals and systems This subject deals with mathematical methods used to describe signals and to analyze and synthesize systems.

9/9/99 (T.F. Weiss) Signals and systems This subject deals with mathematical methods used to describe signals and to analyze and synthesize systems. 9/9/99 (T.F. Weiss) Lecure #: Inroducion o signals Moivaion: To describe signals, boh man-made and naurally occurring. Ouline: Classificaion ofsignals Building-block signals complex exponenials, impulses

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se # Wha are Coninuous-Time Signals??? /6 Coninuous-Time Signal Coninuous Time (C-T) Signal: A C-T signal is defined on he coninuum of ime values. Tha is:

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Solutions - Midterm Exam

Solutions - Midterm Exam DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERITY OF NEW MEXICO ECE-34: ignals and ysems ummer 203 PROBLEM (5 PT) Given he following LTI sysem: oluions - Miderm Exam a) kech he impulse response

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mark Fowler Noe Se #1 C-T Sysems: Convoluion Represenaion Reading Assignmen: Secion 2.6 of Kamen and Heck 1/11 Course Flow Diagram The arrows here show concepual flow beween

More information

Characteristics of Linear System

Characteristics of Linear System Characerisics o Linear Sysem h g h : Impulse response F G : Frequency ranser uncion Represenaion o Sysem in ime an requency. Low-pass iler g h G F he requency ranser uncion is he Fourier ransorm o he impulse

More information

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x, Laplace Transforms Definiion. An ordinary differenial equaion is an equaion ha conains one or several derivaives of an unknown funcion which we call y and which we wan o deermine from he equaion. The equaion

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

h[n] is the impulse response of the discrete-time system:

h[n] is the impulse response of the discrete-time system: Definiion Examples Properies Memory Inveribiliy Causaliy Sabiliy Time Invariance Lineariy Sysems Fundamenals Overview Definiion of a Sysem x() h() y() x[n] h[n] Sysem: a process in which inpu signals are

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

Chapter 4. Truncation Errors

Chapter 4. Truncation Errors Chaper 4. Truncaion Errors and he Taylor Series Truncaion Errors and he Taylor Series Non-elemenary funcions such as rigonomeric, eponenial, and ohers are epressed in an approimae fashion using Taylor

More information

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB EECS 6 Winer 7 Laboraory 3 Fourier series, Fourier ransform and Bode Plos in MATLAB Inroducion: The objecives of his lab are o use MATLAB:. To plo periodic signals wih Fourier series represenaion. To obain

More information

Analyze patterns and relationships. 3. Generate two numerical patterns using AC

Analyze patterns and relationships. 3. Generate two numerical patterns using AC envision ah 2.0 5h Grade ah Curriculum Quarer 1 Quarer 2 Quarer 3 Quarer 4 andards: =ajor =upporing =Addiional Firs 30 Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 andards: Operaions and Algebraic Thinking

More information

Chapter 2 : Fourier Series. Chapter 3 : Fourier Series

Chapter 2 : Fourier Series. Chapter 3 : Fourier Series Chaper 2 : Fourier Series.0 Inroducion Fourier Series : represenaion of periodic signals as weighed sums of harmonically relaed frequencies. If a signal x() is periodic signal, hen x() can be represened

More information

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition EE 224 Signals and Sysems I Complex numbers sinusodal signals Complex exponenials e jω phasor addiion 1/28 Complex Numbers Recangular Polar y z r z θ x Good for addiion/subracion Good for muliplicaion/division

More information

CE 395 Special Topics in Machine Learning

CE 395 Special Topics in Machine Learning CE 395 Special Topics in Machine Learning Assoc. Prof. Dr. Yuriy Mishchenko Fall 2017 DIGITAL FILTERS AND FILTERING Why filers? Digial filering is he workhorse of digial signal processing Filering is a

More information

Pade and Laguerre Approximations Applied. to the Active Queue Management Model. of Internet Protocol

Pade and Laguerre Approximations Applied. to the Active Queue Management Model. of Internet Protocol Applied Mahemaical Sciences, Vol. 7, 013, no. 16, 663-673 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/10.1988/ams.013.39499 Pade and Laguerre Approximaions Applied o he Acive Queue Managemen Model of Inerne

More information

ME 452 Fourier Series and Fourier Transform

ME 452 Fourier Series and Fourier Transform ME 452 Fourier Series and Fourier ransform Fourier series From Joseph Fourier in 87 as a resul of his sudy on he flow of hea. If f() is almos any periodic funcion i can be wrien as an infinie sum of sines

More information

Signals and Systems Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin

Signals and Systems Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE 345S Real-Time Digial Signal Processing Lab Spring 26 Signals and Sysems Prof. Brian L. Evans Dep. of Elecrical and Compuer Engineering The Universiy of Texas a Ausin Review Signals As Funcions of Time

More information

Elements of Stochastic Processes Lecture II Hamid R. Rabiee

Elements of Stochastic Processes Lecture II Hamid R. Rabiee Sochasic Processes Elemens of Sochasic Processes Lecure II Hamid R. Rabiee Overview Reading Assignmen Chaper 9 of exbook Furher Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A Firs Course

More information

δ (τ )dτ denotes the unit step function, and

δ (τ )dτ denotes the unit step function, and ECE-202 Homework Problems (Se 1) Spring 18 TO THE STUDENT: ALWAYS CHECK THE ERRATA on he web. ANCIENT ASIAN/AFRICAN/NATIVE AMERICAN/SOUTH AMERICAN ETC. PROVERB: If you give someone a fish, you give hem

More information

Communication Systems, 5e

Communication Systems, 5e Communicaion Sysems, 5e Chaper : Signals and Specra A. Bruce Carlson Paul B. Crilly The McGraw-Hill Companies Chaper : Signals and Specra Line specra and ourier series Fourier ransorms Time and requency

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

Q1) [20 points] answer for the following questions (ON THIS SHEET):

Q1) [20 points] answer for the following questions (ON THIS SHEET): Dr. Anas Al Tarabsheh The Hashemie Universiy Elecrical and Compuer Engineering Deparmen (Makeup Exam) Signals and Sysems Firs Semeser 011/01 Final Exam Dae: 1/06/01 Exam Duraion: hours Noe: means convoluion

More information

e 2t u(t) e 2t u(t) =?

e 2t u(t) e 2t u(t) =? EE : Signals, Sysems, and Transforms Fall 7. Skech he convoluion of he following wo signals. Tes No noes, closed book. f() Show your work. Simplify your answers. g(). Using he convoluion inegral, find

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Sensors, Signals and Noise

Sensors, Signals and Noise Sensors, Signals and Noise COURSE OUTLINE Inroducion Signals and Noise: 1) Descripion Filering Sensors and associaed elecronics rv 2017/02/08 1 Noise Descripion Noise Waveforms and Samples Saisics of Noise

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE373 : Digial Communicaions Week 6-7: Deecion Error Probabiliy Signal Space Orhogonal Signal Space MAJU-Digial Comm.-Week-6-7 Deecion Mached filer reduces he received signal o a single variable zt, afer

More information

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, Arrhenius

More information

Sub Module 2.6. Measurement of transient temperature

Sub Module 2.6. Measurement of transient temperature Mechanical Measuremens Prof. S.P.Venkaeshan Sub Module 2.6 Measuremen of ransien emperaure Many processes of engineering relevance involve variaions wih respec o ime. The sysem properies like emperaure,

More information

Lecture #6: Continuous-Time Signals

Lecture #6: Continuous-Time Signals EEL5: Discree-Time Signals and Sysems Lecure #6: Coninuous-Time Signals Lecure #6: Coninuous-Time Signals. Inroducion In his lecure, we discussed he ollowing opics:. Mahemaical represenaion and ransormaions

More information

6.003: Signals and Systems. Relations among Fourier Representations

6.003: Signals and Systems. Relations among Fourier Representations 6.003: Signals and Sysems Relaions among Fourier Represenaions April 22, 200 Mid-erm Examinaion #3 W ednesday, April 28, 7:30-9:30pm. No reciaions on he day of he exam. Coverage: Lecures 20 Reciaions 20

More information

Demodulation of Digitally Modulated Signals

Demodulation of Digitally Modulated Signals Addiional maerial for TSKS1 Digial Communicaion and TSKS2 Telecommunicaion Demodulaion of Digially Modulaed Signals Mikael Olofsson Insiuionen för sysemeknik Linköpings universie, 581 83 Linköping November

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

From Complex Fourier Series to Fourier Transforms

From Complex Fourier Series to Fourier Transforms Topic From Complex Fourier Series o Fourier Transforms. Inroducion In he previous lecure you saw ha complex Fourier Series and is coeciens were dened by as f ( = n= C ne in! where C n = T T = T = f (e

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x . 1 Mah 211 Homework #3 February 2, 2001 2.4.3. y + (2/x)y = (cos x)/x 2 Answer: Compare y + (2/x) y = (cos x)/x 2 wih y = a(x)x + f(x)and noe ha a(x) = 2/x. Consequenly, an inegraing facor is found wih

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 Tuorial Shee #2 discree vs. coninuous uncions, periodiciy, sampling We will encouner wo classes o signals in his class, coninuous-signals and discree-signals. The disinc mahemaical properies o each,

More information

For example, the comb filter generated from. ( ) has a transfer function. e ) has L notches at ω = (2k+1)π/L and L peaks at ω = 2π k/l,

For example, the comb filter generated from. ( ) has a transfer function. e ) has L notches at ω = (2k+1)π/L and L peaks at ω = 2π k/l, Comb Filers The simple filers discussed so far are characeried eiher by a single passband and/or a single sopband There are applicaions where filers wih muliple passbands and sopbands are required The

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts)

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts) HW6: MRI Imaging Pulse Sequences (7 Problems for 100 ps) GOAL The overall goal of HW6 is o beer undersand pulse sequences for MRI image reconsrucion. OBJECTIVES 1) Design a spin echo pulse sequence o image

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

Lecture 1: Contents of the course. Advanced Digital Control. IT tools CCSDEMO

Lecture 1: Contents of the course. Advanced Digital Control. IT tools CCSDEMO Goals of he course Lecure : Advanced Digial Conrol To beer undersand discree-ime sysems To beer undersand compuer-conrolled sysems u k u( ) u( ) Hold u k D-A Process Compuer y( ) A-D y ( ) Sampler y k

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Lecture 8. Digital Communications Part III. Digital Demodulation

Lecture 8. Digital Communications Part III. Digital Demodulation Lecure 8. Digial Communicaions Par III. Digial Demodulaion Binary Deecion M-ary Deecion Lin Dai (Ciy Universiy of Hong Kong) EE38 Principles of Communicaions Lecure 8 Analog Signal Source SOURCE A-D Conversion

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

3 General forced response

3 General forced response 3 General forced response So far, all of he driving forces have been sine or cosine exciaions In his chaper we examine he response o any form of exciaion such as Impulse Sums of sines and cosines Any inegrable

More information